38 Commits

Author SHA1 Message Date
58a503d2c4 io: add display unit
added rendering for modes 3,4,5
also changed how memory structuring works

Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-22 04:16:12 +05:30
54fc472399 bus: rewrite the private read/write methods
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-21 02:01:04 +05:30
514aeb7d44 cpu: bring back the flush pipeline method
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-21 01:56:25 +05:30
f510a54d40 utils/tcp_server: set TCP_NODELAY
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-20 06:12:42 +05:30
1c96f418eb massive instruction rewrite
So, I ended up moving exec methods from Instruction to Cpu for
encapsulating cycle emulation, and this has caused me lots of pain since
I had to rewrite a shit ton of tests which are not even useful or
comprehensible, i do no know why i put myself through this

Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-20 06:07:00 +05:30
7d3996526f bus: separate out read/write that count cycles
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-19 14:56:23 +05:30
f5aa73e7ca cpu/thumb: fix multiple load/store
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-19 14:18:37 +05:30
41b625790e [skip ci] readme: update
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-16 21:25:58 +05:30
2c89701fee gdb rsp: make start() rerunnable
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-16 21:11:18 +05:30
c55f2937f7 gdb rsp: minor changes
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-16 20:55:33 +05:30
951fc40134 tests/bus: idle cycle test
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-16 07:46:12 +05:30
a7d919eea0 massive feat: added a GDB stub for debugging
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-16 07:45:54 +05:30
c22333812e bus (feat): add cycle accuracy
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-15 03:49:10 +05:30
cb75ebf8ef bus: use a switch case for memory access
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-14 20:47:04 +05:30
08060a767f cpu (feat): store three opcodes instead of one
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-14 20:27:13 +05:30
bafd534671 bus: send a weak ptr to io
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-14 20:25:36 +05:30
d1df555a6a fix gcc build
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-14 05:48:13 +05:30
9397140473 get rid of memory.cc/.hh
also fix bus' shared pointer in cpu
TODO: put cpu in bus not the other way around

Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-14 05:42:09 +05:30
ffcdf5f3a7 ci: fix by bumping actions
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-13 04:01:24 +05:30
eaa4abcb90 cpu/arm: fix MSR by changing modes
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-13 03:56:10 +05:30
c4a9c5ee5e cpu: align PC every step
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-13 03:54:46 +05:30
0029e302b2 cpu/arm: fix block data transfer
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-13 03:54:12 +05:30
08cc582f23 io: i really ought to be working on the ppu and apu by now
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-13 03:53:25 +05:30
933b622493 io(placeholder): add naive io structure
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-11 23:30:22 +05:30
8b80f818c6 cpu/psr(chore): minor change
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-11 23:29:05 +05:30
441665abad cpu/arm: fix single data transfer
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-11 23:28:27 +05:30
1a2e101ebd cpu/arm: fix branch and exchange
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-11 23:27:07 +05:30
f34efb183f cpu: fix changing modes
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-11 23:26:02 +05:30
9e6b121918 cpu/thumb: fix pc relative load
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-11 23:22:34 +05:30
15c4802838 cpu/{arm|thumb}(chore): change how branch disassembly happens
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-11 23:21:39 +05:30
0062ad424b chore: stage bunch of size_t to uint32_t
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-11 22:58:09 +05:30
028c80f6cb comeback(?)
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-11 22:46:48 +05:30
174008f60c memory: bus and rom should not be writeable
so fix tests and shit

Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-10-05 00:21:18 +05:30
e0f7f32699 refactor: reorganize everything
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-10-04 01:41:38 +05:30
36d71a4ee2 thumb: add execution of instructions
also arm: fix some instructions

Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-30 01:31:09 +05:30
03dbb7052f nix: bump
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-30 01:30:44 +05:30
0f09874929 cpu: get rid of the test workaround
now can we remove the pimpl?

Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-27 22:43:50 +05:30
03ebc6378a clang: make linter happy
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-27 17:36:25 +05:30
69 changed files with 6699 additions and 1381 deletions

View File

@@ -9,19 +9,19 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: cachix/install-nix-action@v20
- uses: cachix/install-nix-action@v27
with:
extra_nix_config: |
auto-optimise-store = true
experimental-features = nix-command flakes
- uses: cachix/cachix-action@v12
- uses: cachix/cachix-action@v15
with:
name: pain
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
- name: setup
run: nix develop .#matar-clang -c meson setup $BUILDDIR
run: nix develop .#matar-clang -c meson setup $BUILDDIR -Dgdb_debug=true
- name: fmt
run: nix develop .#matar-clang -c ninja clang-format-check -C $BUILDDIR
@@ -29,8 +29,8 @@ jobs:
- name: lint
run: nix develop .#matar-clang -c ninja clang-tidy -C $BUILDDIR
- name: tests
run: nix develop .#matar-clang -c ninja test -C $BUILDDIR
- name: build
run: nix develop .#matar-clang -c ninja -C $BUILDDIR
- name: tests
run: nix develop .#matar-clang -c ninja test -C $BUILDDIR

View File

@@ -9,22 +9,22 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: cachix/install-nix-action@v20
- uses: cachix/install-nix-action@v27
with:
extra_nix_config: |
auto-optimise-store = true
experimental-features = nix-command flakes
- uses: cachix/cachix-action@v12
- uses: cachix/cachix-action@v15
with:
name: pain
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
- name: setup
run: nix develop .#matar -c meson setup $BUILDDIR
- name: tests
run: nix develop .#matar -c ninja test -C $BUILDDIR
run: nix develop .#matar -c meson setup $BUILDDIR -Dgdb_debug=true
- name: build
run: nix develop .#matar -c ninja -C $BUILDDIR
- name: tests
run: nix develop .#matar -c ninja test -C $BUILDDIR

2
.gitignore vendored
View File

@@ -3,5 +3,5 @@ result
build/
.cache/
*~
#*#
\#*\#
.#*

View File

@@ -5,18 +5,77 @@ But if you are curious (probably not), read ahead
# Dependencies
## Tested toolchains
- LLVM 16.0.6
- GCC 12.3.0
- LLVM 18.1.7
- GCC 14.1.0
In theory, any toolchain supporting at least the C++20 standard should work.
In theory, any toolchain supporting at least the c++23 standard should work.
I am using LLVM's clang and libcxx as the primary toolchain.
## Static libraries
| Name | Version | Required? |
|:------:|:----------|:---------:|
| fmt | >= 10.1.1 | yes |
| catch2 | >= 3.4 | for tests |
| Name | Version | Required? | Purpose |
|:------:|:--------|:---------:|:---------:|
| catch2 | >= 3.4 | no | for tests |
This goes without saying but using a different toolchain to compile these libraries before linking probably won't work.
I will add meson wrap support once LLVM 17 is out, since I want to get rid of fmt.
# Status
- [x] CPU
- [x] Arm
- [x] Dissassembler
- [x] Execution
- [x] Thumb
- [x] Dissassembler
- [x] Execution
- [ ] Bus
- [x] Cycle counting with CPU
- [x] Reading memory
- [x] Writing memory
- [ ] Scheduler (maybe?)
- [ ] Sync PPU and CPU
- [ ] Sync APU and CPU
- [ ] Sync other stuff
- [ ] I/O
- [ ] PPU
- [ ] APU
- [ ] Timers
- [ ] DMA
- [ ] Keypad
- Debugging
- [x] GDB Remote Serial Protocol support
- Misc
- [ ] Save/Load states
- [x] Header Parsing
- Internal utilities
- [x] Bit manipulation
- [x] A global logger
- [x] TCP Server (for GDB RSP)
- [x] SHA256 hash (why? idk)
## Available unit tests so far
- CPU
- Arm
- Disassembler
- Execution
- Thumb
- Disassembler
- Execution
- Bus
- Memory read/writes
- Cycle Counting
- Some internal utility tests (idk why)
-----
# LOG
- June 11, 2024: After almost an year, I have come back to this silly abandoned project, will probably complete it soon.
- June 16, 2024: I ought to complete this soon

View File

@@ -1,14 +1,13 @@
#include "bus.hh"
#include "cpu/cpu.hh"
#include "memory.hh"
#include "util/loglevel.hh"
#include <array>
#include <chrono>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <memory>
#include <ostream>
#include <unistd.h>
#include <thread>
#include <vector>
// NOLINTBEGIN
@@ -16,7 +15,7 @@
int
main(int argc, const char* argv[]) {
std::vector<uint8_t> rom;
std::array<uint8_t, matar::Memory::BIOS_SIZE> bios = { 0 };
std::array<uint8_t, matar::Bus::BIOS_SIZE> bios = { 0 };
auto usage = [argv]() {
std::cerr << "Usage: " << argv[0] << " <file> [-b <bios>]" << std::endl;
@@ -66,7 +65,7 @@ main(int argc, const char* argv[]) {
ifile.seekg(0, std::ios::end);
bios_size = ifile.tellg();
if (bios_size != matar::Memory::BIOS_SIZE) {
if (bios_size != matar::Bus::BIOS_SIZE) {
throw std::ios::failure("BIOS file has invalid size",
std::error_code());
}
@@ -88,12 +87,14 @@ main(int argc, const char* argv[]) {
matar::set_log_level(matar::LogLevel::Debug);
try {
matar::Memory memory(std::move(bios), std::move(rom));
matar::Bus bus(memory);
std::shared_ptr<matar::Bus> bus =
matar::Bus::init(std::move(bios), std::move(rom));
matar::Cpu cpu(bus);
while (true) {
cpu.step();
sleep(2);
// std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
} catch (const std::exception& e) {
std::cerr << "Exception: " << e.what() << std::endl;

30
flake.lock generated
View File

@@ -5,11 +5,11 @@
"nixpkgs-lib": "nixpkgs-lib"
},
"locked": {
"lastModified": 1693611461,
"narHash": "sha256-aPODl8vAgGQ0ZYFIRisxYG5MOGSkIczvu2Cd8Gb9+1Y=",
"lastModified": 1717285511,
"narHash": "sha256-iKzJcpdXih14qYVcZ9QC9XuZYnPc6T8YImb6dX166kw=",
"owner": "hercules-ci",
"repo": "flake-parts",
"rev": "7f53fdb7bdc5bb237da7fefef12d099e4fd611ca",
"rev": "2a55567fcf15b1b1c7ed712a2c6fadaec7412ea8",
"type": "github"
},
"original": {
@@ -20,11 +20,11 @@
},
"nixpkgs": {
"locked": {
"lastModified": 1695318763,
"narHash": "sha256-FHVPDRP2AfvsxAdc+AsgFJevMz5VBmnZglFUMlxBkcY=",
"lastModified": 1717868076,
"narHash": "sha256-c83Y9t815Wa34khrux81j8K8ET94ESmCuwORSKm2bQY=",
"owner": "nixos",
"repo": "nixpkgs",
"rev": "e12483116b3b51a185a33a272bf351e357ba9a99",
"rev": "cd18e2ae9ab8e2a0a8d715b60c91b54c0ac35ff9",
"type": "github"
},
"original": {
@@ -36,20 +36,14 @@
},
"nixpkgs-lib": {
"locked": {
"dir": "lib",
"lastModified": 1693471703,
"narHash": "sha256-0l03ZBL8P1P6z8MaSDS/MvuU8E75rVxe5eE1N6gxeTo=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "3e52e76b70d5508f3cec70b882a29199f4d1ee85",
"type": "github"
"lastModified": 1717284937,
"narHash": "sha256-lIbdfCsf8LMFloheeE6N31+BMIeixqyQWbSr2vk79EQ=",
"type": "tarball",
"url": "https://github.com/NixOS/nixpkgs/archive/eb9ceca17df2ea50a250b6b27f7bf6ab0186f198.tar.gz"
},
"original": {
"dir": "lib",
"owner": "NixOS",
"ref": "nixos-unstable",
"repo": "nixpkgs",
"type": "github"
"type": "tarball",
"url": "https://github.com/NixOS/nixpkgs/archive/eb9ceca17df2ea50a250b6b27f7bf6ab0186f198.tar.gz"
}
},
"root": {

View File

@@ -1,23 +1,111 @@
#pragma once
#include "header.hh"
#include "io/io.hh"
#include "memory.hh"
#include <memory>
#include <vector>
namespace matar {
enum CpuAccess {
Sequential,
NonSequential
};
enum CpuAccessWidth {
Word,
Halfword,
Byte
};
class Bus {
private:
struct Private {
explicit Private() = default;
};
public:
Bus(const Memory& memory);
static constexpr uint32_t BIOS_SIZE = 1024 * 16;
uint8_t read_byte(size_t address);
void write_byte(size_t address, uint8_t byte);
Bus(Private, std::array<uint8_t, BIOS_SIZE>&&, std::vector<uint8_t>&&);
uint16_t read_halfword(size_t address);
void write_halfword(size_t address, uint16_t halfword);
static std::shared_ptr<Bus> init(std::array<uint8_t, BIOS_SIZE>&&,
std::vector<uint8_t>&&);
uint32_t read_word(size_t address);
void write_word(size_t address, uint32_t word);
uint8_t read_byte(uint32_t address, CpuAccess access) {
add_cpu_cycles<CpuAccessWidth::Byte>(address, access);
return read_byte(address);
};
void write_byte(uint32_t address, uint8_t byte, CpuAccess access) {
add_cpu_cycles<CpuAccessWidth::Byte>(address, access);
write_byte(address, byte);
};
uint16_t read_halfword(uint32_t address, CpuAccess access) {
add_cpu_cycles<CpuAccessWidth::Halfword>(address, access);
return read_halfword(address);
}
void write_halfword(uint32_t address, uint16_t halfword, CpuAccess access) {
add_cpu_cycles<CpuAccessWidth::Halfword>(address, access);
write_halfword(address, halfword);
}
uint32_t read_word(uint32_t address, CpuAccess access) {
add_cpu_cycles<CpuAccessWidth::Word>(address, access);
return read_word(address);
}
void write_word(uint32_t address, uint32_t word, CpuAccess access) {
add_cpu_cycles<CpuAccessWidth::Word>(address, access);
write_word(address, word);
}
uint8_t read_byte(uint32_t address);
void write_byte(uint32_t address, uint8_t byte);
uint16_t read_halfword(uint32_t address);
void write_halfword(uint32_t address, uint16_t halfword);
uint32_t read_word(uint32_t address);
void write_word(uint32_t address, uint32_t word);
// not sure what else to do?
void internal_cycle() { cycles++; }
uint32_t get_cycles() { return cycles; }
private:
std::shared_ptr<Memory> memory;
template<CpuAccessWidth W>
void add_cpu_cycles(uint32_t address, CpuAccess access) {
auto cc = cycle_map[address >> 24 & 0xF];
if constexpr (W == CpuAccessWidth::Word) {
cycles += (access == CpuAccess::Sequential ? cc.s32 : cc.n32);
} else {
cycles += (access == CpuAccess::Sequential ? cc.s16 : cc.n16);
}
}
template<typename T>
T read(uint32_t address) const;
template<typename T>
void write(uint32_t address, T value);
uint32_t cycles = 0;
struct cycle_count {
uint8_t n16; // non sequential 8/16 bit width access
uint8_t n32; // non sequential 32 bit width access
uint8_t s16; // seuquential 8/16 bit width access
uint8_t s32; // sequential 32 bit width access
};
std::array<cycle_count, 0x10> cycle_map;
static constexpr decltype(cycle_map) init_cycle_count();
std::unique_ptr<IoDevices> io;
Memory<BIOS_SIZE> bios = {};
Memory<0x40000> board_wram = {};
Memory<0x80000> chip_wram = {};
Memory<> rom;
Header header;
void parse_header();
};
}

View File

@@ -1,6 +1,5 @@
#pragma once
#include <cstdint>
#include <fmt/ostream.h>
namespace matar {
enum class ShiftType {
@@ -40,5 +39,17 @@ struct Shift {
};
uint32_t
eval_shift(ShiftType shift_type, uint32_t value, uint8_t amount, bool& carry);
eval_shift(ShiftType shift_type, uint32_t value, uint32_t amount, bool& carry);
uint32_t
sub(uint32_t a, uint32_t b, bool& carry, bool& overflow);
uint32_t
add(uint32_t a, uint32_t b, bool& carry, bool& overflow, bool c = 0);
uint32_t
sbc(uint32_t a, uint32_t b, bool& carry, bool& overflow, bool c);
uint8_t
multiplier_array_cycles(uint32_t x, bool zeroes_only = false);
}

View File

@@ -2,10 +2,13 @@
#include "cpu/alu.hh"
#include "cpu/psr.hh"
#include <cstdint>
#include <fmt/ostream.h>
#include <string>
#include <variant>
namespace matar::arm {
namespace matar {
class Cpu;
namespace arm {
// https://en.cppreference.com/w/cpp/utility/variant/visit
template<class... Ts>
@@ -23,7 +26,7 @@ struct BranchAndExchange {
struct Branch {
bool link;
uint32_t offset;
int32_t offset;
};
struct Multiply {
@@ -209,16 +212,19 @@ using InstructionData = std::variant<BranchAndExchange,
SoftwareInterrupt>;
struct Instruction {
Condition condition;
InstructionData data;
Instruction(uint32_t insn);
Instruction(Condition condition, InstructionData data) noexcept
Instruction(Condition condition, InstructionData data)
: condition(condition)
, data(data) {};
void exec(Cpu& cpu);
#ifdef DISASSEMBLER
std::string disassemble();
#endif
Condition condition;
InstructionData data;
};
}
}

View File

@@ -0,0 +1,3 @@
headers += files(
'instruction.hh'
)

View File

@@ -1,21 +1,122 @@
#pragma once
#include "arm/instruction.hh"
#include "bus.hh"
#include "cpu/psr.hh"
#include "thumb/instruction.hh"
#include <cstdint>
#include <memory>
#ifdef GDB_DEBUG
#include <unordered_set>
#endif
namespace matar {
class CpuImpl;
#ifdef GDB_DEBUG
class GdbRsp;
#endif
class Cpu {
public:
Cpu(const Bus& bus) noexcept;
Cpu(const Cpu&) = delete;
Cpu(Cpu&&) = delete;
Cpu& operator=(const Cpu&) = delete;
Cpu& operator=(Cpu&&) = delete;
~Cpu();
Cpu(std::shared_ptr<Bus> bus) noexcept;
void step();
void chg_mode(const Mode to);
void exec(arm::Instruction& instruction);
void exec(thumb::Instruction& instruction);
#ifdef GDB_DEBUG
bool breakpoint_reached() {
if (breakpoints.contains(pc - 2 * (cpsr.state() == State::Arm
? arm::INSTRUCTION_SIZE
: thumb::INSTRUCTION_SIZE))) {
return true;
}
return false;
}
#endif
private:
std::unique_ptr<CpuImpl> impl;
friend void arm::Instruction::exec(Cpu& cpu);
friend void thumb::Instruction::exec(Cpu& cpu);
static constexpr uint8_t GPR_COUNT = 16;
static constexpr uint8_t GPR_FIQ_FIRST = 8;
static constexpr uint8_t GPR_SVC_FIRST = 13;
static constexpr uint8_t GPR_ABT_FIRST = 13;
static constexpr uint8_t GPR_IRQ_FIRST = 13;
static constexpr uint8_t GPR_UND_FIRST = 13;
static constexpr uint8_t GPR_OLD_FIRST = 8;
std::shared_ptr<Bus> bus;
std::array<uint32_t, GPR_COUNT> gpr = {}; // general purpose registers
Psr cpsr = {}; // current program status register
Psr spsr = {}; // status program status register
static constexpr uint8_t SP_INDEX = 13;
static_assert(SP_INDEX < GPR_COUNT);
uint32_t& sp = gpr[SP_INDEX];
static constexpr uint8_t LR_INDEX = 14;
static_assert(LR_INDEX < GPR_COUNT);
uint32_t& lr = gpr[LR_INDEX];
static constexpr uint8_t PC_INDEX = 15;
static_assert(PC_INDEX < GPR_COUNT);
uint32_t& pc = gpr[PC_INDEX];
struct {
std::array<uint32_t, GPR_COUNT - GPR_FIQ_FIRST - 1> fiq;
std::array<uint32_t, GPR_COUNT - GPR_SVC_FIRST - 1> svc;
std::array<uint32_t, GPR_COUNT - GPR_ABT_FIRST - 1> abt;
std::array<uint32_t, GPR_COUNT - GPR_IRQ_FIRST - 1> irq;
std::array<uint32_t, GPR_COUNT - GPR_UND_FIRST - 1> und;
// visible registers before the mode switch
std::array<uint32_t, GPR_COUNT - GPR_OLD_FIRST - 1> old;
} gpr_banked = {}; // banked general purpose registers
struct {
Psr fiq;
Psr svc;
Psr abt;
Psr irq;
Psr und;
} spsr_banked = {}; // banked saved program status registers
void internal_cycle() { bus->internal_cycle(); }
// whether read is going to be sequential or not
CpuAccess next_access = CpuAccess::Sequential;
// raw instructions in the pipeline
std::array<uint32_t, 2> opcodes = {};
void advance_pc_arm();
void advance_pc_thumb();
template<State S>
void flush_pipeline() {
if constexpr (S == State::Arm) {
opcodes[0] = bus->read_word(pc, CpuAccess::NonSequential);
advance_pc_arm();
opcodes[1] = bus->read_word(pc, CpuAccess::Sequential);
advance_pc_arm();
} else {
opcodes[0] = bus->read_halfword(pc, CpuAccess::NonSequential);
advance_pc_thumb();
opcodes[1] = bus->read_halfword(pc, CpuAccess::Sequential);
advance_pc_thumb();
}
next_access = CpuAccess::Sequential;
}
#ifdef GDB_DEBUG
friend class GdbRsp;
std::unordered_set<uint32_t> breakpoints = {};
#endif
};
}

View File

@@ -1,3 +1,8 @@
headers += files(
'alu.hh',
'cpu.hh',
'psr.hh'
)
subdir('arm')
subdir('thumb')

View File

@@ -1,7 +1,6 @@
#pragma once
#include <cstdint>
#include <fmt/ostream.h>
namespace matar {
enum class Mode {
@@ -61,7 +60,7 @@ stringify(Condition cond) {
CASE(GT)
CASE(LE)
case Condition::AL: {
// empty
return "";
}
}
@@ -72,7 +71,7 @@ stringify(Condition cond) {
class Psr {
public:
// clear the reserved bits i.e, [8:27]
Psr() = default;
Psr(uint32_t raw);
uint32_t raw() const;
@@ -116,7 +115,6 @@ class Psr {
private:
static constexpr uint32_t PSR_CLEAR_RESERVED = 0xF00000FF;
static constexpr uint32_t PSR_CLEAR_MODE = 0xFFFFFFE0;
uint32_t psr;
};

View File

@@ -3,10 +3,13 @@
#include "cpu/alu.hh"
#include "cpu/psr.hh"
#include <cstdint>
#include <fmt/ostream.h>
#include <string>
#include <variant>
namespace matar::thumb {
namespace matar {
class Cpu;
namespace thumb {
// https://en.cppreference.com/w/cpp/utility/variant/visit
template<class... Ts>
@@ -170,7 +173,7 @@ stringify(HiRegisterOperations::OpCode opcode) {
}
struct PcRelativeLoad {
uint8_t word;
uint16_t word;
uint8_t rd;
};
@@ -206,20 +209,19 @@ struct LoadStoreHalfword {
};
struct SpRelativeLoad {
uint8_t word;
uint16_t word;
uint8_t rd;
bool load;
};
struct LoadAddress {
uint8_t word;
uint16_t word;
uint8_t rd;
bool sp;
};
struct AddOffsetStackPointer {
uint8_t word;
bool sign;
int16_t word;
};
struct PushPopRegister {
@@ -235,19 +237,21 @@ struct MultipleLoad {
};
struct ConditionalBranch {
uint16_t offset;
int32_t offset;
Condition condition;
};
struct SoftwareInterrupt {};
struct SoftwareInterrupt {
uint8_t vector;
};
struct UnconditionalBranch {
uint16_t offset;
int32_t offset;
};
struct LongBranchWithLink {
uint16_t offset;
bool high;
bool low;
};
using InstructionData = std::variant<MoveShiftedRegister,
@@ -271,12 +275,17 @@ using InstructionData = std::variant<MoveShiftedRegister,
LongBranchWithLink>;
struct Instruction {
InstructionData data;
Instruction(uint16_t insn);
Instruction(InstructionData data)
: data(data) {}
void exec(Cpu& cpu);
#ifdef DISASSEMBLER
std::string disassemble();
#endif
InstructionData data;
};
}
}

View File

@@ -0,0 +1,3 @@
headers += files(
'instruction.hh'
)

View File

@@ -0,0 +1,159 @@
#include "memory.hh"
#include <array>
#include <bit>
#include <cstdint>
#include <sys/types.h>
// NOLINTBEGIN(cppcoreguidelines-avoid-c-arrays)
namespace matar {
namespace display {
static constexpr int LCD_WIDTH = 240;
// there are 5 modes
static constexpr uint N_MODES = 6;
// there are 4 backgrounds that can be layered depending on mode
// there is also 1 object layer
static constexpr uint N_BACKGROUNDS = 4;
static constexpr uint32_t PRAM_START = 0x5000000;
static constexpr uint32_t VRAM_START = 0x6000000;
static constexpr uint32_t OAM_START = 0x7000000;
template<typename T, typename = std::enable_if_t<std::is_arithmetic_v<T>>>
struct Point {
T x;
T y;
};
struct Color {
public:
Color(uint16_t raw)
: red(raw & 0b11111)
, green(raw >> 5 & 0b11111)
, blue(raw >> 10 & 0b11111) {}
uint16_t read() const {
return (red & 0b11111) | ((green << 5) & 0b11111) |
((blue << 10) & 0b11111);
}
private:
uint8_t red;
uint8_t green;
uint8_t blue;
};
struct DisplayControl {
struct {
uint8_t mode : 3;
int : 1; // unused
bool frame_select_1 : 1;
bool hblank_free_interval : 1;
bool obj_character_vram_mapping : 1;
bool forced_blank : 1;
bool screen_display_0 : 1;
bool screen_display_1 : 1;
bool screen_display_2 : 1;
bool screen_display_3 : 1;
bool screen_display_obj : 1;
bool window_display_0 : 1;
bool window_display_1 : 1;
bool obj_window_display : 1;
} value;
uint16_t read() const { return std::bit_cast<uint16_t>(value); };
void write(uint16_t raw) { value = std::bit_cast<decltype(value)>(raw); };
};
struct DisplayStatus {
struct {
bool vblank_flag : 1;
bool hblank_flag : 1;
bool vcounter_flag : 1;
bool vblank_irq_enable : 1;
bool hblank_irq_enable : 1;
bool vcounter_irq_enable : 1;
int : 2; // unused
uint8_t vcount_setting : 8;
} value;
uint16_t read() const { return std::bit_cast<uint16_t>(value); };
void write(uint16_t raw) { value = std::bit_cast<decltype(value)>(raw); };
};
struct BackgroundControl {
struct {
uint8_t priority : 2;
uint8_t character_base_block : 2;
int : 2; // unused
bool mosaic : 1;
bool colors256 : 1;
uint8_t screen_base_block : 5;
bool bg_2_3_wraparound : 1;
uint8_t screen_size : 2;
} value;
uint16_t read() const { return std::bit_cast<uint16_t>(value); };
void write(uint16_t raw) { value = std::bit_cast<decltype(value)>(raw); };
};
struct RotationScaling {
// these are all 16 bit signed "fixed point" floats
// shifted by 8
int16_t a;
int16_t b;
int16_t c;
int16_t d;
// following points have 28 bit signed "fixed point" floats as coords
// shifted by 8
Point<int32_t> ref;
private:
Point<int32_t> internal [[maybe_unused]]
;
};
struct Display {
public:
using u16 = uint16_t;
Memory<0x400> pram;
Memory<0x18000> vram;
Memory<0x400> oam;
DisplayControl lcd_control;
DisplayStatus general_lcd_status;
u16 vertical_counter;
BackgroundControl bg_control[4];
Point<u16> bg0_offset;
Point<u16> bg1_offset;
Point<u16> bg2_offset;
Point<u16> bg3_offset;
RotationScaling bg2_rot_scale;
RotationScaling bg3_rot_scale;
u16 win0_horizontal_dimensions;
u16 win1_horizontal_dimensions;
u16 win0_vertical_dimensions;
u16 win1_vertical_dimensions;
u16 inside_win_0_1;
u16 outside_win;
u16 mosaic_size;
u16 color_special_effects_selection;
u16 alpha_blending_coefficients;
u16 brightness_coefficient;
private:
// 1 color is 16 bits in ARGB555 format
std::array<std::array<uint16_t, LCD_WIDTH>, N_BACKGROUNDS> scanline_buffers;
template<int MODE,
typename = std::enable_if_t<MODE == 3 || MODE == 4 || MODE == 5>>
void render_bitmap_mode();
template<int LAYER, typename = std::enable_if_t<LAYER >= 0 && LAYER <= 3>>
void render_text_layer();
};
}
}
// NOLINTEND(cppcoreguidelines-avoid-c-arrays)

39
include/io/dma.hh Normal file
View File

@@ -0,0 +1,39 @@
#include <bit>
#include <cstdint>
namespace matar {
// NOLINTBEGIN(cppcoreguidelines-avoid-c-arrays)
struct DmaControl {
struct {
int : 4; // this is supposed to be 5 bits, however, to align the struct
// to 16 bits, we will adjust for the first LSB in the
// read/write
uint8_t dst_adjustment : 2;
uint8_t src_adjustment : 2;
bool repeat : 1;
bool transfer_32 : 1;
int : 1;
uint8_t start_timing : 2;
bool irq_enable : 1;
bool enable : 1;
} value;
uint16_t read() const { return std::bit_cast<uint16_t>(value) << 1; };
void write(uint16_t raw) {
value = std::bit_cast<decltype(value)>(static_cast<uint16_t>(raw >> 1));
};
};
struct Dma {
using u16 = uint16_t;
struct {
u16 source[2];
u16 destination[2];
u16 word_count;
DmaControl control;
} channels[4];
};
// NOLINTEND(cppcoreguidelines-avoid-c-arrays)
}

43
include/io/io.hh Normal file
View File

@@ -0,0 +1,43 @@
#pragma once
#include "display/display.hh"
#include "dma.hh"
#include "sound.hh"
#include <cstdint>
#include <memory>
namespace matar {
class Bus; // forward declaration
class IoDevices {
public:
IoDevices(std::weak_ptr<Bus>);
uint8_t read_byte(uint32_t) const;
void write_byte(uint32_t, uint8_t);
uint32_t read_word(uint32_t) const;
void write_word(uint32_t, uint32_t);
uint16_t read_halfword(uint32_t) const;
void write_halfword(uint32_t, uint16_t);
private:
struct {
using u16 = uint16_t;
bool post_boot_flag;
bool interrupt_master_enabler;
u16 interrupt_enable;
u16 interrupt_request_flags;
u16 waitstate_control;
bool low_power_mode;
} system = {};
display::Display display = {};
Sound sound = {};
Dma dma = {};
std::weak_ptr<Bus> bus;
friend class Bus;
};
}

3
include/io/meson.build Normal file
View File

@@ -0,0 +1,3 @@
headers += files(
'io.hh'
)

66
include/io/sound.hh Normal file
View File

@@ -0,0 +1,66 @@
#include <cstdint>
// NOLINTBEGIN(cppcoreguidelines-avoid-c-arrays)
/*
4000060h 2 R/W SOUND1CNT_L Channel 1 Sweep register (NR10)
4000062h 2 R/W SOUND1CNT_H Channel 1 Duty/Length/Envelope (NR11, NR12)
4000064h 2 R/W SOUND1CNT_X Channel 1 Frequency/Control (NR13, NR14)
4000066h - - Not used
4000068h 2 R/W SOUND2CNT_L Channel 2 Duty/Length/Envelope (NR21, NR22)
400006Ah - - Not used
400006Ch 2 R/W SOUND2CNT_H Channel 2 Frequency/Control (NR23, NR24)
400006Eh - - Not used
4000070h 2 R/W SOUND3CNT_L Channel 3 Stop/Wave RAM select (NR30)
4000072h 2 R/W SOUND3CNT_H Channel 3 Length/Volume (NR31, NR32)
4000074h 2 R/W SOUND3CNT_X Channel 3 Frequency/Control (NR33, NR34)
4000076h - - Not used
4000078h 2 R/W SOUND4CNT_L Channel 4 Length/Envelope (NR41, NR42)
400007Ah - - Not used
400007Ch 2 R/W SOUND4CNT_H Channel 4 Frequency/Control (NR43, NR44)
400007Eh - - Not used
4000080h 2 R/W SOUNDCNT_L Control Stereo/Volume/Enable (NR50, NR51)
4000082h 2 R/W SOUNDCNT_H Control Mixing/DMA Control
4000084h 2 R/W SOUNDCNT_X Control Sound on/off (NR52)
4000086h - - Not used
4000088h 2 BIOS SOUNDBIAS Sound PWM Control
400008Ah .. - - Not used
4000090h 2x10h R/W WAVE_RAM Channel 3 Wave Pattern RAM (2 banks!!)
40000A0h 4 W FIFO_A Channel A FIFO, Data 0-3
40000A4h 4 W FIFO_B Channel B FIFO, Data 0-3
*/
struct Sound {
using u16 = uint16_t;
// channel 1
u16 ch1_sweep;
u16 ch1_duty_length_env;
u16 ch1_freq_control;
// channel 2
u16 ch2_duty_length_env;
u16 ch2_freq_control;
// channel 3
u16 ch3_stop_wave_ram_select;
u16 ch3_length_volume;
u16 ch3_freq_control;
u16 ch3_wave_pattern[8];
// channel 4
u16 ch4_length_env;
u16 ch4_freq_control;
// control
u16 ctrl_stereo_volume;
u16 ctrl_mixing;
u16 ctrl_sound_on_off;
u16 pwm_control;
// fifo
u16 fifo_a[2];
u16 fifo_b[2];
};
// NOLINTEND(cppcoreguidelines-avoid-c-arrays)

View File

@@ -1,61 +1,60 @@
#pragma once
#include "header.hh"
#include <array>
#include <cstddef>
#include <cstdint>
#include <unordered_map>
#include <vector>
// ill use [] instead of at because i dont want if (...) throw conditions for
// all accesses to improve performance (?)
// we are also not gonna perform bound checks, as i expect the user to handle
// those
namespace matar {
template<std::size_t N = 0>
class Memory {
// we can use either a vector or an array with this
using Container = std::
conditional_t<(N != 0), std::array<uint8_t, N>, std::vector<uint8_t>>;
public:
static constexpr size_t BIOS_SIZE = 1024 * 16;
Memory() = default;
Memory(auto x)
: memory(x) {}
Memory(std::array<uint8_t, BIOS_SIZE>&& bios, std::vector<uint8_t>&& rom);
uint8_t read_byte(std::size_t idx) const { return memory[idx]; }
uint8_t read(size_t address) const;
void write(size_t address, uint8_t byte);
void write_byte(std::size_t idx, uint8_t byte) { memory[idx] = byte; }
uint16_t read_halfword(std::size_t idx) const {
return memory[idx] | memory[idx + 1] << 8;
}
void write_halfword(std::size_t idx, uint16_t halfword) {
memory[idx] = halfword & 0xFF;
memory[idx + 1] = halfword >> 8 & 0xFF;
}
uint32_t read_word(std::size_t idx) const {
return memory[idx] | memory[idx + 1] << 8 | memory[idx + 2] << 16 |
memory[idx + 3] << 24;
}
void write_word(std::size_t idx, uint32_t word) {
memory[idx] = word & 0xFF;
memory[idx + 1] = word >> 8 & 0xFF;
memory[idx + 2] = word >> 16 & 0xFF;
memory[idx + 3] = word >> 24 & 0xFF;
}
uint8_t& operator[](std::size_t idx) { return memory.at(idx); }
Container& data() { return memory; }
std::size_t size() const { return memory.size(); }
private:
#define MEMORY_REGION(name, start, end) \
static constexpr size_t name##_START = start; \
static constexpr size_t name##_END = end;
#define DECL_MEMORY(name, ident, start, end) \
MEMORY_REGION(name, start, end) \
std::array<uint8_t, name##_END - name##_START + 1> ident;
MEMORY_REGION(BIOS, 0x00000000, 0x00003FFF)
std::array<uint8_t, BIOS_SIZE> bios;
static_assert(BIOS_END - BIOS_START + 1 == BIOS_SIZE);
// board working RAM
DECL_MEMORY(BOARD_WRAM, board_wram, 0x02000000, 0x0203FFFF)
// chip working RAM
DECL_MEMORY(CHIP_WRAM, chip_wram, 0x03000000, 0x03007FFF)
// palette RAM
DECL_MEMORY(PALETTE_RAM, palette_ram, 0x05000000, 0x050003FF)
// video RAM
DECL_MEMORY(VRAM, vram, 0x06000000, 0x06017FFF)
// OAM OBJ attributes
DECL_MEMORY(OAM_OBJ_ATTR, oam_obj_attr, 0x07000000, 0x070003FF)
#undef DECL_MEMORY
MEMORY_REGION(ROM_0, 0x08000000, 0x09FFFFFF)
MEMORY_REGION(ROM_1, 0x0A000000, 0x0BFFFFFF)
MEMORY_REGION(ROM_2, 0x0C000000, 0x0DFFFFFF)
#undef MEMORY_REGION
std::unordered_map<size_t, uint8_t> invalid_mem;
std::vector<uint8_t> rom;
Header header;
void parse_header();
Container memory;
};
}

View File

@@ -1,5 +1,4 @@
headers = files(
'memory.hh',
'bus.hh',
'header.hh',
)
@@ -8,5 +7,6 @@ inc = include_directories('.')
subdir('cpu')
subdir('util')
subdir('io')
install_headers(headers, subdir: meson.project_name(), preserve_path: true)

View File

@@ -4,32 +4,20 @@ project('matar', 'cpp',
default_options : ['warning_level=3',
'werror=true',
'optimization=3',
'cpp_std=c++20',
'cpp_std=c++23',
'default_library=static'])
lib_cpp_args = []
compiler = meson.get_compiler('cpp')
'''
TODO: use <print> and <format> instead of libfmt once LLVM 17 is out
if compiler.has_argument('-std=c++2c')
add_global_arguments('-std=c++2c', language: 'cpp')
elif compiler.has_argument('-std=c++23')
add_global_arguments('-std=c++23', language: 'cpp')
elif compiler.has_argument('-std=c++2b')
add_global_arguments('-std=c++2b', language: 'cpp')
elif compiler.has_argument('-std=c++20')
add_global_arguments('-std=c++20', language: 'cpp')
else
error(compiler.get_id() + ' ' + compiler.version() + 'does not meet the compiler requirements')
if get_option('disassembler')
lib_cpp_args += '-DDISASSEMBLER'
endif
if compiler.has_argument('-fexperimental-library')
add_global_arguments('-fexperimental-library', language: 'cpp')
else
error(compiler.get_id() + ' ' + compiler.version() + 'does not support -fexperimental-library')
if get_option('gdb_debug')
lib_cpp_args += '-DGDB_DEBUG'
endif
'''
subdir('include')
subdir('src')

View File

@@ -1,2 +1,3 @@
option('tests', type : 'boolean', value : true, description: 'enable tests')
option('disassembler', type: 'boolean', value: true, description: 'enable disassembler')
option('gdb_debug', type: 'boolean', value: false, description: 'enable GDB RSP server')

1248
nix/Cargo.lock generated Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,17 +1,10 @@
{ ... }: {
perSystem = { pkgs, src, ... }:
let
llvm = pkgs.llvmPackages_16;
llvm = pkgs.llvmPackages_18;
stdenv = llvm.libcxxStdenv;
libraries = with pkgs; [
((pkgs.fmt.override {
inherit stdenv;
enableShared = false;
}).overrideAttrs (oa: {
cmakeFlags = oa.cmakeFlags ++ [ "-DFMT_TEST=off" ];
})).dev
(catch2_3.override { inherit stdenv; }).out
];
in
@@ -19,7 +12,7 @@
packages.matar-clang = pkgs.callPackage ./build.nix { inherit src libraries stdenv; };
devShells.matar-clang = pkgs.callPackage ./shell.nix {
inherit libraries stdenv;
tools = with pkgs; [ clang-tools_16 ];
tools = with pkgs; [ (clang-tools_18.override { enableLibcxx = true; }) ];
};
};
}

View File

@@ -1,13 +1,14 @@
{ ... }: {
perSystem = { pkgs, src, ... }:
let
stdenv = pkgs.gcc14Stdenv;
libraries = with pkgs; [
(pkgs.fmt.override { enableShared = false; }).dev
catch2_3.out
(catch2_3.override { inherit stdenv; }).out
];
in
{
packages.matar = pkgs.callPackage ./build.nix { inherit src libraries; };
devShells.matar = pkgs.callPackage ./shell.nix { inherit libraries; };
packages.matar = pkgs.callPackage ./build.nix { inherit src libraries stdenv; };
devShells.matar = pkgs.callPackage ./shell.nix { inherit libraries stdenv; };
};
}

View File

@@ -1,55 +1,365 @@
#include "bus.hh"
#include "io/io.hh"
#include "util/crypto.hh"
#include "util/log.hh"
#include <memory>
namespace matar {
Bus::Bus(const Memory& memory)
: memory(std::make_shared<Memory>(memory)) {}
// Constants
#define MEMORY(AREA, start) \
static constexpr uint32_t AREA##_START = start; \
static constexpr uint8_t AREA##_REGION = (AREA##_START >> 24) & 0xFF;
MEMORY(BIOS, 0x0000000);
MEMORY(BOARD_WRAM, 0x2000000);
MEMORY(CHIP_WRAM, 0x3000000);
MEMORY(PRAM, display::PRAM_START);
MEMORY(VRAM, display::VRAM_START);
MEMORY(OAM, display::OAM_START);
MEMORY(ROM_0, 0x8000000);
MEMORY(ROM_1, 0xA000000);
MEMORY(ROM_2, 0xC000000);
static constexpr uint32_t IO_START = 0x4000000;
static constexpr uint32_t IO_END = 0x40003FE;
#undef MEMORY
Bus::Bus(Private,
std::array<uint8_t, BIOS_SIZE>&& bios,
std::vector<uint8_t>&& rom)
: cycle_map(init_cycle_count())
, bios(std::move(bios))
, rom(std::move(rom)) {
std::string bios_hash = crypto::sha256(this->bios.data());
static constexpr std::string_view expected_hash =
"fd2547724b505f487e6dcb29ec2ecff3af35a841a77ab2e85fd87350abd36570";
if (bios_hash != expected_hash) {
glogger.warn("BIOS hash failed to match, run at your own risk"
"\nExpected : {} "
"\nGot : {}",
expected_hash,
bios_hash);
}
parse_header();
glogger.info("Memory successfully initialised");
glogger.info("Cartridge Title: {}", header.title);
};
std::shared_ptr<Bus>
Bus::init(std::array<uint8_t, BIOS_SIZE>&& bios, std::vector<uint8_t>&& rom) {
auto self =
std::make_shared<Bus>(Private(), std::move(bios), std::move(rom));
self->io = std::make_unique<IoDevices>(self);
return self;
}
constexpr decltype(Bus::cycle_map)
Bus::init_cycle_count() {
/*
Region Bus Read Write Cycles
BIOS ROM 32 8/16/32 - 1/1/1
Work RAM 32K 32 8/16/32 8/16/32 1/1/1
I/O 32 8/16/32 8/16/32 1/1/1
OAM 32 8/16/32 16/32 1/1/1 *
Work RAM 256K 16 8/16/32 8/16/32 3/3/6 **
Palette RAM 16 8/16/32 16/32 1/1/2 *
VRAM 16 8/16/32 16/32 1/1/2 *
GamePak ROM 16 8/16/32 - 5/5/8 **|***
GamePak Flash 16 8/16/32 16/32 5/5/8 **|***
GamePak SRAM 8 8 8 5 **
Timing Notes:
* Plus 1 cycle if GBA accesses video memory at the same time.
** Default waitstate settings, see System Control chapter.
*** Separate timings for sequential, and non-sequential accesses.
One cycle equals approx. 59.59ns (ie. 16.78MHz clock).
*/
decltype(cycle_map) map;
map.fill({ 1, 1, 1, 1 });
/* used fill instead of this
map[BIOS_REGION] = { 1, 1, 1, 1 };
map[CHIP_WRAM_REGION] = { 1, 1, 1, 1 };
map[IO_REGION] = { 1, 1, 1, 1 };
map[OAM_REGION] = { 1, 1, 1, 1 };
*/
map[BOARD_WRAM_REGION] = { .n16 = 3, .n32 = 6, .s16 = 3, .s32 = 6 };
map[PRAM_REGION] = { .n16 = 1, .n32 = 2, .s16 = 1, .s32 = 2 };
map[VRAM_REGION] = { .n16 = 1, .n32 = 2, .s16 = 1, .s32 = 2 };
// TODO: GamePak access cycles
return map;
}
template<typename T>
T
Bus::read(uint32_t address) const {
// this is cleaned than std::enable_if
static_assert(std::is_same_v<T, uint8_t> || std::is_same_v<T, uint16_t> ||
std::is_same_v<T, uint32_t>,
"Can only read uint8_t, uin16_t or uint32_t");
constexpr int N = std::is_same_v<T, uint8_t> ? 1
: std::is_same_v<T, uint16_t> ? 2
: std::is_same_v<T, uint32_t> ? 4
: 0;
switch (address >> 24 & 0xF) {
#define MATCHES(AREA, area) \
case AREA##_REGION: { \
uint32_t i = address - AREA##_START; \
if (i > area.size() - N) \
break; \
if constexpr (std::is_same_v<T, uint8_t>) \
return area.read_byte(i); \
else if constexpr (std::is_same_v<T, uint16_t>) \
return area.read_halfword(i); \
else if constexpr (std::is_same_v<T, uint32_t>) \
return area.read_word(i); \
}
#define MATCHES_PAK(AREA, area) \
case AREA##_REGION + 1: \
MATCHES(AREA, area)
MATCHES(BIOS, bios)
MATCHES(BOARD_WRAM, board_wram)
MATCHES(CHIP_WRAM, chip_wram)
MATCHES(PRAM, io->display.pram)
MATCHES(VRAM, io->display.vram)
MATCHES(OAM, io->display.oam)
MATCHES_PAK(ROM_0, rom)
MATCHES_PAK(ROM_1, rom)
MATCHES_PAK(ROM_2, rom)
#undef MATCHES_PAK
#undef MATCHES
}
glogger.error("invalid memory region read at {:08x}", address);
if constexpr (std::is_same_v<T, uint8_t>)
return 0xFF;
else if constexpr (std::is_same_v<T, uint16_t>)
return 0xFFFF;
else if constexpr (std::is_same_v<T, uint32_t>)
return 0xFFFFFFFF;
}
template<typename T>
void
Bus::write(uint32_t address, T value) {
static_assert(std::is_same_v<T, uint8_t> || std::is_same_v<T, uint16_t> ||
std::is_same_v<T, uint32_t>,
"Can only write uint8_t, uin16_t or uint32_t");
constexpr int N = std::is_same_v<T, uint8_t> ? 1
: std::is_same_v<T, uint16_t> ? 2
: std::is_same_v<T, uint32_t> ? 4
: 0;
switch (address >> 24 & 0xF) {
#define MATCHES(AREA, area) \
case AREA##_REGION: { \
uint32_t i = address - AREA##_START; \
if (i > area.size() - N) \
break; \
if constexpr (std::is_same_v<T, uint8_t>) \
area.write_byte(i, value); \
else if constexpr (std::is_same_v<T, uint16_t>) \
area.write_halfword(i, value); \
else if constexpr (std::is_same_v<T, uint32_t>) \
area.write_word(i, value); \
return; \
}
MATCHES(BOARD_WRAM, board_wram)
MATCHES(CHIP_WRAM, chip_wram)
MATCHES(PRAM, io->display.pram)
MATCHES(VRAM, io->display.vram)
MATCHES(OAM, io->display.oam)
#undef MATCHES
}
glogger.error("invalid memory region written at {:08x}", address);
}
uint8_t
Bus::read_byte(size_t address) {
return memory->read(address);
Bus::read_byte(uint32_t address) {
if (address >= IO_START && address <= IO_END)
return io->read_byte(address);
return read<uint8_t>(address);
}
void
Bus::write_byte(size_t address, uint8_t byte) {
memory->write(address, byte);
Bus::write_byte(uint32_t address, uint8_t byte) {
if (address >= IO_START && address <= IO_END) {
io->write_byte(address, byte);
return;
}
write<uint8_t>(address, byte);
}
uint16_t
Bus::read_halfword(size_t address) {
Bus::read_halfword(uint32_t address) {
if (address & 0b01)
glogger.warn("Reading a non aligned halfword address");
return memory->read(address) | memory->read(address + 1) << 8;
if (address >= IO_START && address <= IO_END)
return io->read_halfword(address);
return read<uint16_t>(address);
}
void
Bus::write_halfword(size_t address, uint16_t halfword) {
Bus::write_halfword(uint32_t address, uint16_t halfword) {
if (address & 0b01)
glogger.warn("Writing to a non aligned halfword address");
memory->write(address, halfword & 0xFF);
memory->write(address + 1, halfword >> 8 & 0xFF);
if (address >= IO_START && address <= IO_END) {
io->write_halfword(address, halfword);
return;
}
write<uint16_t>(address, halfword);
}
uint32_t
Bus::read_word(size_t address) {
Bus::read_word(uint32_t address) {
if (address & 0b11)
glogger.warn("Reading a non aligned word address");
return memory->read(address) | memory->read(address + 1) << 8 |
memory->read(address + 2) << 16 | memory->read(address + 3) << 24;
if (address >= IO_START && address <= IO_END)
return io->read_word(address);
return read<uint32_t>(address);
}
void
Bus::write_word(size_t address, uint32_t word) {
Bus::write_word(uint32_t address, uint32_t word) {
if (address & 0b11)
glogger.warn("Writing to a non aligned word address");
memory->write(address, word & 0xFF);
memory->write(address + 1, word >> 8 & 0xFF);
memory->write(address + 2, word >> 16 & 0xFF);
memory->write(address + 3, word >> 24 & 0xFF);
if (address >= IO_START && address <= IO_END) {
io->write_word(address, word);
return;
}
write<uint32_t>(address, word);
}
void
Bus::parse_header() {
if (rom.size() < header.HEADER_SIZE) {
throw std::out_of_range(
"ROM is not large enough to even have a header");
}
// entrypoint
header.entrypoint =
rom[0x00] | rom[0x01] << 8 | rom[0x02] << 16 | rom[0x03] << 24;
// nintendo logo
if (rom[0x9C] != 0x21)
glogger.info("HEADER: BIOS debugger bits not set to 0");
// game info
header.title = std::string(&rom[0xA0], &rom[0xA0 + 12]);
switch (rom[0xAC]) {
case 'A':
header.unique_code = Header::UniqueCode::Old;
break;
case 'B':
header.unique_code = Header::UniqueCode::New;
break;
case 'C':
header.unique_code = Header::UniqueCode::Newer;
break;
case 'F':
header.unique_code = Header::UniqueCode::Famicom;
break;
case 'K':
header.unique_code = Header::UniqueCode::YoshiKoro;
break;
case 'P':
header.unique_code = Header::UniqueCode::Ereader;
break;
case 'R':
header.unique_code = Header::UniqueCode::Warioware;
break;
case 'U':
header.unique_code = Header::UniqueCode::Boktai;
break;
case 'V':
header.unique_code = Header::UniqueCode::DrillDozer;
break;
default:
glogger.error("HEADER: invalid unique code: {}", rom[0xAC]);
}
header.title_code = std::string(&rom[0xAD], &rom[0xAE]);
switch (rom[0xAF]) {
case 'J':
header.i18n = Header::I18n::Japan;
break;
case 'P':
header.i18n = Header::I18n::Europe;
break;
case 'F':
header.i18n = Header::I18n::French;
break;
case 'S':
header.i18n = Header::I18n::Spanish;
break;
case 'E':
header.i18n = Header::I18n::Usa;
break;
case 'D':
header.i18n = Header::I18n::German;
break;
case 'I':
header.i18n = Header::I18n::Italian;
break;
default:
glogger.error("HEADER: invalid destination/language: {}",
rom[0xAF]);
}
if (rom[0xB2] != 0x96)
glogger.error("HEADER: invalid fixed byte at 0xB2");
for (uint32_t i = 0xB5; i < 0xBC; i++) {
if (rom[i] != 0x00)
glogger.error("HEADER: invalid fixed bytes at 0xB5");
}
header.version = rom[0xBC];
// checksum
{
uint32_t i = 0xA0, chk = 0;
while (i <= 0xBC)
chk -= rom[i++];
chk -= 0x19;
chk &= 0xFF;
if (chk != rom[0xBD])
glogger.error("HEADER: checksum does not match");
}
// multiboot not required right now
}
}

View File

@@ -1,9 +1,10 @@
#include "alu.hh"
#include "cpu/alu.hh"
#include "util/bits.hh"
#include <bit>
namespace matar {
uint32_t
eval_shift(ShiftType shift_type, uint32_t value, uint8_t amount, bool& carry) {
eval_shift(ShiftType shift_type, uint32_t value, uint32_t amount, bool& carry) {
uint32_t eval = 0;
switch (shift_type) {
@@ -48,4 +49,60 @@ eval_shift(ShiftType shift_type, uint32_t value, uint8_t amount, bool& carry) {
return eval;
}
uint32_t
sub(uint32_t a, uint32_t b, bool& carry, bool& overflow) {
bool s1 = get_bit(a, 31);
bool s2 = get_bit(b, 31);
uint32_t result = a - b;
carry = a >= b;
overflow = s1 != s2 && s2 == get_bit(result, 31);
return result;
}
uint32_t
add(uint32_t a, uint32_t b, bool& carry, bool& overflow, bool c) {
bool s1 = get_bit(a, 31);
bool s2 = get_bit(b, 31);
uint64_t result = a + b + c;
carry = get_bit(result, 32);
overflow = s1 == s2 && s2 != get_bit(result, 31);
return result & 0xFFFFFFFF;
}
uint32_t
sbc(uint32_t a, uint32_t b, bool& carry, bool& overflow, bool c) {
bool s1 = get_bit(a, 31);
bool s2 = get_bit(b, 31);
uint64_t result = a - b - !c;
carry = get_bit(result, 32);
overflow = s1 != s2 && s2 == get_bit(result, 31);
return result & 0xFFFFFFFF;
}
uint8_t
multiplier_array_cycles(uint32_t x, bool zeroes_only) {
// set zeroes_only to evaluate first condition that checks ones to false
if ((!zeroes_only && (x & 0xFFFFFF00) == 0xFFFFFF00) ||
(x & 0xFFFFFF00) == 0)
return 1;
if ((!zeroes_only && (x & 0xFFFF0000) == 0xFFFF0000) ||
(x & 0xFFFF0000) == 0)
return 2;
if ((!zeroes_only && (x & 0xFF000000) == 0xFF000000) ||
(x & 0xFF000000) == 0)
return 3;
return 4;
};
}

View File

@@ -1,5 +1,6 @@
#include "instruction.hh"
#include "cpu/arm/instruction.hh"
#include "util/bits.hh"
#include <format>
namespace matar::arm {
std::string
@@ -9,15 +10,18 @@ Instruction::disassemble() {
return std::visit(
overloaded{
[condition](BranchAndExchange& data) {
return fmt::format("BX{} R{:d}", condition, data.rn);
return std::format("BX{} R{:d}", condition, data.rn);
},
[condition](Branch& data) {
return fmt::format(
"B{}{} 0x{:06X}", (data.link ? "L" : ""), condition, data.offset);
return std::format(
"B{}{} {:#06x}",
(data.link ? "L" : ""),
condition,
static_cast<int32_t>(data.offset + 2 * INSTRUCTION_SIZE));
},
[condition](Multiply& data) {
if (data.acc) {
return fmt::format("MLA{}{} R{:d},R{:d},R{:d},R{:d}",
return std::format("MLA{}{} R{:d},R{:d},R{:d},R{:d}",
condition,
(data.set ? "S" : ""),
data.rd,
@@ -25,7 +29,7 @@ Instruction::disassemble() {
data.rs,
data.rn);
} else {
return fmt::format("MUL{}{} R{:d},R{:d},R{:d}",
return std::format("MUL{}{} R{:d},R{:d},R{:d}",
condition,
(data.set ? "S" : ""),
data.rd,
@@ -34,7 +38,7 @@ Instruction::disassemble() {
}
},
[condition](MultiplyLong& data) {
return fmt::format("{}{}{}{} R{:d},R{:d},R{:d},R{:d}",
return std::format("{}{}{}{} R{:d},R{:d},R{:d},R{:d}",
(data.uns ? 'U' : 'S'),
(data.acc ? "MLAL" : "MULL"),
condition,
@@ -46,7 +50,7 @@ Instruction::disassemble() {
},
[](Undefined) { return std::string("UND"); },
[condition](SingleDataSwap& data) {
return fmt::format("SWP{}{} R{:d},R{:d},[R{:d}]",
return std::format("SWP{}{} R{:d},R{:d},[R{:d}]",
condition,
(data.byte ? "B" : ""),
data.rd,
@@ -62,18 +66,18 @@ Instruction::disassemble() {
expression = "";
} else {
expression =
fmt::format(",{}#{:d}", (data.up ? '+' : '-'), *offset);
std::format(",{}#{:d}", (data.up ? '+' : '-'), *offset);
}
} else if (const Shift* shift = std::get_if<Shift>(&data.offset)) {
// Shifts are always immediate in single data transfer
expression = fmt::format(",{}R{:d},{} #{:d}",
expression = std::format(",{}R{:d},{} #{:d}",
(data.up ? '+' : '-'),
shift->rm,
stringify(shift->data.type),
shift->data.operand);
}
return fmt::format(
return std::format(
"{}{}{}{} R{:d},[R{:d}{}]{}",
(data.load ? "LDR" : "STR"),
condition,
@@ -91,15 +95,15 @@ Instruction::disassemble() {
if (data.offset == 0) {
expression = "";
} else {
expression = fmt::format(
expression = std::format(
",{}#{:d}", (data.up ? '+' : '-'), data.offset);
}
} else {
expression =
fmt::format(",{}R{:d}", (data.up ? '+' : '-'), data.offset);
std::format(",{}R{:d}", (data.up ? '+' : '-'), data.offset);
}
return fmt::format(
return std::format(
"{}{}{}{} R{:d},[R{:d}{}]{}",
(data.load ? "LDR" : "STR"),
condition,
@@ -115,12 +119,12 @@ Instruction::disassemble() {
for (uint8_t i = 0; i < 16; i++) {
if (get_bit(data.regs, i))
fmt::format_to(std::back_inserter(regs), "R{:d},", i);
std::format_to(std::back_inserter(regs), "R{:d},", i);
};
regs.pop_back();
return fmt::format("{}{}{}{} R{:d}{},{{{}}}{}",
return std::format("{}{}{}{} R{:d}{},{{{}}}{}",
(data.load ? "LDM" : "STM"),
condition,
(data.up ? 'I' : 'D'),
@@ -132,12 +136,12 @@ Instruction::disassemble() {
},
[condition](PsrTransfer& data) {
if (data.type == PsrTransfer::Type::Mrs) {
return fmt::format("MRS{} R{:d},{}",
return std::format("MRS{} R{:d},{}",
condition,
data.operand,
(data.spsr ? "SPSR_all" : "CPSR_all"));
} else {
return fmt::format(
return std::format(
"MSR{} {}_{},{}{}",
condition,
(data.spsr ? "SPSR" : "CPSR"),
@@ -153,9 +157,9 @@ Instruction::disassemble() {
if (const uint32_t* operand =
std::get_if<uint32_t>(&data.operand)) {
op_2 = fmt::format("#{:d}", *operand);
op_2 = std::format("#{:d}", *operand);
} else if (const Shift* shift = std::get_if<Shift>(&data.operand)) {
op_2 = fmt::format("R{:d},{} {}{:d}",
op_2 = std::format("R{:d},{} {}{:d}",
shift->rm,
stringify(shift->data.type),
(shift->data.immediate ? '#' : 'R'),
@@ -165,7 +169,7 @@ Instruction::disassemble() {
switch (data.opcode) {
case OpCode::MOV:
case OpCode::MVN:
return fmt::format("{}{}{} R{:d},{}",
return std::format("{}{}{} R{:d},{}",
stringify(data.opcode),
condition,
(data.set ? "S" : ""),
@@ -175,13 +179,13 @@ Instruction::disassemble() {
case OpCode::TEQ:
case OpCode::CMP:
case OpCode::CMN:
return fmt::format("{}{} R{:d},{}",
return std::format("{}{} R{:d},{}",
stringify(data.opcode),
condition,
data.rn,
op_2);
default:
return fmt::format("{}{}{} R{:d},R{:d},{}",
return std::format("{}{}{} R{:d},R{:d},{}",
stringify(data.opcode),
condition,
(data.set ? "S" : ""),
@@ -191,11 +195,11 @@ Instruction::disassemble() {
}
},
[condition](SoftwareInterrupt) {
return fmt::format("SWI{}", condition);
return std::format("SWI{}", condition);
},
[condition](CoprocessorDataTransfer& data) {
std::string expression = fmt::format(",#{:d}", data.offset);
return fmt::format(
std::string expression = std::format(",#{:d}", data.offset);
return std::format(
"{}{}{} p{:d},c{:d},[R{:d}{}]{}",
(data.load ? "LDC" : "STC"),
condition,
@@ -207,7 +211,7 @@ Instruction::disassemble() {
(data.pre ? (data.write ? "!" : "") : expression));
},
[condition](CoprocessorDataOperation& data) {
return fmt::format("CDP{} p{},{},c{},c{},c{},{}",
return std::format("CDP{} p{},{},c{},c{},c{},{}",
condition,
data.cpn,
data.cp_opc,
@@ -217,7 +221,7 @@ Instruction::disassemble() {
data.cp);
},
[condition](CoprocessorRegisterTransfer& data) {
return fmt::format("{}{} p{},{},R{},c{},c{},{}",
return std::format("{}{} p{},{},R{},c{},c{},{}",
(data.load ? "MRC" : "MCR"),
condition,
data.cpn,

View File

@@ -1,14 +1,15 @@
#include "cpu/cpu-impl.hh"
#include "bus.hh"
#include "cpu/cpu.hh"
#include "util/bits.hh"
#include "util/log.hh"
namespace matar {
void
CpuImpl::exec(const arm::Instruction instruction) {
Condition cond = instruction.condition;
arm::InstructionData data = instruction.data;
Cpu::exec(arm::Instruction& instruction) {
bool is_flushed = false;
if (!cpsr.condition(cond)) {
if (!cpsr.condition(instruction.condition)) {
advance_pc_arm();
return;
}
@@ -26,16 +27,28 @@ CpuImpl::exec(const arm::Instruction instruction) {
std::visit(
overloaded{
[this, pc_warn](BranchAndExchange& data) {
State state = static_cast<State>(data.rn & 1);
[this, pc_warn, &is_flushed](BranchAndExchange& data) {
/*
S -> reading instruction in step()
N -> fetch from the new address in branch
S -> last opcode fetch at +L to refill the pipeline
Total = 2S + N cycles
1S done, S+N taken care of by flush_pipeline()
*/
uint32_t addr = gpr[data.rn];
State state = static_cast<State>(get_bit(addr, 0));
pc_warn(data.rn);
if (state != cpsr.state())
glogger.info_bold("State changed");
// set state
cpsr.set_state(state);
// copy to PC
pc = gpr[data.rn];
pc = addr;
// ignore [1:0] bits for arm and 0 bit for thumb
rst_bit(pc, 0);
@@ -43,21 +56,40 @@ CpuImpl::exec(const arm::Instruction instruction) {
if (state == State::Arm)
rst_bit(pc, 1);
// pc is affected so flush the pipeline
// PC is affected so flush the pipeline
is_flushed = true;
},
[this](Branch& data) {
[this, &is_flushed](Branch& data) {
/*
S -> reading instruction in step()
N -> fetch from the new address in branch
S -> last opcode fetch at +L to refill the pipeline
Total = 2S + N cycles
1S done, S+N taken care of by flush_pipeline()
*/
if (data.link)
gpr[14] = pc - INSTRUCTION_SIZE;
// data.offset accounts for two instructions ahead when
// disassembling, so need to adjust
pc = static_cast<int32_t>(pc) - 2 * INSTRUCTION_SIZE + data.offset;
pc += data.offset;
// pc is affected so flush the pipeline
is_flushed = true;
},
[this, pc_error](Multiply& data) {
/*
S -> reading instruction in step()
mI -> m internal cycles
I -> only when accumulating
let v = data at rn
m = 1 if bits [32:8] of v are all zero or all one
m = 2 [32:16]
m = 3 [32:24]
m = 4 otherwise
Total = S + mI or S + (m+1)I
*/
if (data.rd == data.rm)
glogger.error("rd and rm are not distinct in {}",
typeid(data).name());
@@ -66,8 +98,17 @@ CpuImpl::exec(const arm::Instruction instruction) {
pc_error(data.rd);
pc_error(data.rd);
gpr[data.rd] =
gpr[data.rm] * gpr[data.rs] + (data.acc ? gpr[data.rn] : 0);
// mI
for (int i = 0; i < multiplier_array_cycles(gpr[data.rs]); i++)
internal_cycle();
gpr[data.rd] = gpr[data.rm] * gpr[data.rs];
if (data.acc) {
gpr[data.rd] += gpr[data.rn];
// 1I
internal_cycle();
}
if (data.set) {
cpsr.set_z(gpr[data.rd] == 0);
@@ -76,6 +117,19 @@ CpuImpl::exec(const arm::Instruction instruction) {
}
},
[this, pc_error](MultiplyLong& data) {
/*
S -> reading instruction in step()
(m+1)I -> m + 1 internal cycles
I -> only when accumulating
let v = data at rs
m = 1 if bits [32:8] of v are all zeroes (or all ones if signed)
m = 2 [32:16]
m = 3 [32:24]
m = 4 otherwise
Total = S + (m+1)I or S + (m+2)I
*/
if (data.rdhi == data.rdlo || data.rdhi == data.rm ||
data.rdlo == data.rm)
glogger.error("rdhi, rdlo and rm are not distinct in {}",
@@ -86,6 +140,16 @@ CpuImpl::exec(const arm::Instruction instruction) {
pc_error(data.rm);
pc_error(data.rs);
// 1I
if (data.acc)
internal_cycle();
// m+1 internal cycles
for (int i = 0;
i <= multiplier_array_cycles(gpr[data.rs], data.uns);
i++)
internal_cycle();
if (data.uns) {
auto cast = [](uint32_t x) -> uint64_t {
return static_cast<uint64_t>(x);
@@ -120,21 +184,56 @@ CpuImpl::exec(const arm::Instruction instruction) {
cpsr.set_v(0);
}
},
[](Undefined) { glogger.warn("Undefined instruction"); },
[](Undefined) {
// this should be 2S + N + I, should i flush the pipeline? i
// dont know. TODO: study
glogger.warn("Undefined instruction");
},
[this, pc_error](SingleDataSwap& data) {
/*
N -> reading instruction in step()
N -> unrelated read
S -> related write
I -> earlier read value is written to register
Total = S + 2N +I
*/
pc_error(data.rm);
pc_error(data.rn);
pc_error(data.rd);
if (data.byte) {
gpr[data.rd] = bus->read_byte(gpr[data.rn]);
bus->write_byte(gpr[data.rn], gpr[data.rm] & 0xFF);
gpr[data.rd] =
bus->read_byte(gpr[data.rn], CpuAccess::NonSequential);
bus->write_byte(
gpr[data.rn], gpr[data.rm] & 0xFF, CpuAccess::Sequential);
} else {
gpr[data.rd] = bus->read_word(gpr[data.rn]);
bus->write_word(gpr[data.rn], gpr[data.rm]);
gpr[data.rd] =
bus->read_word(gpr[data.rn], CpuAccess::NonSequential);
bus->write_word(
gpr[data.rn], gpr[data.rm], CpuAccess::Sequential);
}
internal_cycle();
// last write address is unrelated to next
next_access = CpuAccess::NonSequential;
},
[this, pc_warn, pc_error](SingleDataTransfer& data) {
[this, pc_warn, pc_error, &is_flushed](SingleDataTransfer& data) {
/*
Load
====
S -> reading instruction in step()
N -> read from target
I -> stored in register
N+S -> if PC is written - taken care of by flush_pipeline()
Total = S + N + I or 2S + 2N + I
Store
=====
N -> calculating memory address
N -> write at target
Total = 2N
*/
uint32_t offset = 0;
uint32_t address = gpr[data.rn];
@@ -170,10 +269,6 @@ CpuImpl::exec(const arm::Instruction instruction) {
cpsr.set_c(carry);
}
// PC is always two instructions ahead
if (data.rn == PC_INDEX)
address -= 2 * INSTRUCTION_SIZE;
if (data.pre)
address += (data.up ? offset : -offset);
@@ -181,22 +276,34 @@ CpuImpl::exec(const arm::Instruction instruction) {
if (data.load) {
// byte
if (data.byte)
gpr[data.rd] = bus->read_byte(address);
gpr[data.rd] =
bus->read_byte(address, CpuAccess::NonSequential);
// word
else
gpr[data.rd] = bus->read_word(address);
gpr[data.rd] =
bus->read_word(address, CpuAccess::NonSequential);
// N + S
if (data.rd == PC_INDEX)
is_flushed = true;
// I
internal_cycle();
// store
} else {
// take PC into consideration
uint32_t value = gpr[data.rd];
if (data.rd == PC_INDEX)
address += INSTRUCTION_SIZE;
value += INSTRUCTION_SIZE;
// byte
if (data.byte)
bus->write_byte(address, gpr[data.rd] & 0xFF);
bus->write_byte(
address, value & 0xFF, CpuAccess::NonSequential);
// word
else
bus->write_word(address, gpr[data.rd]);
bus->write_word(address, value, CpuAccess::NonSequential);
}
if (!data.pre)
@@ -205,10 +312,26 @@ CpuImpl::exec(const arm::Instruction instruction) {
if (!data.pre || data.write)
gpr[data.rn] = address;
if (data.rd == PC_INDEX && data.load)
is_flushed = true;
// last read/write is unrelated, this will be overwriten if
// flushed
next_access = CpuAccess::NonSequential;
},
[this, pc_warn, pc_error](HalfwordTransfer& data) {
[this, pc_warn, pc_error, &is_flushed](HalfwordTransfer& data) {
/*
Load
====
S -> reading instruction in step()
N -> read from target
I -> stored in register
N+S -> if PC is written - taken care of by flush_pipeline()
Total = S + N + I or 2S + 2N + I
Store
=====
N -> calculating memory address
N -> write at target
Total = 2N
*/
uint32_t address = gpr[data.rn];
uint32_t offset = 0;
@@ -230,10 +353,6 @@ CpuImpl::exec(const arm::Instruction instruction) {
offset = data.offset;
}
// PC is always two instructions ahead
if (data.rn == PC_INDEX)
address -= 2 * INSTRUCTION_SIZE;
if (data.pre)
address += (data.up ? offset : -offset);
@@ -243,7 +362,8 @@ CpuImpl::exec(const arm::Instruction instruction) {
if (data.sign) {
// halfword
if (data.half) {
gpr[data.rd] = bus->read_halfword(address);
gpr[data.rd] =
bus->read_halfword(address, CpuAccess::NonSequential);
// sign extend the halfword
gpr[data.rd] =
@@ -251,7 +371,8 @@ CpuImpl::exec(const arm::Instruction instruction) {
// byte
} else {
gpr[data.rd] = bus->read_byte(address);
gpr[data.rd] =
bus->read_byte(address, CpuAccess::NonSequential);
// sign extend the byte
gpr[data.rd] =
@@ -259,17 +380,28 @@ CpuImpl::exec(const arm::Instruction instruction) {
}
// unsigned halfword
} else if (data.half) {
gpr[data.rd] = bus->read_halfword(address);
gpr[data.rd] =
bus->read_halfword(address, CpuAccess::NonSequential);
}
// I
internal_cycle();
if (data.rd == PC_INDEX)
is_flushed = true;
// store
} else {
uint32_t value = gpr[data.rd];
// take PC into consideration
if (data.rd == PC_INDEX)
address += INSTRUCTION_SIZE;
value += INSTRUCTION_SIZE;
// halfword
if (data.half)
bus->write_halfword(address, gpr[data.rd]);
bus->write_halfword(
address, value & 0xFFFF, CpuAccess::NonSequential);
}
if (!data.pre)
@@ -278,21 +410,41 @@ CpuImpl::exec(const arm::Instruction instruction) {
if (!data.pre || data.write)
gpr[data.rn] = address;
if (data.rd == PC_INDEX && data.load)
is_flushed = true;
// last read/write is unrelated, this will be overwriten if
// flushed
next_access = CpuAccess::NonSequential;
},
[this, pc_error](BlockDataTransfer& data) {
[this, pc_error, &is_flushed](BlockDataTransfer& data) {
/*
Load
====
S -> reading instruction in step()
N -> unrelated read from target
(n-1) S -> next n - 1 related reads from target
I -> stored in register
N+S -> if PC is written - taken care of by
flush_pipeline() Total = nS + N + I or (n+1)S + 2N + I
Store
=====
N -> calculating memory address
N -> unrelated write at target
(n-1) S -> next n - 1 related writes
Total = 2N + (n-1)S
*/
static constexpr uint8_t alignment = 4; // word
uint32_t address = gpr[data.rn];
Mode mode = cpsr.mode();
uint8_t alignment = 4; // word
uint8_t i = 0;
uint8_t n_regs = std::popcount(data.regs);
int8_t i = 0;
CpuAccess access = CpuAccess::NonSequential;
pc_error(data.rn);
if (cpsr.mode() == Mode::User && data.s) {
glogger.error("Bit S is set outside priviliged modes in {}",
typeid(data).name());
glogger.error("Bit S is set outside priviliged modes in block "
"data transfer");
}
// we just change modes to load user registers
@@ -301,60 +453,85 @@ CpuImpl::exec(const arm::Instruction instruction) {
chg_mode(Mode::User);
if (data.write) {
glogger.error(
"Write-back enable for user bank registers in {}",
typeid(data).name());
glogger.error("Write-back enable for user bank registers "
"in block data transfer");
}
}
// account for decrement
if (!data.up)
address -= (n_regs - 1) * alignment;
// increment beforehand
if (data.pre)
address += (data.up ? alignment : -alignment);
if (data.load) {
if (get_bit(data.regs, PC_INDEX) && data.s && data.load) {
if (get_bit(data.regs, PC_INDEX)) {
is_flushed = true;
// current mode's spsr is already loaded when it was
// switched
if (data.s)
spsr = cpsr;
}
if (data.up) {
for (i = 0; i < GPR_COUNT; i++) {
if (get_bit(data.regs, i)) {
gpr[i] = bus->read_word(address);
gpr[i] = bus->read_word(address, access);
address += alignment;
access = CpuAccess::Sequential;
}
}
} else {
for (i = GPR_COUNT - 1; i >= 0; i--) {
if (get_bit(data.regs, i)) {
gpr[i] = bus->read_word(address, access);
address -= alignment;
access = CpuAccess::Sequential;
}
}
}
// I
internal_cycle();
} else {
if (data.up) {
for (i = 0; i < GPR_COUNT; i++) {
if (get_bit(data.regs, i)) {
bus->write_word(address, gpr[i]);
bus->write_word(address, gpr[i], access);
address += alignment;
access = CpuAccess::Sequential;
}
}
}
if (!data.pre)
address += (data.up ? alignment : -alignment);
// reset back to original address + offset if incremented earlier
if (data.up)
address -= n_regs * alignment;
else
} else {
for (i = GPR_COUNT - 1; i >= 0; i--) {
if (get_bit(data.regs, i)) {
bus->write_word(address, gpr[i], access);
address -= alignment;
access = CpuAccess::Sequential;
}
}
}
}
// fix increment
if (data.pre)
address += (data.up ? -alignment : alignment);
if (!data.pre || data.write)
gpr[data.rn] = address;
if (data.load && get_bit(data.regs, PC_INDEX))
is_flushed = true;
// load back the original mode registers
chg_mode(mode);
// last read/write is unrelated, this will be overwriten if
// flushed
next_access = CpuAccess::NonSequential;
},
[this, pc_error](PsrTransfer& data) {
/*
S -> prefetched instruction in step()
Total = 1S cycle
*/
if (data.spsr && cpsr.mode() == Mode::User) {
glogger.error("Accessing SPSR in User mode in {}",
typeid(data).name());
@@ -371,6 +548,11 @@ CpuImpl::exec(const arm::Instruction instruction) {
pc_error(data.operand);
if (cpsr.mode() != Mode::User) {
if (!data.spsr) {
Psr tmp = Psr(gpr[data.operand]);
chg_mode(tmp.mode());
}
psr.set_all(gpr[data.operand]);
}
break;
@@ -384,7 +566,25 @@ CpuImpl::exec(const arm::Instruction instruction) {
break;
}
},
[this, pc_error](DataProcessing& data) {
[this, pc_error, &is_flushed](DataProcessing& data) {
/*
Always
======
S -> prefetched instruction in step()
With Register specified shift
=============================
I -> internal cycle
When PC is written
==================
N -> fetch from the new address in branch
S -> last opcode fetch at +L to refill the pipeline
S+N taken care of by flush_pipeline()
Total = S or S + I or 2S + N + I or 2S + N cycles
*/
using OpCode = DataProcessing::OpCode;
uint32_t op_1 = gpr[data.rn];
@@ -414,49 +614,15 @@ CpuImpl::exec(const arm::Instruction instruction) {
// PC is 12 bytes ahead when shifting
if (data.rn == PC_INDEX)
op_1 += INSTRUCTION_SIZE;
// 1I when register specified shift
if (!shift->data.immediate)
internal_cycle();
}
bool overflow = cpsr.v();
bool carry = cpsr.c();
auto sub = [&carry, &overflow](uint32_t a, uint32_t b) -> uint32_t {
bool s1 = get_bit(a, 31);
bool s2 = get_bit(b, 31);
uint32_t result = a - b;
carry = b <= a;
overflow = s1 != s2 && s2 == get_bit(result, 31);
return result;
};
auto add = [&carry, &overflow](
uint32_t a, uint32_t b, bool c = 0) -> uint32_t {
bool s1 = get_bit(a, 31);
bool s2 = get_bit(b, 31);
// 33 bits
uint64_t result_ = a + b + c;
uint32_t result = result_ & 0xFFFFFFFF;
carry = get_bit(result_, 32);
overflow = s1 == s2 && s2 != get_bit(result, 31);
return result;
};
auto sbc = [&carry,
&overflow](uint32_t a, uint32_t b, bool c) -> uint32_t {
bool s1 = get_bit(a, 31);
bool s2 = get_bit(b, 31);
uint64_t result_ = a - b + c - 1;
uint32_t result = result_ & 0xFFFFFFFF;
carry = get_bit(result_, 32);
overflow = s1 != s2 && s2 == get_bit(result, 31);
return result;
};
switch (data.opcode) {
case OpCode::AND:
case OpCode::TST:
@@ -469,23 +635,23 @@ CpuImpl::exec(const arm::Instruction instruction) {
break;
case OpCode::SUB:
case OpCode::CMP:
result = sub(op_1, op_2);
result = sub(op_1, op_2, carry, overflow);
break;
case OpCode::RSB:
result = sub(op_2, op_1);
result = sub(op_2, op_1, carry, overflow);
break;
case OpCode::ADD:
case OpCode::CMN:
result = add(op_1, op_2);
result = add(op_1, op_2, carry, overflow);
break;
case OpCode::ADC:
result = add(op_1, op_2, carry);
result = add(op_1, op_2, carry, overflow, carry);
break;
case OpCode::SBC:
result = sbc(op_1, op_2, carry);
result = sbc(op_1, op_2, carry, overflow, carry);
break;
case OpCode::RSC:
result = sbc(op_2, op_1, carry);
result = sbc(op_2, op_1, carry, overflow, carry);
break;
case OpCode::ORR:
result = op_1 | op_2;
@@ -528,14 +694,20 @@ CpuImpl::exec(const arm::Instruction instruction) {
is_flushed = true;
}
},
[this](SoftwareInterrupt) {
[this, &is_flushed](SoftwareInterrupt) {
chg_mode(Mode::Supervisor);
pc = 0x08;
pc = 0x00;
spsr = cpsr;
is_flushed = true;
},
[](auto& data) {
glogger.error("Unimplemented {} instruction", typeid(data).name());
} },
data);
instruction.data);
if (is_flushed)
flush_pipeline<State::Arm>();
else
advance_pc_arm();
}
}

View File

@@ -1,6 +1,5 @@
#include "instruction.hh"
#include "cpu/arm/instruction.hh"
#include "util/bits.hh"
#include <iterator>
namespace matar::arm {
Instruction::Instruction(uint32_t insn)
@@ -14,12 +13,10 @@ Instruction::Instruction(uint32_t insn)
// Branch
} else if ((insn & 0x0E000000) == 0x0A000000) {
bool link = get_bit(insn, 24);
uint32_t offset = bit_range(insn, 0, 23);
int32_t offset = static_cast<int32_t>(bit_range(insn, 0, 23));
// lsh 2 and sign extend the 26 bit offset to 32 bits
offset = (static_cast<int32_t>(offset) << 8) >> 6;
offset += 2 * INSTRUCTION_SIZE;
offset = (offset << 8) >> 6;
data = Branch{ .link = link, .offset = offset };

View File

@@ -1,145 +0,0 @@
#include "cpu-impl.hh"
#include "util/bits.hh"
#include "util/log.hh"
#include <algorithm>
#include <cstdio>
#include <type_traits>
namespace matar {
CpuImpl::CpuImpl(const Bus& bus) noexcept
: bus(std::make_shared<Bus>(bus))
, gpr({ 0 })
, cpsr(0)
, spsr(0)
, is_flushed(false)
, gpr_banked({ { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 } })
, spsr_banked({ 0, 0, 0, 0, 0 }) {
cpsr.set_mode(Mode::Supervisor);
cpsr.set_irq_disabled(true);
cpsr.set_fiq_disabled(true);
cpsr.set_state(State::Arm);
glogger.info("CPU successfully initialised");
// PC always points to two instructions ahead
// PC - 2 is the instruction being executed
pc += 2 * arm::INSTRUCTION_SIZE;
}
/* change modes */
void
CpuImpl::chg_mode(const Mode to) {
Mode from = cpsr.mode();
if (from == to)
return;
/* TODO: replace visible registers with view once I understand how to
* concatenate views */
#define STORE_BANKED(mode, MODE) \
std::copy(gpr.begin() + GPR_##MODE##_FIRST, \
gpr.begin() + gpr.size() - 1, \
gpr_banked.mode.begin())
switch (from) {
case Mode::Fiq:
STORE_BANKED(fiq, FIQ);
spsr_banked.fiq = spsr;
break;
case Mode::Supervisor:
STORE_BANKED(svc, SVC);
spsr_banked.svc = spsr;
break;
case Mode::Abort:
STORE_BANKED(abt, ABT);
spsr_banked.abt = spsr;
break;
case Mode::Irq:
STORE_BANKED(irq, IRQ);
spsr_banked.irq = spsr;
break;
case Mode::Undefined:
STORE_BANKED(und, UND);
spsr_banked.und = spsr;
break;
case Mode::User:
case Mode::System:
STORE_BANKED(old, SYS_USR);
break;
}
#define RESTORE_BANKED(mode, MODE) \
std::copy(gpr_banked.mode.begin(), \
gpr_banked.mode.end(), \
gpr.begin() + GPR_##MODE##_FIRST)
switch (to) {
case Mode::Fiq:
RESTORE_BANKED(fiq, FIQ);
spsr = spsr_banked.fiq;
break;
case Mode::Supervisor:
RESTORE_BANKED(svc, SVC);
spsr = spsr_banked.svc;
break;
case Mode::Abort:
RESTORE_BANKED(abt, ABT);
spsr = spsr_banked.abt;
break;
case Mode::Irq:
RESTORE_BANKED(irq, IRQ);
spsr = spsr_banked.irq;
break;
case Mode::Undefined:
RESTORE_BANKED(und, UND);
spsr = spsr_banked.und;
break;
case Mode::User:
case Mode::System:
STORE_BANKED(old, SYS_USR);
break;
}
#undef RESTORE_BANKED
cpsr.set_mode(to);
}
void
CpuImpl::step() {
// Current instruction is two instructions behind PC
uint32_t cur_pc = pc - 2 * arm::INSTRUCTION_SIZE;
if (cpsr.state() == State::Arm) {
uint32_t x = bus->read_word(cur_pc);
arm::Instruction instruction(x);
exec(instruction);
#ifdef DISASSEMBLER
glogger.info("{:#034b}", x);
glogger.info("0x{:08X} : {}", cur_pc, instruction.disassemble());
#endif
if (is_flushed) {
// if flushed, do not increment the PC, instead set it to two
// instructions ahead to account for flushed "fetch" and "decode"
// instructions
pc += 2 * arm::INSTRUCTION_SIZE;
is_flushed = false;
} else {
// if not flushed continue like normal
pc += arm::INSTRUCTION_SIZE;
}
}
}
}

View File

@@ -1,64 +0,0 @@
#pragma once
#include "bus.hh"
#include "cpu/arm/instruction.hh"
#include "cpu/psr.hh"
#include <cstdint>
namespace matar {
class CpuImpl {
public:
CpuImpl(const Bus& bus) noexcept;
void step();
void chg_mode(const Mode to);
void exec(const arm::Instruction instruction);
// TODO: get rid of this
#ifndef MATAR_CPU_TESTS
private:
#endif
static constexpr uint8_t GPR_COUNT = 16;
static constexpr uint8_t GPR_FIQ_FIRST = 8;
static constexpr uint8_t GPR_SVC_FIRST = 13;
static constexpr uint8_t GPR_ABT_FIRST = 13;
static constexpr uint8_t GPR_IRQ_FIRST = 13;
static constexpr uint8_t GPR_UND_FIRST = 13;
static constexpr uint8_t GPR_SYS_USR_FIRST = 8;
std::shared_ptr<Bus> bus;
std::array<uint32_t, GPR_COUNT> gpr; // general purpose registers
Psr cpsr; // current program status register
Psr spsr; // status program status register
static constexpr uint8_t PC_INDEX = 15;
static_assert(PC_INDEX < GPR_COUNT);
uint32_t& pc = gpr[PC_INDEX];
bool is_flushed;
struct {
std::array<uint32_t, GPR_COUNT - GPR_FIQ_FIRST - 1> fiq;
std::array<uint32_t, GPR_COUNT - GPR_SVC_FIRST - 1> svc;
std::array<uint32_t, GPR_COUNT - GPR_ABT_FIRST - 1> abt;
std::array<uint32_t, GPR_COUNT - GPR_IRQ_FIRST - 1> irq;
std::array<uint32_t, GPR_COUNT - GPR_UND_FIRST - 1> und;
// visible registers before the mode switch
std::array<uint32_t, GPR_COUNT - GPR_SYS_USR_FIRST> old;
} gpr_banked; // banked general purpose registers
struct {
Psr fiq;
Psr svc;
Psr abt;
Psr irq;
Psr und;
} spsr_banked; // banked saved program status registers
};
}

View File

@@ -1,14 +1,172 @@
#include "cpu/cpu.hh"
#include "cpu-impl.hh"
#include "cpu/arm/instruction.hh"
#include "cpu/thumb/instruction.hh"
#include "util/bits.hh"
#include "util/log.hh"
namespace matar {
Cpu::Cpu(const Bus& bus) noexcept
: impl(std::make_unique<CpuImpl>(bus)){};
Cpu::Cpu(std::shared_ptr<Bus> bus) noexcept
: bus(bus) {
cpsr.set_mode(Mode::Supervisor);
cpsr.set_irq_disabled(true);
cpsr.set_fiq_disabled(true);
cpsr.set_state(State::Arm);
glogger.info("CPU successfully initialised");
Cpu::~Cpu() = default;
// PC always points to two instructions ahead
flush_pipeline<State::Arm>();
}
/* change modes */
void
Cpu::chg_mode(const Mode to) {
Mode from = cpsr.mode();
if (from == to)
return;
/* TODO: replace visible registers with view once I understand how to
* concatenate views */
#define STORE_BANKED(mode, MODE) \
std::copy(gpr.begin() + GPR_##MODE##_FIRST, \
gpr.end() - 1, \
gpr_banked.mode.begin())
switch (from) {
case Mode::Fiq:
STORE_BANKED(fiq, FIQ);
spsr_banked.fiq = spsr;
std::copy(gpr_banked.old.begin(),
gpr_banked.old.end() - 2, // dont copy R13 and R14
gpr.begin() + GPR_OLD_FIRST);
break;
case Mode::Supervisor:
STORE_BANKED(svc, SVC);
spsr_banked.svc = spsr;
break;
case Mode::Abort:
STORE_BANKED(abt, ABT);
spsr_banked.abt = spsr;
break;
case Mode::Irq:
STORE_BANKED(irq, IRQ);
spsr_banked.irq = spsr;
break;
case Mode::Undefined:
STORE_BANKED(und, UND);
spsr_banked.und = spsr;
break;
case Mode::User:
case Mode::System:
// we only take care of r13 and r14, because FIQ takes care of the
// rest
gpr_banked.old[5] = gpr[13];
gpr_banked.old[6] = gpr[14];
break;
}
#undef STORE_BANKED
#define RESTORE_BANKED(mode, MODE) \
std::copy(gpr_banked.mode.begin(), \
gpr_banked.mode.end(), \
gpr.begin() + GPR_##MODE##_FIRST)
switch (to) {
case Mode::Fiq:
RESTORE_BANKED(fiq, FIQ);
spsr = spsr_banked.fiq;
std::copy(gpr.begin() + GPR_FIQ_FIRST,
gpr.end() - 2, // dont copy R13 and R14
gpr_banked.old.begin());
break;
case Mode::Supervisor:
RESTORE_BANKED(svc, SVC);
spsr = spsr_banked.svc;
break;
case Mode::Abort:
RESTORE_BANKED(abt, ABT);
spsr = spsr_banked.abt;
break;
case Mode::Irq:
RESTORE_BANKED(irq, IRQ);
spsr = spsr_banked.irq;
break;
case Mode::Undefined:
RESTORE_BANKED(und, UND);
spsr = spsr_banked.und;
break;
case Mode::User:
case Mode::System:
gpr[13] = gpr_banked.old[5];
gpr[14] = gpr_banked.old[6];
break;
}
#undef RESTORE_BANKED
cpsr.set_mode(to);
glogger.info_bold("Mode changed from {:b} to {:b}",
static_cast<uint32_t>(from),
static_cast<uint32_t>(to));
}
void
Cpu::step() {
impl->step();
};
// halfword align
rst_bit(pc, 0);
if (cpsr.state() == State::Arm) {
// word align
rst_bit(pc, 1);
arm::Instruction instruction(opcodes[0]);
opcodes[0] = opcodes[1];
opcodes[1] = bus->read_word(pc, next_access);
#ifdef DISASSEMBLER
glogger.info("0x{:08X} : {}",
pc - 2 * arm::INSTRUCTION_SIZE,
instruction.disassemble());
#endif
exec(instruction);
} else {
thumb::Instruction instruction(opcodes[0]);
opcodes[0] = opcodes[1];
opcodes[1] = bus->read_halfword(pc, next_access);
#ifdef DISASSEMBLER
glogger.info("0x{:08X} : {}",
pc - 2 * thumb::INSTRUCTION_SIZE,
instruction.disassemble());
#endif
exec(instruction);
}
}
void
Cpu::advance_pc_arm() {
rst_bit(pc, 0);
rst_bit(pc, 1);
pc += arm::INSTRUCTION_SIZE;
};
void
Cpu::advance_pc_thumb() {
rst_bit(pc, 0);
pc += thumb::INSTRUCTION_SIZE;
}
}

View File

@@ -1,5 +1,4 @@
lib_sources += files(
'cpu-impl.cc',
'cpu.cc',
'psr.cc',
'alu.cc'

View File

@@ -1,6 +1,5 @@
#include "psr.hh"
#include "cpu/psr.hh"
#include "util/bits.hh"
#include "util/log.hh"
namespace matar {
Psr::Psr(uint32_t raw)
@@ -13,17 +12,17 @@ Psr::raw() const {
void
Psr::set_all(uint32_t raw) {
psr = raw & ~PSR_CLEAR_RESERVED;
psr = raw;
}
Mode
Psr::mode() const {
return static_cast<Mode>(psr & ~PSR_CLEAR_MODE);
return static_cast<Mode>(psr & 0b11111);
}
void
Psr::set_mode(Mode mode) {
psr &= PSR_CLEAR_MODE;
psr &= 0b00000;
psr |= static_cast<uint32_t>(mode);
}
@@ -91,7 +90,7 @@ Psr::condition(Condition cond) const {
case Condition::LE:
return z() || (n() != v());
case Condition::AL:
return true && state() == State::Arm;
return true;
}
return false;

View File

@@ -1,5 +1,6 @@
#include "instruction.hh"
#include "cpu/thumb/instruction.hh"
#include "util/bits.hh"
#include <format>
namespace matar::thumb {
std::string
@@ -7,14 +8,14 @@ Instruction::disassemble() {
return std::visit(
overloaded{
[](MoveShiftedRegister& data) {
return fmt::format("{} R{:d},R{:d},#{:d}",
return std::format("{} R{:d},R{:d},#{:d}",
stringify(data.opcode),
data.rd,
data.rs,
data.offset);
},
[](AddSubtract& data) {
return fmt::format("{} R{:d},R{:d},{}{:d}",
return std::format("{} R{:d},R{:d},{}{:d}",
stringify(data.opcode),
data.rd,
data.rs,
@@ -22,27 +23,27 @@ Instruction::disassemble() {
data.offset);
},
[](MovCmpAddSubImmediate& data) {
return fmt::format(
return std::format(
"{} R{:d},#{:d}", stringify(data.opcode), data.rd, data.offset);
},
[](AluOperations& data) {
return fmt::format(
return std::format(
"{} R{:d},R{:d}", stringify(data.opcode), data.rd, data.rs);
},
[](HiRegisterOperations& data) {
if (data.opcode == HiRegisterOperations::OpCode::BX) {
return fmt::format("{} R{:d}", stringify(data.opcode), data.rs);
return std::format("{} R{:d}", stringify(data.opcode), data.rs);
}
return fmt::format(
return std::format(
"{} R{:d},R{:d}", stringify(data.opcode), data.rd, data.rs);
},
[](PcRelativeLoad& data) {
return fmt::format("LDR R{:d},[PC,#{:d}]", data.rd, data.word);
return std::format("LDR R{:d},[PC,#{:d}]", data.rd, data.word);
},
[](LoadStoreRegisterOffset& data) {
return fmt::format("{}{} R{:d},[R{:d},R{:d}]",
return std::format("{}{} R{:d},[R{:d},R{:d}]",
(data.load ? "LDR" : "STR"),
(data.byte ? "B" : ""),
data.rd,
@@ -51,11 +52,11 @@ Instruction::disassemble() {
},
[](LoadStoreSignExtendedHalfword& data) {
if (!data.s && !data.h) {
return fmt::format(
return std::format(
"STRH R{:d},[R{:d},R{:d}]", data.rd, data.rb, data.ro);
}
return fmt::format("{}{} R{:d},[R{:d},R{:d}]",
return std::format("{}{} R{:d},[R{:d},R{:d}]",
(data.s ? "LDS" : "LDR"),
(data.h ? 'H' : 'B'),
data.rd,
@@ -63,7 +64,7 @@ Instruction::disassemble() {
data.ro);
},
[](LoadStoreImmediateOffset& data) {
return fmt::format("{}{} R{:d},[R{:d},#{:d}]",
return std::format("{}{} R{:d},[R{:d},#{:d}]",
(data.load ? "LDR" : "STR"),
(data.byte ? "B" : ""),
data.rd,
@@ -71,34 +72,33 @@ Instruction::disassemble() {
data.offset);
},
[](LoadStoreHalfword& data) {
return fmt::format("{} R{:d},[R{:d},#{:d}]",
return std::format("{} R{:d},[R{:d},#{:d}]",
(data.load ? "LDRH" : "STRH"),
data.rd,
data.rb,
data.offset);
},
[](SpRelativeLoad& data) {
return fmt::format("{} R{:d},[SP,#{:d}]",
return std::format("{} R{:d},[SP,#{:d}]",
(data.load ? "LDR" : "STR"),
data.rd,
data.word);
},
[](LoadAddress& data) {
return fmt::format("ADD R{:d},{},#{:d}",
return std::format("ADD R{:d},{},#{:d}",
data.rd,
(data.sp ? "SP" : "PC"),
data.word);
},
[](AddOffsetStackPointer& data) {
return fmt::format(
"ADD SP,#{}{:d}", (data.sign ? '-' : '+'), data.word);
return std::format("ADD SP,#{:d}", data.word);
},
[](PushPopRegister& data) {
std::string regs;
for (uint8_t i = 0; i < 16; i++) {
if (get_bit(data.regs, i))
fmt::format_to(std::back_inserter(regs), "R{:d},", i);
std::format_to(std::back_inserter(regs), "R{:d},", i);
};
if (data.load) {
@@ -107,14 +107,14 @@ Instruction::disassemble() {
else
regs.pop_back();
return fmt::format("POP {{{}}}", regs);
return std::format("POP {{{}}}", regs);
} else {
if (data.pclr)
regs += "LR";
else
regs.pop_back();
return fmt::format("PUSH {{{}}}", regs);
return std::format("PUSH {{{}}}", regs);
}
},
[](MultipleLoad& data) {
@@ -122,27 +122,32 @@ Instruction::disassemble() {
for (uint8_t i = 0; i < 16; i++) {
if (get_bit(data.regs, i))
fmt::format_to(std::back_inserter(regs), "R{:d},", i);
std::format_to(std::back_inserter(regs), "R{:d},", i);
};
regs.pop_back();
return fmt::format(
return std::format(
"{} R{}!,{{{}}}", (data.load ? "LDMIA" : "STMIA"), data.rb, regs);
},
[](SoftwareInterrupt) { return std::string("SWI"); },
[](SoftwareInterrupt& data) {
return std::format("SWI {:d}", data.vector);
},
[](ConditionalBranch& data) {
return fmt::format("B{} {:d}",
return std::format(
"B{} #{:d}",
stringify(data.condition),
data.offset);
static_cast<int32_t>(data.offset + 2 * INSTRUCTION_SIZE));
},
[](UnconditionalBranch& data) {
return fmt::format("B {:d}", data.offset);
return std::format(
"B #{:d}",
static_cast<int32_t>(data.offset + 2 * INSTRUCTION_SIZE));
},
[](LongBranchWithLink& data) {
// duh this manual be empty for H = 0
return fmt::format(
"BL{} {:d}", (data.high ? "H" : ""), data.offset);
return std::format(
"BL{} #{:d}", (data.low ? "" : "H"), data.offset);
},
[](auto) { return std::string("unknown instruction"); } },
data);

612
src/cpu/thumb/exec.cc Normal file
View File

@@ -0,0 +1,612 @@
#include "bus.hh"
#include "cpu/alu.hh"
#include "cpu/cpu.hh"
#include "util/bits.hh"
#include "util/log.hh"
namespace matar {
void
Cpu::exec(thumb::Instruction& instruction) {
bool is_flushed = false;
dbg(pc);
auto set_cc = [this](bool c, bool v, bool n, bool z) {
cpsr.set_c(c);
cpsr.set_v(v);
cpsr.set_n(n);
cpsr.set_z(z);
};
using namespace thumb;
std::visit(
overloaded{
[this, set_cc](MoveShiftedRegister& data) {
/*
S -> prefetched instruction in step()
Total = S cycle
*/
if (data.opcode == ShiftType::ROR)
glogger.error("Invalid opcode in {}", typeid(data).name());
bool carry = cpsr.c();
uint32_t shifted =
eval_shift(data.opcode, gpr[data.rs], data.offset, carry);
gpr[data.rd] = shifted;
set_cc(carry, cpsr.v(), get_bit(shifted, 31), shifted == 0);
},
[this, set_cc](AddSubtract& data) {
/*
S -> prefetched instruction in step()
Total = S cycle
*/
uint32_t offset =
data.imm ? static_cast<uint32_t>(static_cast<int8_t>(data.offset))
: gpr[data.offset];
uint32_t result = 0;
bool carry = cpsr.c();
bool overflow = cpsr.v();
switch (data.opcode) {
case AddSubtract::OpCode::ADD:
result = add(gpr[data.rs], offset, carry, overflow);
break;
case AddSubtract::OpCode::SUB:
result = sub(gpr[data.rs], offset, carry, overflow);
break;
}
gpr[data.rd] = result;
set_cc(carry, overflow, get_bit(result, 31), result == 0);
},
[this, set_cc](MovCmpAddSubImmediate& data) {
/*
S -> prefetched instruction in step()
Total = S cycle
*/
uint32_t result = 0;
bool carry = cpsr.c();
bool overflow = cpsr.v();
switch (data.opcode) {
case MovCmpAddSubImmediate::OpCode::MOV:
result = data.offset;
carry = 0;
break;
case MovCmpAddSubImmediate::OpCode::ADD:
result = add(gpr[data.rd], data.offset, carry, overflow);
break;
case MovCmpAddSubImmediate::OpCode::SUB:
case MovCmpAddSubImmediate::OpCode::CMP:
result = sub(gpr[data.rd], data.offset, carry, overflow);
break;
}
set_cc(carry, overflow, get_bit(result, 31), result == 0);
if (data.opcode != MovCmpAddSubImmediate::OpCode::CMP)
gpr[data.rd] = result;
},
[this, set_cc](AluOperations& data) {
/*
Data Processing
===============
S -> prefetched instruction in step()
I -> only when register specified shift
Total = S or S + I cycles
Multiply
========
S -> reading instruction in step()
mI -> m internal cycles
let v = data at rn
m = 1 if bits [32:8] of v are all zero or all one
m = 2 [32:16]
m = 3 [32:24]
m = 4 otherwise
Total = S + mI cycles
*/
uint32_t op_1 = gpr[data.rd];
uint32_t op_2 = gpr[data.rs];
uint32_t result = 0;
bool carry = cpsr.c();
bool overflow = cpsr.v();
switch (data.opcode) {
case AluOperations::OpCode::AND:
case AluOperations::OpCode::TST:
result = op_1 & op_2;
break;
case AluOperations::OpCode::EOR:
result = op_1 ^ op_2;
break;
case AluOperations::OpCode::LSL:
result = eval_shift(ShiftType::LSL, op_1, op_2, carry);
internal_cycle();
break;
case AluOperations::OpCode::LSR:
result = eval_shift(ShiftType::LSR, op_1, op_2, carry);
internal_cycle();
break;
case AluOperations::OpCode::ASR:
result = eval_shift(ShiftType::ASR, op_1, op_2, carry);
internal_cycle();
break;
case AluOperations::OpCode::ADC:
result = add(op_1, op_2, carry, overflow, carry);
break;
case AluOperations::OpCode::SBC:
result = sbc(op_1, op_2, carry, overflow, carry);
break;
case AluOperations::OpCode::ROR:
result = eval_shift(ShiftType::ROR, op_1, op_2, carry);
internal_cycle();
break;
case AluOperations::OpCode::NEG:
result = -op_2;
break;
case AluOperations::OpCode::CMP:
result = sub(op_1, op_2, carry, overflow);
break;
case AluOperations::OpCode::CMN:
result = add(op_1, op_2, carry, overflow);
break;
case AluOperations::OpCode::ORR:
result = op_1 | op_2;
break;
case AluOperations::OpCode::MUL:
result = op_1 * op_2;
// mI cycles
for (int i = 0; i < multiplier_array_cycles(op_2); i++)
internal_cycle();
break;
case AluOperations::OpCode::BIC:
result = op_1 & ~op_2;
break;
case AluOperations::OpCode::MVN:
result = ~op_2;
break;
}
if (data.opcode != AluOperations::OpCode::TST &&
data.opcode != AluOperations::OpCode::CMP &&
data.opcode != AluOperations::OpCode::CMN)
gpr[data.rd] = result;
set_cc(carry, overflow, get_bit(result, 31), result == 0);
},
[this, set_cc, &is_flushed](HiRegisterOperations& data) {
/*
Always
======
S -> prefetched instruction in step()
When PC is written
==================
N -> fetch from the new address in branch
S -> last opcode fetch at +L to refill the pipeline
S+N taken care of by flush_pipeline()
Total = S or 2S + N cycles
*/
uint32_t op_1 = gpr[data.rd];
uint32_t op_2 = gpr[data.rs];
bool carry = cpsr.c();
bool overflow = cpsr.v();
// PC is already current + 4, so dont need to do that
if (data.rd == PC_INDEX)
rst_bit(op_1, 0);
if (data.rs == PC_INDEX)
rst_bit(op_2, 0);
switch (data.opcode) {
case HiRegisterOperations::OpCode::ADD: {
gpr[data.rd] = add(op_1, op_2, carry, overflow);
if (data.rd == PC_INDEX)
is_flushed = true;
} break;
case HiRegisterOperations::OpCode::CMP: {
uint32_t result = sub(op_1, op_2, carry, overflow);
set_cc(carry, overflow, get_bit(result, 31), result == 0);
} break;
case HiRegisterOperations::OpCode::MOV: {
gpr[data.rd] = op_2;
if (data.rd == PC_INDEX)
is_flushed = true;
} break;
case HiRegisterOperations::OpCode::BX: {
State state = static_cast<State>(get_bit(op_2, 0));
if (state != cpsr.state())
glogger.info_bold("State changed");
// set state
cpsr.set_state(state);
// copy to PC
pc = op_2;
// ignore [1:0] bits for arm and 0 bit for thumb
rst_bit(pc, 0);
if (state == State::Arm)
rst_bit(pc, 1);
// pc is affected so flush the pipeline
is_flushed = true;
} break;
}
},
[this](PcRelativeLoad& data) {
/*
S -> reading instruction in step()
N -> read from target
I -> stored in register
Total = S + N + I cycles
*/
uint32_t pc_ = pc;
rst_bit(pc_, 0);
rst_bit(pc_, 1);
gpr[data.rd] =
bus->read_word(pc_ + data.word, CpuAccess::NonSequential);
internal_cycle();
// last read is unrelated
next_access = CpuAccess::NonSequential;
},
[this](LoadStoreRegisterOffset& data) {
/*
Load
====
S -> reading instruction in step()
N -> read from target
I -> stored in register
Total = S + N + I
Store
=====
N -> calculating memory address
N -> write at target
Total = 2N
*/
uint32_t address = gpr[data.rb] + gpr[data.ro];
if (data.load) {
if (data.byte) {
gpr[data.rd] =
bus->read_byte(address, CpuAccess::NonSequential);
} else {
gpr[data.rd] =
bus->read_word(address, CpuAccess::NonSequential);
}
internal_cycle();
} else {
if (data.byte) {
bus->write_byte(
address, gpr[data.rd] & 0xFF, CpuAccess::NonSequential);
} else {
bus->write_word(
address, gpr[data.rd], CpuAccess::NonSequential);
}
}
// last read/write is unrelated
next_access = CpuAccess::NonSequential;
},
[this](LoadStoreSignExtendedHalfword& data) {
// Same cycles as above
uint32_t address = gpr[data.rb] + gpr[data.ro];
switch (data.s << 1 | data.h) {
case 0b00:
bus->write_halfword(
address, gpr[data.rd] & 0xFFFF, CpuAccess::NonSequential);
break;
case 0b01:
gpr[data.rd] =
bus->read_halfword(address, CpuAccess::NonSequential);
internal_cycle();
break;
case 0b10:
// sign extend and load the byte
gpr[data.rd] = (static_cast<int32_t>(bus->read_byte(
address, CpuAccess::NonSequential))
<< 24) >>
24;
internal_cycle();
break;
case 0b11:
// sign extend the halfword
gpr[data.rd] = (static_cast<int32_t>(bus->read_halfword(
address, CpuAccess::NonSequential))
<< 16) >>
16;
internal_cycle();
break;
// unreachable
default: {
}
}
// last read/write is unrelated
next_access = CpuAccess::NonSequential;
},
[this](LoadStoreImmediateOffset& data) {
// Same cycles as above
uint32_t address = gpr[data.rb] + data.offset;
dbg(address);
if (data.load) {
if (data.byte) {
gpr[data.rd] =
bus->read_byte(address, CpuAccess::NonSequential);
} else {
gpr[data.rd] =
bus->read_word(address, CpuAccess::NonSequential);
}
internal_cycle();
} else {
if (data.byte) {
bus->write_byte(
address, gpr[data.rd] & 0xFF, CpuAccess::NonSequential);
} else {
bus->write_word(
address, gpr[data.rd], CpuAccess::NonSequential);
}
}
// last read/write is unrelated
next_access = CpuAccess::NonSequential;
},
[this](LoadStoreHalfword& data) {
// Same cycles as above
uint32_t address = gpr[data.rb] + data.offset;
if (data.load) {
gpr[data.rd] =
bus->read_halfword(address, CpuAccess::NonSequential);
internal_cycle();
} else {
bus->write_halfword(
address, gpr[data.rd] & 0xFFFF, CpuAccess::NonSequential);
}
// last read/write is unrelated
next_access = CpuAccess::NonSequential;
},
[this](SpRelativeLoad& data) {
// Same cycles as above
uint32_t address = sp + data.word;
if (data.load) {
gpr[data.rd] = bus->read_word(address, CpuAccess::Sequential);
internal_cycle();
} else {
bus->write_word(address, gpr[data.rd], CpuAccess::Sequential);
}
// last read/write is unrelated
next_access = CpuAccess::NonSequential;
},
[this](LoadAddress& data) {
// 1S cycle in step()
if (data.sp) {
gpr[data.rd] = sp + data.word;
} else {
// PC is already current + 4, so dont need to do that
// force bit 1 to 0
gpr[data.rd] = (pc & ~(1 << 1)) + data.word;
}
},
[this](AddOffsetStackPointer& data) {
// 1S cycle in step()
sp += data.word;
},
[this, &is_flushed](PushPopRegister& data) {
/*
Load
====
S -> reading instruction in step()
N -> unrelated read from target
(n-1) S -> next n - 1 related reads from target
I -> stored in register
N+S -> if PC is written - taken care of by flush_pipeline()
S -> if PC, memory read for PC write
Total = nS + N + I or (n+2)S + 2N + I
Store
=====
N -> calculating memory address
N -> if LR, memory read for PC write
N/S -> unrelated write at target
(n-1) S -> next n - 1 related writes
Total = 2N + nS or 2N + (n-1)S
*/
static constexpr uint8_t alignment = 4;
CpuAccess access = CpuAccess::NonSequential;
if (data.load) {
for (uint8_t i = 0; i < 8; i++) {
if (get_bit(data.regs, i)) {
gpr[i] = bus->read_word(sp, access);
sp += alignment;
access = CpuAccess::Sequential;
}
}
if (data.pclr) {
pc = bus->read_word(sp, access);
sp += alignment;
is_flushed = true;
}
// I
internal_cycle();
} else {
if (data.pclr) {
sp -= alignment;
bus->write_word(sp, lr, access);
access = CpuAccess::Sequential;
}
for (int8_t i = 7; i >= 0; i--) {
if (get_bit(data.regs, i)) {
sp -= alignment;
bus->write_word(sp, gpr[i], access);
access = CpuAccess::Sequential;
}
}
}
// last read/write is unrelated
next_access = CpuAccess::NonSequential;
},
[this](MultipleLoad& data) {
/*
Load
====
S -> reading instruction in step()
N -> unrelated read from target
(n-1) S -> next n - 1 related reads from target
I -> stored in register
Total = nS + N + I
Store
=====
N -> calculating memory address
N -> unrelated write at target
(n-1) S -> next n - 1 related writes
Total = 2N + (n-1)S
*/
static constexpr uint8_t alignment = 4;
uint32_t rb = gpr[data.rb];
CpuAccess access = CpuAccess::NonSequential;
if (data.load) {
for (uint8_t i = 0; i < 8; i++) {
if (get_bit(data.regs, i)) {
gpr[i] = bus->read_word(rb, access);
rb += alignment;
access = CpuAccess::Sequential;
}
}
internal_cycle();
} else {
for (uint8_t i = 0; i < 8; i++) {
if (get_bit(data.regs, i)) {
bus->write_word(rb, gpr[i], access);
rb += alignment;
access = CpuAccess::Sequential;
}
}
}
gpr[data.rb] = rb;
// last read/write is unrelated
next_access = CpuAccess::NonSequential;
},
[this, &is_flushed](ConditionalBranch& data) {
/*
S -> reading instruction in step()
N+S -> if condition is true, branch and refill pipeline
Total = S or 2S + N
*/
if (data.condition == Condition::AL)
glogger.warn("Condition 1110 (AL) is undefined");
if (!cpsr.condition(data.condition))
return;
pc += data.offset;
is_flushed = true;
},
[this, &is_flushed](SoftwareInterrupt& data) {
/*
S -> reading instruction in step()
N+S -> refill pipeline
Total = 2S + N
*/
// next instruction is one instruction behind PC
lr = pc - INSTRUCTION_SIZE;
spsr = cpsr;
pc = data.vector;
cpsr.set_state(State::Arm);
chg_mode(Mode::Supervisor);
is_flushed = true;
},
[this, &is_flushed](UnconditionalBranch& data) {
/*
S -> reading instruction in step()
N+S -> branch and refill pipeline
Total = 2S + N
*/
pc += data.offset;
is_flushed = true;
},
[this, &is_flushed](LongBranchWithLink& data) {
/*
S -> prefetched instruction in step()
N -> fetch from the new address in branch
S -> last opcode fetch at +L to refill the pipeline
Total = 2S + N cycles
1S done, S+N taken care of by flush_pipeline()
*/
// 12 bit integer
int32_t offset = data.offset;
if (data.low) {
uint32_t old_pc = pc;
offset <<= 1;
pc = lr + offset;
lr = (old_pc - INSTRUCTION_SIZE) | 1;
is_flushed = true;
} else {
// 12 + 11 = 23 bit
offset <<= 12;
// sign extend
offset = (offset << 9) >> 9;
lr = pc + offset;
}
},
[](auto& data) {
glogger.error("Unknown thumb format : {}", typeid(data).name());
} },
instruction.data);
if (is_flushed)
flush_pipeline<State::Thumb>();
else
advance_pc_thumb();
}
}

View File

@@ -1,5 +1,6 @@
#include "instruction.hh"
#include "cpu/thumb/instruction.hh"
#include "util/bits.hh"
#include "util/log.hh"
namespace matar::thumb {
Instruction::Instruction(uint16_t insn) {
@@ -55,16 +56,20 @@ Instruction::Instruction(uint16_t insn) {
HiRegisterOperations::OpCode opcode =
static_cast<HiRegisterOperations::OpCode>(bit_range(insn, 8, 9));
if (opcode == HiRegisterOperations::OpCode::BX && hi_1)
glogger.warn("H1 set with BX");
rd += (hi_1 ? LO_GPR_COUNT : 0);
rs += (hi_2 ? LO_GPR_COUNT : 0);
data = HiRegisterOperations{ .rd = rd, .rs = rs, .opcode = opcode };
// Format 6: PC-relative load
} else if ((insn & 0xF800) == 0x4800) {
uint8_t word = bit_range(insn, 0, 7);
uint16_t word = bit_range(insn, 0, 7);
uint8_t rd = bit_range(insn, 8, 10);
data = PcRelativeLoad{ .word = word, .rd = rd };
data =
PcRelativeLoad{ .word = static_cast<uint16_t>(word << 2), .rd = rd };
// Format 7: Load/store with register offset
} else if ((insn & 0xF200) == 0x5000) {
@@ -91,13 +96,16 @@ Instruction::Instruction(uint16_t insn) {
};
// Format 9: Load/store with immediate offset
} else if ((insn & 0xF000) == 0x6000) {
} else if ((insn & 0xE000) == 0x6000) {
uint8_t rd = bit_range(insn, 0, 2);
uint8_t rb = bit_range(insn, 3, 5);
uint8_t offset = bit_range(insn, 6, 10);
bool load = get_bit(insn, 11);
bool byte = get_bit(insn, 12);
if (!byte)
offset <<= 2;
data = LoadStoreImmediateOffset{
.rd = rd, .rb = rb, .offset = offset, .load = load, .byte = byte
};
@@ -109,40 +117,43 @@ Instruction::Instruction(uint16_t insn) {
uint8_t offset = bit_range(insn, 6, 10);
bool load = get_bit(insn, 11);
offset <<= 1;
data = LoadStoreHalfword{
.rd = rd, .rb = rb, .offset = offset, .load = load
};
// Format 11: SP-relative load/store
} else if ((insn & 0xF000) == 0x9000) {
uint8_t word = bit_range(insn, 0, 7);
uint16_t word = bit_range(insn, 0, 7);
uint8_t rd = bit_range(insn, 8, 10);
bool load = get_bit(insn, 11);
word <<= 2;
data = SpRelativeLoad{ .word = word, .rd = rd, .load = load };
// Format 12: Load address
} else if ((insn & 0xF000) == 0xA000) {
uint8_t word = bit_range(insn, 0, 7);
uint16_t word = bit_range(insn, 0, 7);
uint8_t rd = bit_range(insn, 8, 10);
bool sp = get_bit(insn, 11);
data = LoadAddress{ .word = word, .rd = rd, .sp = sp };
// Format 12: Load address
} else if ((insn & 0xF000) == 0xA000) {
uint8_t word = bit_range(insn, 0, 7);
uint8_t rd = bit_range(insn, 8, 10);
bool sp = get_bit(insn, 11);
word <<= 2;
data = LoadAddress{ .word = word, .rd = rd, .sp = sp };
// Format 13: Add offset to stack pointer
} else if ((insn & 0xFF00) == 0xB000) {
uint8_t word = bit_range(insn, 0, 6);
int16_t word = static_cast<int16_t>(bit_range(insn, 0, 6));
bool sign = get_bit(insn, 7);
data = AddOffsetStackPointer{ .word = word, .sign = sign };
word <<= 2;
word = static_cast<int16_t>(word * (sign ? -1 : 1));
data = AddOffsetStackPointer{
.word = word,
};
// Format 14: Push/pop registers
} else if ((insn & 0xF600) == 0xB400) {
@@ -162,30 +173,39 @@ Instruction::Instruction(uint16_t insn) {
// Format 17: Software interrupt
} else if ((insn & 0xFF00) == 0xDF00) {
data = SoftwareInterrupt{};
uint8_t vector = bit_range(insn, 0, 7);
data = SoftwareInterrupt{ .vector = vector };
// Format 16: Conditional branch
} else if ((insn & 0xF000) == 0xD000) {
uint16_t offset = bit_range(insn, 0, 7);
int32_t offset = bit_range(insn, 0, 7);
Condition condition = static_cast<Condition>(bit_range(insn, 8, 11));
data = ConditionalBranch{ .offset = static_cast<uint16_t>(offset << 1),
.condition = condition };
offset <<= 1;
// sign extend the 9 bit integer
offset = (offset << 23) >> 23;
data = ConditionalBranch{ .offset = offset, .condition = condition };
// Format 18: Unconditional branch
} else if ((insn & 0xF800) == 0xE000) {
uint16_t offset = bit_range(insn, 0, 10);
int32_t offset = bit_range(insn, 0, 10);
data =
UnconditionalBranch{ .offset = static_cast<uint16_t>(offset << 1) };
offset <<= 1;
// sign extend the 12 bit integer
offset = (offset << 20) >> 20;
data = UnconditionalBranch{ .offset = offset };
// Format 19: Long branch with link
} else if ((insn & 0xF000) == 0xF000) {
uint16_t offset = bit_range(insn, 0, 10);
bool high = get_bit(insn, 11);
bool low = get_bit(insn, 11);
data = LongBranchWithLink{ .offset = static_cast<uint16_t>(offset << 1),
.high = high };
data = LongBranchWithLink{ .offset = offset, .low = low };
}
}
}

View File

@@ -1,5 +1,6 @@
lib_sources += files(
'instruction.cc'
'instruction.cc',
'exec.cc'
)
if get_option('disassembler')

487
src/gdb_rsp.cc Normal file
View File

@@ -0,0 +1,487 @@
#include "gdb_rsp.hh"
#include "util/log.hh"
#include <csignal>
#include <numeric>
#include <regex>
#include <stdexcept>
#include <string>
namespace matar {
template<typename... Args>
static inline constexpr void
gdb_log(const std::format_string<Args...>& fmt, Args&&... args) {
glogger.debug("GDB: {}", std::format(fmt, std::forward<Args>(args)...));
}
static inline void
append_le(std::string& str, uint32_t value) {
// little endian only
str += std::format("{:02x}", value & 0xFF);
str += std::format("{:02x}", value >> 8 & 0xFF);
str += std::format("{:02x}", value >> 16 & 0xFF);
str += std::format("{:02x}", value >> 24 & 0xFF);
}
static inline std::string
be_to_le(std::string str) {
if (str.length() != 8)
throw std::out_of_range("string is supposed to be 8 bytes");
std::string current;
for (int i = 7; i >= 0; i -= 2) {
current += str[i - 1];
current += str[i];
}
return current;
}
GdbRsp::GdbRsp(std::shared_ptr<Cpu> cpu, uint port)
: cpu(cpu) {
server.start(port);
}
void
GdbRsp::start() {
server.run();
attach();
// attaching is not enough, we continue, until the last GDB communication
// happens for ARMv4t i.e, fetching of the CPSR
std::string msg;
while (msg != "$p19") {
msg = receive();
step(msg); // 25th (0x19) register is cpsr
}
}
void
GdbRsp::attach() {
while (!attached) {
step();
}
}
void
GdbRsp::satisfy_client() {
while (server.client_waiting() && attached) {
step();
}
}
void
GdbRsp::step() {
std::string msg = receive();
step(msg);
}
void
GdbRsp::step(std::string msg) {
switch (msg[0]) {
case '+':
break;
case '-':
break;
case '\x03':
gdb_log("ctrl+c interrupt received");
cmd_halted();
break;
case '$': {
acknowledge();
switch (msg[1]) {
case '?':
cmd_halted();
break;
case 'g':
cmd_read_registers();
break;
case 'G':
cmd_write_registers(msg);
break;
case 'p':
cmd_read_register(msg);
break;
case 'P':
cmd_write_register(msg);
break;
case 'm':
cmd_read_memory(msg);
break;
case 'M':
cmd_write_memory(msg);
break;
case 'z':
cmd_rm_breakpoint(msg);
break;
case 'Z':
cmd_add_breakpoint(msg);
break;
case 'c':
cmd_continue();
break;
case 'D':
cmd_detach();
break;
case 'Q':
if (msg == "$QStartNoAckMode")
ack_mode = true;
send_ok();
break;
case 'q':
if (msg.starts_with("$qSupported")) {
cmd_supported(msg);
break;
} else if (msg == "$qAttached") {
cmd_attached();
break;
}
[[fallthrough]];
default:
gdb_log("unknown command");
send_empty();
}
break;
}
default:
gdb_log("unknown message received");
}
}
std::string
GdbRsp::receive() {
std::string msg = server.receive(1);
char ch = msg[0];
uint checksum = 0;
if (ch == '$') {
while ((ch = server.receive(1)[0]) != '#') {
checksum += static_cast<uint>(ch);
msg += ch;
if (msg.length() > MAX_MSG_LEN) {
throw std::logic_error("GDB: received message is too long");
}
}
if (std::stoul(server.receive(2), nullptr, 16) != (checksum & 0xFF)) {
gdb_log("{}", msg);
throw std::logic_error("GDB: bad message checksum");
}
}
gdb_log("received message \"{}\"", msg);
return msg;
}
std::string
GdbRsp::make_packet(std::string raw) {
uint checksum = std::accumulate(raw.begin(), raw.end(), 0);
return std::format("${}#{:02x}", raw, checksum & 0xFF);
}
void
GdbRsp::acknowledge() {
if (ack_mode)
server.send("+");
}
void
GdbRsp::send_empty() {
server.send(make_packet(""));
}
void
GdbRsp::send_ok() {
acknowledge();
server.send(make_packet("OK"));
}
void
GdbRsp::notify_breakpoint_reached() {
gdb_log("reached breakpoint, sending signal");
server.send(make_packet(std::format("S{:02x}", SIGTRAP)));
}
void
GdbRsp::cmd_attached() {
attached = true;
gdb_log("server is now attached");
server.send(make_packet("1"));
}
void
GdbRsp::cmd_supported(std::string msg) {
std::string response;
if (msg.find("hwbreak+;") != std::string::npos)
response += "hwbreak+;";
// no acknowledgement mode
response += "QStartNoAckMode+";
gdb_log("sending response for qSupported");
server.send(make_packet(response));
}
void
GdbRsp::cmd_halted() {
gdb_log("sending reason for upcoming halt");
server.send(make_packet(std::format("S{:02x}", SIGTRAP)));
}
void
GdbRsp::cmd_read_registers() {
std::string response;
for (int i = 0; i < cpu->GPR_COUNT - 1; i++)
append_le(response, cpu->gpr[i]);
// for some reason this PC needs to be the address of executing instruction
// i.e, two instructions behind actual PC
append_le(response,
cpu->pc - 2 * (cpu->cpsr.state() == State::Arm
? arm::INSTRUCTION_SIZE
: thumb::INSTRUCTION_SIZE));
gdb_log("sending register values");
server.send(make_packet(response));
}
void
GdbRsp::cmd_write_registers(std::string msg) {
static std::regex rgx("\\$G([0-9A-Fa-f]+)");
std::smatch sm;
regex_match(msg, sm, rgx);
if (sm.size() != 2 || sm[1].str().size() != 16 * 8) {
gdb_log("invalid arguments to write registers");
send_empty();
return;
}
try {
std::string values = sm[1].str();
for (uint i = 0, j = 0; i < values.length() - 8; i += 8, j++) {
cpu->gpr[i] = std::stoul(sm[i + 1].str(), nullptr, 16);
cpu->gpr[j] =
std::stoul(be_to_le(values.substr(i, 8)), nullptr, 16);
}
gdb_log("register values written");
send_ok();
} catch (const std::exception& e) {
gdb_log("{}", e.what());
send_empty();
}
}
void
GdbRsp::cmd_read_register(std::string msg) {
std::string response;
try {
uint reg = std::stoul(msg.substr(2), nullptr, 16);
// 25th register is CPSR in gdb ARM
if (reg == 25)
append_le(response, cpu->cpsr.raw());
else if (reg < cpu->GPR_COUNT)
append_le(response, cpu->gpr[reg]);
else
response += "xxxxxxxx";
gdb_log("sending single register value");
server.send(make_packet(response));
} catch (const std::exception& e) {
gdb_log("{}", e.what());
send_empty();
}
}
void
GdbRsp::cmd_write_register(std::string msg) {
static std::regex rgx("\\$P([0-9A-Fa-f]+)\\=([0-9A-Fa-f]+)");
std::smatch sm;
regex_match(msg, sm, rgx);
if (sm.size() != 3 && sm[2].str().length() != 8) {
gdb_log("invalid arguments to write single register");
send_empty();
return;
}
try {
uint reg = std::stoul(sm[1].str(), nullptr, 16);
uint32_t value = std::stoul(be_to_le(sm[2].str()), nullptr, 16);
dbg(value);
if (reg == 25)
cpu->cpsr.set_all(value);
else if (reg < cpu->GPR_COUNT)
cpu->gpr[reg] = value;
gdb_log("single register value written");
send_ok();
} catch (const std::exception& e) {
gdb_log("{}", e.what());
send_empty();
}
}
void
GdbRsp::cmd_read_memory(std::string msg) {
std::string response;
static std::regex rgx("\\$m([0-9A-Fa-f]+),([0-9A-Fa-f]+)");
std::smatch sm;
regex_match(msg, sm, rgx);
if (sm.size() != 3) {
gdb_log("invalid arguments to read memory");
send_empty();
return;
}
uint32_t address = 0, length = 0;
try {
address = std::stoul(sm[1].str(), nullptr, 16);
length = std::stoul(sm[2].str(), nullptr, 16);
} catch (const std::exception& e) {
gdb_log("{}", e.what());
send_empty();
return;
}
for (uint i = 0; i < length; i++) {
response += std::format("{:02x}", cpu->bus->read_byte(address + i));
}
gdb_log("sending memory values values");
server.send(make_packet(response));
}
void
GdbRsp::cmd_write_memory(std::string msg) {
static std::regex rgx("\\$M([0-9A-Fa-f]+),([0-9A-Fa-f]+):([0-9A-Fa-f]+)");
std::smatch sm;
regex_match(msg, sm, rgx);
if (sm.size() != 4) {
gdb_log("invalid arguments to write memory");
send_empty();
return;
}
try {
uint32_t address = std::stoul(sm[1].str(), nullptr, 16);
uint32_t length = std::stoul(sm[2].str(), nullptr, 16);
std::string values = sm[3].str();
for (uint i = 0, j = 0; i < length && j < values.size(); i++, j += 2) {
cpu->bus->write_byte(
address + i, std::stoul(values.substr(j, 2), nullptr, 16) & 0xFF);
}
gdb_log("register values written");
send_ok();
} catch (const std::exception& e) {
gdb_log("{}", e.what());
send_empty();
}
}
void
GdbRsp::cmd_rm_breakpoint(std::string msg) {
static std::regex rgx("\\$z(0|1),([0-9A-Fa-f]+),(2|3|4)");
std::smatch sm;
regex_match(msg, sm, rgx);
if (sm.size() != 4) {
gdb_log("invalid arguments to remove breakpoint");
send_empty();
return;
}
if (sm[1].str() != "0" && sm[0].str() != "1") {
gdb_log("unrecognized breakpoint type encountered");
send_empty();
return;
}
if (sm[3].str() != "3" && sm[3].str() != "4") {
gdb_log("only 32 bit breakpoints supported");
send_empty();
return;
}
try {
uint32_t address = std::stoul(sm[2].str(), nullptr, 16);
cpu->breakpoints.erase(address);
gdb_log("breakpoint {:#08x} removed", address);
send_ok();
} catch (const std::exception& e) {
gdb_log("{}", e.what());
send_empty();
}
}
void
GdbRsp::cmd_add_breakpoint(std::string msg) {
static std::regex rgx("\\$Z(0|1),([0-9A-Fa-f]+),(2|3|4)");
std::smatch sm;
regex_match(msg, sm, rgx);
dbg(sm.size());
dbg(sm[0].str());
if (sm.size() != 4) {
gdb_log("invalid arguments to add breakpoint");
send_empty();
return;
}
if (sm[1].str() != "0" && sm[0].str() != "1") {
gdb_log("unrecognized breakpoint type encountered");
send_empty();
return;
}
if (sm[3].str() != "3" && sm[3].str() != "4") {
gdb_log("only 32 bit breakpoints supported");
send_empty();
return;
}
try {
uint32_t address = std::stoul(sm[2].str(), nullptr, 16);
cpu->breakpoints.insert(address);
gdb_log("breakpoint {:#08x} added", address);
send_ok();
} catch (const std::exception& e) {
gdb_log("{}", e.what());
send_empty();
}
}
void
GdbRsp::cmd_detach() {
attached = false;
gdb_log("detached");
send_ok();
}
void
GdbRsp::cmd_continue() {
// what to do?
gdb_log("cpu continued");
send_ok();
}
}

47
src/gdb_rsp.hh Normal file
View File

@@ -0,0 +1,47 @@
#include "cpu/cpu.hh"
#include "util/tcp_server.hh"
namespace matar {
class GdbRsp {
public:
GdbRsp(std::shared_ptr<Cpu> cpu, uint port);
~GdbRsp() = default;
void start();
void attach();
void satisfy_client();
void step();
void step(std::string msg);
void notify_breakpoint_reached();
inline bool is_attached() { return attached; }
private:
bool attached = false;
std::shared_ptr<Cpu> cpu;
net::TcpServer server;
std::string receive();
std::string make_packet(std::string raw);
bool ack_mode = true;
void acknowledge();
void send_empty();
void send_ok();
// Commands
void cmd_attached();
void cmd_supported(std::string msg);
void cmd_halted();
void cmd_read_registers();
void cmd_write_registers(std::string msg);
void cmd_read_register(std::string msg);
void cmd_write_register(std::string msg);
void cmd_read_memory(std::string msg);
void cmd_write_memory(std::string msg);
void cmd_rm_breakpoint(std::string msg);
void cmd_add_breakpoint(std::string msg);
void cmd_detach();
void cmd_continue();
static constexpr uint MAX_MSG_LEN = 4096;
};
}

23
src/io/display/display.cc Normal file
View File

@@ -0,0 +1,23 @@
#include "io/display/display.hh"
namespace matar {
namespace display {
/*
static constexpr uint LCD_HEIGHT = 160;
static constexpr uint LCD_WIDTH = 240;
static constexpr uint BLANK = 68;
static constexpr uint PIXEL_CYCLES = 4; // 4
static constexpr uint HDRAW_CYCLES = LCD_WIDTH * PIXEL_CYCLES + 46; // 1006
static constexpr uint HBLANK_CYCLES = BLANK * PIXEL_CYCLES - 46; // 226
static constexpr uint HREFRESH_CYCLES = HDRAW_CYCLES + HBLANK_CYCLES; // 1232
static constexpr uint VDRAW_CYCLES = LCD_HEIGHT * HREFRESH_CYCLES; // 197120
static constexpr uint VBLANK_CYCLES = BLANK * HREFRESH_CYCLES; // 83776
static constexpr uint VREFRESH_CYCLES = VDRAW_CYCLES + VBLANK_CYCLES; // 280896
*/
void
Display::mode_3() {}
}
}

View File

@@ -0,0 +1,3 @@
lib_sources += files(
'display.cc'
)

51
src/io/display/render.cc Normal file
View File

@@ -0,0 +1,51 @@
#include "io/display/display.hh"
namespace matar {
namespace display {
struct TextScreen {
uint16_t tile_number : 10;
bool mirror_horizontal : 1;
bool mirror_vertical : 1;
uint8_t palette_number : 4;
};
// if 16th bit is set, this will denote the transparent color in rgb555 format
static constexpr uint16_t TRANSPARENT_RGB555 = 0x8000;
template<int MODE, typename>
void
Display::render_bitmap_mode() {
static constexpr std::size_t VIEWPORT_WIDTH = MODE == 5 ? 160 : 240;
for (int x = 0; x < LCD_WIDTH; x++) {
// pixel to texel for x
// shift by 8 cuz both ref.x and a are fixed point floats shifted by 8
int32_t x_ = (bg2_rot_scale.ref.x + x * bg2_rot_scale.a) >> 8;
int32_t y_ = (bg2_rot_scale.ref.y + x * bg2_rot_scale.c) >> 8;
// ignore handling area overflow for bitmap modes
// i am not sure how well this will turn out
std::size_t idx = y_ * VIEWPORT_WIDTH + x_;
// mode 3 and 5 takes 2 bytes per pixel
if constexpr (MODE != 4)
idx *= 2;
// offset
if constexpr (MODE != 3) {
std::size_t offset =
lcd_control.value.frame_select_1 ? 0xA000 : 0x0000;
idx += offset;
}
// read two bytes
if constexpr (MODE == 4)
scanline_buffers[2][x] = pram.read_halfword(vram.read_byte(idx));
else
scanline_buffers[2][x] = vram.read_halfword(idx);
}
}
}
}

419
src/io/io.cc Normal file
View File

@@ -0,0 +1,419 @@
#include "io/io.hh"
#include "util/bits.hh"
#include "util/log.hh"
namespace matar {
#define ADDR static constexpr uint32_t
// lcd
ADDR DISPCNT = 0x4000000;
ADDR DISPSTAT = 0x4000004;
ADDR VCOUNT = 0x4000006;
ADDR BG0CNT = 0x4000008;
ADDR BG1CNT = 0x400000A;
ADDR BG2CNT = 0x400000C;
ADDR BG3CNT = 0x400000E;
ADDR BG0HOFS = 0x4000010;
ADDR BG0VOFS = 0x4000012;
ADDR BG1HOFS = 0x4000014;
ADDR BG1VOFS = 0x4000016;
ADDR BG2HOFS = 0x4000018;
ADDR BG2VOFS = 0x400001A;
ADDR BG3HOFS = 0x400001C;
ADDR BG3VOFS = 0x400001E;
ADDR BG2PA = 0x4000020;
ADDR BG2PB = 0x4000022;
ADDR BG2PC = 0x4000024;
ADDR BG2PD = 0x4000026;
ADDR BG2X_L = 0x4000028;
ADDR BG2X_H = 0x400002A;
ADDR BG2Y_L = 0x400002C;
ADDR BG2Y_H = 0x400002E;
ADDR BG3PA = 0x4000030;
ADDR BG3PB = 0x4000032;
ADDR BG3PC = 0x4000034;
ADDR BG3PD = 0x4000036;
ADDR BG3X_L = 0x4000038;
ADDR BG3X_H = 0x400003A;
ADDR BG3Y_L = 0x400003C;
ADDR BG3Y_H = 0x400003E;
ADDR WIN0H = 0x4000040;
ADDR WIN1H = 0x4000042;
ADDR WIN0V = 0x4000044;
ADDR WIN1V = 0x4000046;
ADDR WININ = 0x4000048;
ADDR WINOUT = 0x400004A;
ADDR MOSAIC = 0x400004C;
ADDR BLDCNT = 0x4000050;
ADDR BLDALPHA = 0x4000052;
ADDR BLDY = 0x4000054;
// sound
ADDR SOUND1CNT_L = 0x4000060;
ADDR SOUND1CNT_H = 0x4000062;
ADDR SOUND1CNT_X = 0x4000064;
ADDR SOUND2CNT_L = 0x4000068;
ADDR SOUND2CNT_H = 0x400006C;
ADDR SOUND3CNT_L = 0x4000070;
ADDR SOUND3CNT_H = 0x4000072;
ADDR SOUND3CNT_X = 0x4000074;
ADDR SOUND4CNT_L = 0x4000078;
ADDR SOUND4CNT_H = 0x400007C;
ADDR SOUNDCNT_L = 0x4000080;
ADDR SOUNDCNT_H = 0x4000082;
ADDR SOUNDCNT_X = 0x4000084;
ADDR SOUNDBIAS = 0x4000088;
ADDR WAVE_RAM0_L = 0x4000090;
ADDR WAVE_RAM0_H = 0x4000092;
ADDR WAVE_RAM1_L = 0x4000094;
ADDR WAVE_RAM1_H = 0x4000096;
ADDR WAVE_RAM2_L = 0x4000098;
ADDR WAVE_RAM2_H = 0x400009A;
ADDR WAVE_RAM3_L = 0x400009C;
ADDR WAVE_RAM3_H = 0x400009E;
ADDR FIFO_A_L = 0x40000A0;
ADDR FIFO_A_H = 0x40000A2;
ADDR FIFO_B_L = 0x40000A4;
ADDR FIFO_B_H = 0x40000A6;
// dma
ADDR DMA0SAD = 0x40000B0;
ADDR DMA0DAD = 0x40000B4;
ADDR DMA0CNT_L = 0x40000B8;
ADDR DMA0CNT_H = 0x40000BA;
ADDR DMA1SAD = 0x40000BC;
ADDR DMA1DAD = 0x40000C0;
ADDR DMA1CNT_L = 0x40000C4;
ADDR DMA1CNT_H = 0x40000C6;
ADDR DMA2SAD = 0x40000C8;
ADDR DMA2DAD = 0x40000CC;
ADDR DMA2CNT_L = 0x40000D0;
ADDR DMA2CNT_H = 0x40000D2;
ADDR DMA3SAD = 0x40000D4;
ADDR DMA3DAD = 0x40000D8;
ADDR DMA3CNT_L = 0x40000DC;
ADDR DMA3CNT_H = 0x40000DE;
// system
ADDR POSTFLG = 0x4000300;
ADDR IME = 0x4000208;
ADDR IE = 0x4000200;
ADDR IF = 0x4000202;
ADDR WAITCNT = 0x4000204;
ADDR HALTCNT = 0x4000301;
#undef ADDR
IoDevices::IoDevices(std::weak_ptr<Bus> bus)
: bus(bus) {}
uint8_t
IoDevices::read_byte(uint32_t address) const {
uint16_t halfword = read_halfword(address & ~1);
if (address & 1)
halfword >>= 8;
return halfword & 0xFF;
}
void
IoDevices::write_byte(uint32_t address, uint8_t byte) {
uint16_t halfword = read_halfword(address & ~1);
if (address & 1)
write_halfword(address & ~1,
(static_cast<uint16_t>(byte) << 8) | (halfword & 0xFF));
else
write_halfword(address & ~1,
(static_cast<uint16_t>(byte) | (halfword & 0xFF00)));
}
uint32_t
IoDevices::read_word(uint32_t address) const {
return read_halfword(address) | read_halfword(address + 2) << 16;
}
void
IoDevices::write_word(uint32_t address, uint32_t word) {
write_halfword(address, word & 0xFFFF);
write_halfword(address + 2, (word >> 16) & 0xFFFF);
}
uint16_t
IoDevices::read_halfword(uint32_t address) const {
switch (address) {
#define READ(name, var) \
case name: \
return var;
// lcd
case DISPCNT:
return display.lcd_control.read();
case DISPSTAT:
return display.general_lcd_status.read();
case BG0CNT:
return display.bg_control[0].read();
case BG1CNT:
return display.bg_control[1].read();
case BG2CNT:
return display.bg_control[2].read();
case BG3CNT:
return display.bg_control[3].read();
READ(VCOUNT, display.vertical_counter)
READ(WININ, display.inside_win_0_1)
READ(WINOUT, display.outside_win)
READ(BLDCNT, display.color_special_effects_selection)
READ(BLDALPHA, display.alpha_blending_coefficients)
// sound
READ(SOUND1CNT_L, sound.ch1_sweep)
READ(SOUND1CNT_H, sound.ch1_duty_length_env)
READ(SOUND1CNT_X, sound.ch1_freq_control)
READ(SOUND2CNT_L, sound.ch2_duty_length_env)
READ(SOUND2CNT_H, sound.ch2_freq_control)
READ(SOUND3CNT_L, sound.ch3_stop_wave_ram_select)
READ(SOUND3CNT_H, sound.ch3_length_volume)
READ(SOUND3CNT_X, sound.ch3_freq_control)
READ(WAVE_RAM0_L, sound.ch3_wave_pattern[0]);
READ(WAVE_RAM0_H, sound.ch3_wave_pattern[1]);
READ(WAVE_RAM1_L, sound.ch3_wave_pattern[2]);
READ(WAVE_RAM1_H, sound.ch3_wave_pattern[3]);
READ(WAVE_RAM2_L, sound.ch3_wave_pattern[4]);
READ(WAVE_RAM2_H, sound.ch3_wave_pattern[5]);
READ(WAVE_RAM3_L, sound.ch3_wave_pattern[6]);
READ(WAVE_RAM3_H, sound.ch3_wave_pattern[7]);
READ(SOUND4CNT_L, sound.ch4_length_env);
READ(SOUND4CNT_H, sound.ch4_freq_control);
READ(SOUNDCNT_L, sound.ctrl_stereo_volume);
READ(SOUNDCNT_H, sound.ctrl_mixing);
READ(SOUNDCNT_X, sound.ctrl_sound_on_off);
READ(SOUNDBIAS, sound.pwm_control);
// dma
case DMA0CNT_H:
return dma.channels[0].control.read();
case DMA1CNT_H:
return dma.channels[1].control.read();
case DMA2CNT_H:
return dma.channels[2].control.read();
case DMA3CNT_H:
return dma.channels[3].control.read();
READ(DMA0SAD, dma.channels[0].source[0]);
READ(DMA0SAD + 2, dma.channels[0].source[1]);
READ(DMA0DAD, dma.channels[0].destination[0]);
READ(DMA0DAD + 2, dma.channels[0].destination[1]);
READ(DMA0CNT_L, dma.channels[0].word_count);
READ(DMA1SAD, dma.channels[1].source[0]);
READ(DMA1SAD + 2, dma.channels[1].source[1]);
READ(DMA1DAD, dma.channels[1].destination[0]);
READ(DMA1DAD + 2, dma.channels[1].destination[1]);
READ(DMA1CNT_L, dma.channels[1].word_count);
READ(DMA2SAD, dma.channels[2].source[0]);
READ(DMA2SAD + 2, dma.channels[2].source[1]);
READ(DMA2DAD, dma.channels[2].destination[0]);
READ(DMA2DAD + 2, dma.channels[2].destination[1]);
READ(DMA2CNT_L, dma.channels[2].word_count);
READ(DMA3SAD, dma.channels[3].source[0]);
READ(DMA3SAD + 2, dma.channels[3].source[1]);
READ(DMA3DAD, dma.channels[3].destination[0]);
READ(DMA3DAD + 2, dma.channels[3].destination[1]);
READ(DMA3CNT_L, dma.channels[3].word_count);
// system
READ(POSTFLG, system.post_boot_flag)
READ(IME, system.interrupt_master_enabler)
READ(IE, system.interrupt_enable);
READ(IF, system.interrupt_request_flags);
READ(WAITCNT, system.waitstate_control);
#undef READ
default:
glogger.warn("Unused IO address read at 0x{:08X}", address);
}
return 0xFF;
}
void
IoDevices::write_halfword(uint32_t address, uint16_t halfword) {
// set lower 16 bits for reference points (BG 2/3)
auto ref_low = [](uint32_t original, uint16_t low) {
return static_cast<int32_t>((original & 0xFFFF0000) | low);
};
// set upper 12 bits for reference points (BG 2/3)
// and sign extend
auto ref_high = [](uint32_t original, uint16_t high) {
return static_cast<int32_t>(
((((high & 0xFFF) << 16) | (original & 0xFFFF)) << 4) >> 4);
};
switch (address) {
#define WRITE(name, var) \
case name: \
var = halfword; \
break;
#define WRITE_2(name, var, val) \
case name: \
var = val; \
break;
// lcd
case DISPCNT:
display.lcd_control.write(halfword);
break;
case DISPSTAT:
display.general_lcd_status.write(halfword);
break;
case BG0CNT:
display.bg_control[0].write(halfword);
break;
case BG1CNT:
display.bg_control[1].write(halfword);
break;
case BG2CNT:
display.bg_control[2].write(halfword);
break;
case BG3CNT:
display.bg_control[3].write(halfword);
break;
WRITE(BG0HOFS, display.bg0_offset.x)
WRITE(BG0VOFS, display.bg0_offset.y)
WRITE(BG1HOFS, display.bg1_offset.x)
WRITE(BG1VOFS, display.bg1_offset.y)
WRITE(BG2HOFS, display.bg2_offset.x)
WRITE(BG2VOFS, display.bg2_offset.y)
WRITE(BG3HOFS, display.bg3_offset.x)
WRITE(BG3VOFS, display.bg3_offset.y)
WRITE(BG2PA, display.bg2_rot_scale.a)
WRITE(BG2PB, display.bg2_rot_scale.b)
WRITE(BG2PC, display.bg2_rot_scale.c)
WRITE(BG2PD, display.bg2_rot_scale.d)
WRITE_2(BG2X_L,
display.bg2_rot_scale.ref.x,
ref_low(display.bg2_rot_scale.ref.x, halfword));
WRITE_2(BG2X_H,
display.bg2_rot_scale.ref.x,
ref_high(display.bg2_rot_scale.ref.x, halfword));
WRITE_2(BG2Y_L,
display.bg2_rot_scale.ref.y,
ref_low(display.bg2_rot_scale.ref.y, halfword));
WRITE_2(BG2Y_H,
display.bg2_rot_scale.ref.y,
ref_high(display.bg2_rot_scale.ref.y, halfword));
WRITE(BG3PA, display.bg3_rot_scale.a)
WRITE(BG3PB, display.bg3_rot_scale.b)
WRITE(BG3PC, display.bg3_rot_scale.c)
WRITE(BG3PD, display.bg3_rot_scale.d)
WRITE_2(BG3X_L,
display.bg3_rot_scale.ref.x,
ref_low(display.bg3_rot_scale.ref.x, halfword));
WRITE_2(BG3X_H,
display.bg3_rot_scale.ref.x,
ref_high(display.bg3_rot_scale.ref.x, halfword));
WRITE_2(BG3Y_L,
display.bg3_rot_scale.ref.y,
ref_low(display.bg3_rot_scale.ref.y, halfword));
WRITE_2(BG3Y_H,
display.bg3_rot_scale.ref.y,
ref_high(display.bg3_rot_scale.ref.y, halfword));
WRITE(WIN0H, display.win0_horizontal_dimensions)
WRITE(WIN1H, display.win1_horizontal_dimensions)
WRITE(WIN0V, display.win0_vertical_dimensions)
WRITE(WIN1V, display.win1_vertical_dimensions)
WRITE(WININ, display.inside_win_0_1)
WRITE(WINOUT, display.outside_win)
WRITE(MOSAIC, display.mosaic_size)
WRITE(BLDCNT, display.color_special_effects_selection)
WRITE(BLDALPHA, display.alpha_blending_coefficients)
WRITE(BLDY, display.brightness_coefficient)
// sound
WRITE(SOUND1CNT_L, sound.ch1_sweep)
WRITE(SOUND1CNT_H, sound.ch1_duty_length_env)
WRITE(SOUND1CNT_X, sound.ch1_freq_control)
WRITE(SOUND2CNT_L, sound.ch2_duty_length_env)
WRITE(SOUND2CNT_H, sound.ch2_freq_control)
WRITE(SOUND3CNT_L, sound.ch3_stop_wave_ram_select)
WRITE(SOUND3CNT_H, sound.ch3_length_volume)
WRITE(SOUND3CNT_X, sound.ch3_freq_control)
WRITE(WAVE_RAM0_L, sound.ch3_wave_pattern[0]);
WRITE(WAVE_RAM0_H, sound.ch3_wave_pattern[1]);
WRITE(WAVE_RAM1_L, sound.ch3_wave_pattern[2]);
WRITE(WAVE_RAM1_H, sound.ch3_wave_pattern[3]);
WRITE(WAVE_RAM2_L, sound.ch3_wave_pattern[4]);
WRITE(WAVE_RAM2_H, sound.ch3_wave_pattern[5]);
WRITE(WAVE_RAM3_L, sound.ch3_wave_pattern[6]);
WRITE(WAVE_RAM3_H, sound.ch3_wave_pattern[7]);
WRITE(SOUND4CNT_L, sound.ch4_length_env);
WRITE(SOUND4CNT_H, sound.ch4_freq_control);
WRITE(SOUNDCNT_L, sound.ctrl_stereo_volume);
WRITE(SOUNDCNT_H, sound.ctrl_mixing);
WRITE(SOUNDCNT_X, sound.ctrl_sound_on_off);
WRITE(SOUNDBIAS, sound.pwm_control);
WRITE(FIFO_A_L, sound.fifo_a[0]);
WRITE(FIFO_A_H, sound.fifo_a[1]);
WRITE(FIFO_B_L, sound.fifo_b[0]);
WRITE(FIFO_B_H, sound.fifo_b[1]);
// dma
case DMA0CNT_H:
dma.channels[0].control.write(halfword);
break;
case DMA1CNT_H:
dma.channels[1].control.write(halfword);
break;
case DMA2CNT_H:
dma.channels[2].control.write(halfword);
break;
case DMA3CNT_H:
dma.channels[3].control.write(halfword);
break;
WRITE(DMA0SAD, dma.channels[0].source[0]);
WRITE(DMA0SAD + 2, dma.channels[0].source[1]);
WRITE(DMA0DAD, dma.channels[0].destination[0]);
WRITE(DMA0DAD + 2, dma.channels[0].destination[1]);
WRITE(DMA0CNT_L, dma.channels[0].word_count);
WRITE(DMA1SAD, dma.channels[1].source[0]);
WRITE(DMA1SAD + 2, dma.channels[1].source[1]);
WRITE(DMA1DAD, dma.channels[1].destination[0]);
WRITE(DMA1DAD + 2, dma.channels[1].destination[1]);
WRITE(DMA1CNT_L, dma.channels[1].word_count);
WRITE(DMA2SAD, dma.channels[2].source[0]);
WRITE(DMA2SAD + 2, dma.channels[2].source[1]);
WRITE(DMA2DAD, dma.channels[2].destination[0]);
WRITE(DMA2DAD + 2, dma.channels[2].destination[1]);
WRITE(DMA2CNT_L, dma.channels[2].word_count);
WRITE(DMA3SAD, dma.channels[3].source[0]);
WRITE(DMA3SAD + 2, dma.channels[3].source[1]);
WRITE(DMA3DAD, dma.channels[3].destination[0]);
WRITE(DMA3DAD + 2, dma.channels[3].destination[1]);
WRITE(DMA3CNT_L, dma.channels[3].word_count);
// system
WRITE_2(POSTFLG, system.post_boot_flag, halfword & 1)
WRITE_2(IME, system.interrupt_master_enabler, halfword & 1)
WRITE(IE, system.interrupt_enable);
WRITE(IF, system.interrupt_request_flags);
WRITE(WAITCNT, system.waitstate_control);
WRITE_2(HALTCNT, system.low_power_mode, get_bit(halfword, 7));
#undef WRITE
#undef WRITE_2
default:
glogger.warn("Unused IO address written at 0x{:08X}", address);
}
return;
}
}

3
src/io/meson.build Normal file
View File

@@ -0,0 +1,3 @@
lib_sources += files(
'io.cc'
)

View File

@@ -1,198 +0,0 @@
#include "memory.hh"
#include "header.hh"
#include "util/bits.hh"
#include "util/crypto.hh"
#include "util/log.hh"
#include <bitset>
#include <stdexcept>
namespace matar {
Memory::Memory(std::array<uint8_t, BIOS_SIZE>&& bios,
std::vector<uint8_t>&& rom)
: bios(std::move(bios))
, board_wram({ 0 })
, chip_wram({ 0 })
, palette_ram({ 0 })
, vram({ 0 })
, oam_obj_attr({ 0 })
, rom(std::move(rom)) {
std::string bios_hash = crypto::sha256(this->bios);
static constexpr std::string_view expected_hash =
"fd2547724b505f487e6dcb29ec2ecff3af35a841a77ab2e85fd87350abd36570";
if (bios_hash != expected_hash) {
glogger.warn("BIOS hash failed to match, run at your own risk"
"\nExpected : {} "
"\nGot : {}",
expected_hash,
bios_hash);
}
parse_header();
glogger.info("Memory successfully initialised");
glogger.info("Cartridge Title: {}", header.title);
};
#define MATCHES(area) address >= area##_START&& address <= area##_END
uint8_t
Memory::read(size_t address) const {
if (MATCHES(BIOS)) {
return bios[address];
} else if (MATCHES(BOARD_WRAM)) {
return board_wram[address - BOARD_WRAM_START];
} else if (MATCHES(CHIP_WRAM)) {
return chip_wram[address - CHIP_WRAM_START];
} else if (MATCHES(PALETTE_RAM)) {
return palette_ram[address - PALETTE_RAM_START];
} else if (MATCHES(VRAM)) {
return vram[address - VRAM_START];
} else if (MATCHES(OAM_OBJ_ATTR)) {
return oam_obj_attr[address - OAM_OBJ_ATTR_START];
} else if (MATCHES(ROM_0)) {
return rom[address - ROM_0_START];
} else if (MATCHES(ROM_1)) {
return rom[address - ROM_1_START];
} else if (MATCHES(ROM_2)) {
return rom[address - ROM_2_START];
} else {
glogger.error("Invalid memory region accessed");
return 0xFF;
}
}
void
Memory::write(size_t address, uint8_t byte) {
if (MATCHES(BIOS)) {
bios[address] = byte;
} else if (MATCHES(BOARD_WRAM)) {
board_wram[address - BOARD_WRAM_START] = byte;
} else if (MATCHES(CHIP_WRAM)) {
chip_wram[address - CHIP_WRAM_START] = byte;
} else if (MATCHES(PALETTE_RAM)) {
palette_ram[address - PALETTE_RAM_START] = byte;
} else if (MATCHES(VRAM)) {
vram[address - VRAM_START] = byte;
} else if (MATCHES(OAM_OBJ_ATTR)) {
oam_obj_attr[address - OAM_OBJ_ATTR_START] = byte;
} else if (MATCHES(ROM_0)) {
rom[address - ROM_0_START] = byte;
} else if (MATCHES(ROM_1)) {
rom[address - ROM_1_START] = byte;
} else if (MATCHES(ROM_2)) {
rom[address - ROM_2_START] = byte;
} else {
glogger.error("Invalid memory region accessed");
}
}
#undef MATCHES
void
Memory::parse_header() {
if (rom.size() < header.HEADER_SIZE) {
throw std::out_of_range(
"ROM is not large enough to even have a header");
}
// entrypoint
header.entrypoint =
rom[0x00] | rom[0x01] << 8 | rom[0x02] << 16 | rom[0x03] << 24;
// nintendo logo
if (rom[0x9C] != 0x21)
glogger.info("HEADER: BIOS debugger bits not set to 0");
// game info
header.title = std::string(&rom[0xA0], &rom[0xA0 + 12]);
switch (rom[0xAC]) {
case 'A':
header.unique_code = Header::UniqueCode::Old;
break;
case 'B':
header.unique_code = Header::UniqueCode::New;
break;
case 'C':
header.unique_code = Header::UniqueCode::Newer;
break;
case 'F':
header.unique_code = Header::UniqueCode::Famicom;
break;
case 'K':
header.unique_code = Header::UniqueCode::YoshiKoro;
break;
case 'P':
header.unique_code = Header::UniqueCode::Ereader;
break;
case 'R':
header.unique_code = Header::UniqueCode::Warioware;
break;
case 'U':
header.unique_code = Header::UniqueCode::Boktai;
break;
case 'V':
header.unique_code = Header::UniqueCode::DrillDozer;
break;
default:
glogger.error("HEADER: invalid unique code: {}", rom[0xAC]);
}
header.title_code = std::string(&rom[0xAD], &rom[0xAE]);
switch (rom[0xAF]) {
case 'J':
header.i18n = Header::I18n::Japan;
break;
case 'P':
header.i18n = Header::I18n::Europe;
break;
case 'F':
header.i18n = Header::I18n::French;
break;
case 'S':
header.i18n = Header::I18n::Spanish;
break;
case 'E':
header.i18n = Header::I18n::Usa;
break;
case 'D':
header.i18n = Header::I18n::German;
break;
case 'I':
header.i18n = Header::I18n::Italian;
break;
default:
glogger.error("HEADER: invalid destination/language: {}",
rom[0xAF]);
}
if (rom[0xB2] != 0x96)
glogger.error("HEADER: invalid fixed byte at 0xB2");
for (size_t i = 0xB5; i < 0xBC; i++) {
if (rom[i] != 0x00)
glogger.error("HEADER: invalid fixed bytes at 0xB5");
}
header.version = rom[0xBC];
// checksum
{
size_t i = 0xA0, chk = 0;
while (i <= 0xBC)
chk -= rom[i++];
chk -= 0x19;
chk &= 0xFF;
if (chk != rom[0xBD])
glogger.error("HEADER: checksum does not match");
}
// multiboot not required right now
}
}

View File

@@ -1,27 +1,18 @@
lib_sources = files(
'memory.cc',
'bus.cc'
'bus.cc',
)
if get_option('gdb_debug')
lib_sources += files('gdb_rsp.cc')
endif
subdir('util')
subdir('cpu')
lib_cpp_args = []
fmt = dependency('fmt', version : '>=10.1.0', static: true)
if not fmt.found()
fmt = dependency('fmt', version : '>=10.1.0', static: false)
lib_cpp_args += '-DFMT_HEADER_ONLY'
endif
if get_option('disassembler')
lib_cpp_args += '-DDISASSEMBLER'
endif
subdir('io')
lib = library(
meson.project_name(),
lib_sources,
dependencies: [fmt],
include_directories: inc,
install: true,
cpp_args: lib_cpp_args

View File

@@ -35,6 +35,6 @@ inline Int
bit_range(Int num, size_t start, size_t end) {
// NOTE: we do not require -1 if it is a signed integral
Int left =
std::numeric_limits<Int>::digits - (std::is_unsigned<Int>::value) - end;
std::numeric_limits<Int>::digits - (!std::is_signed<Int>::value) - end;
return static_cast<Int>(num << left) >> (left + start);
}

View File

@@ -2,7 +2,7 @@
#include <array>
#include <bit>
#include <fmt/core.h>
#include <format>
#include <string>
// Why I wrote this myself? I do not know
@@ -110,7 +110,7 @@ sha256(std::array<uint8_t, N>& data) {
for (j = 0; j < 8; j++)
for (i = 0; i < 4; i++)
fmt::format_to(std::back_inserter(string),
std::format_to(std::back_inserter(string),
"{:02x}",
((h[j] >> (24 - i * 8)) & 0xFF));

View File

@@ -1,8 +1,7 @@
#pragma once
#include "util/loglevel.hh"
#include <fmt/ostream.h>
#include <iostream>
#include <print>
namespace logging {
namespace ansi {
@@ -14,25 +13,25 @@ static constexpr auto BOLD = "\033[1m";
static constexpr auto RESET = "\033[0m";
}
using fmt::print;
using std::print;
class Logger {
using LogLevel = matar::LogLevel;
public:
Logger(LogLevel level = LogLevel::Debug, FILE* stream = stderr)
Logger(LogLevel level = LogLevel::Debug, FILE* stream = stdout)
: level(0)
, stream(stream) {
set_level(level);
}
template<typename... Args>
void log(const fmt::format_string<Args...>& fmt, Args&&... args) {
fmt::println(stream, fmt, std::forward<Args>(args)...);
void log(const std::format_string<Args...>& fmt, Args&&... args) {
std::println(stream, fmt, std::forward<Args>(args)...);
}
template<typename... Args>
void debug(const fmt::format_string<Args...>& fmt, Args&&... args) {
void debug(const std::format_string<Args...>& fmt, Args&&... args) {
if (level & static_cast<uint8_t>(LogLevel::Debug)) {
print(stream, "{}{}[DEBUG] ", ansi::MAGENTA, ansi::BOLD);
log(fmt, std::forward<Args>(args)...);
@@ -41,7 +40,7 @@ class Logger {
}
template<typename... Args>
void info(const fmt::format_string<Args...>& fmt, Args&&... args) {
void info(const std::format_string<Args...>& fmt, Args&&... args) {
if (level & static_cast<uint8_t>(LogLevel::Info)) {
print(stream, "{}[INFO] ", ansi::WHITE);
log(fmt, std::forward<Args>(args)...);
@@ -50,7 +49,16 @@ class Logger {
}
template<typename... Args>
void warn(const fmt::format_string<Args...>& fmt, Args&&... args) {
void info_bold(const std::format_string<Args...>& fmt, Args&&... args) {
if (level & static_cast<uint8_t>(LogLevel::Info)) {
print(stream, "{}{}[INFO] ", ansi::WHITE, ansi::BOLD);
log(fmt, std::forward<Args>(args)...);
print(stream, ansi::RESET);
}
}
template<typename... Args>
void warn(const std::format_string<Args...>& fmt, Args&&... args) {
if (level & static_cast<uint8_t>(LogLevel::Warn)) {
print(stream, "{}[WARN] ", ansi::YELLOW);
log(fmt, std::forward<Args>(args)...);
@@ -59,7 +67,7 @@ class Logger {
}
template<typename... Args>
void error(const fmt::format_string<Args...>& fmt, Args&&... args) {
void error(const std::format_string<Args...>& fmt, Args&&... args) {
if (level & static_cast<uint8_t>(LogLevel::Error)) {
print(stream, "{}{}[ERROR] ", ansi::RED, ansi::BOLD);
log(fmt, std::forward<Args>(args)...);

View File

@@ -1,3 +1,8 @@
lib_sources += files(
'log.cc'
'log.cc',
'tcp_server.cc'
)
if get_option('gdb_debug')
lib_sources += files('tcp_server.cc')
endif

89
src/util/tcp_server.cc Normal file
View File

@@ -0,0 +1,89 @@
#include "tcp_server.hh"
#include <netinet/tcp.h>
#include <cstring>
#include <format>
#include <sys/ioctl.h>
#include <unistd.h>
namespace net {
TcpServer::TcpServer()
: server_fd(0)
, client_fd(0) {}
TcpServer::~TcpServer() {
close(server_fd);
close(client_fd);
}
bool
TcpServer::client_waiting() {
int count = 0;
ioctl(client_fd, FIONREAD, &count);
return static_cast<bool>(count);
}
void
TcpServer::run() {
socklen_t cli_addr_size = sizeof(client_addr);
client_fd = ::accept(
server_fd, reinterpret_cast<sockaddr*>(&client_addr), &cli_addr_size);
if (client_fd == -1)
throw std::runtime_error("accept failed");
}
void
TcpServer::start(uint port) {
int opts = 0;
server_fd = socket(PF_INET, SOCK_STREAM, 0);
if (server_fd == -1) {
throw std::runtime_error("creating socket failed");
}
int option = 1;
opts +=
setsockopt(server_fd, SOL_SOCKET, SO_REUSEADDR, &option, sizeof(option));
opts +=
setsockopt(server_fd, IPPROTO_TCP, TCP_NODELAY, &option, sizeof(option));
if (opts != 0) {
throw std::runtime_error("failed to set socket opts");
}
std::memset(&server_addr, 0, sizeof(server_addr));
server_addr.sin_family = PF_INET;
server_addr.sin_addr.s_addr = htonl(INADDR_ANY);
server_addr.sin_port = htons(port);
if (::bind(server_fd,
reinterpret_cast<sockaddr*>(&server_addr),
sizeof(server_addr)) == -1) {
throw std::runtime_error("binding socket failed");
}
if (::listen(server_fd, 1) == -1) {
throw std::runtime_error("listening failed");
}
}
void
TcpServer::send(std::string msg) {
if (::send(client_fd, msg.data(), msg.length(), 0) == -1) {
throw std::runtime_error(
std::format("failed to send message: {}\n", strerror(errno)));
}
}
std::string
TcpServer::receive(uint length) {
ssize_t num_bytes = recv(client_fd, msg, length, 0);
msg[num_bytes] = '\0';
if (num_bytes < 0) {
throw std::runtime_error(
std::format("failed to receive messages: {}\n", strerror(errno)));
}
return std::string(msg);
}
}

28
src/util/tcp_server.hh Normal file
View File

@@ -0,0 +1,28 @@
#pragma once
#include <netinet/in.h>
#include <string>
namespace net {
class TcpServer {
public:
TcpServer();
~TcpServer();
void run();
void start(uint port);
void send(std::string msg);
std::string receive(uint length);
std::string receive_all() { return receive(MAX_PACKET_SIZE); };
bool client_waiting();
private:
static constexpr uint MAX_PACKET_SIZE = 4096;
char msg[MAX_PACKET_SIZE];
int server_fd;
int client_fd;
sockaddr_in server_addr;
sockaddr_in client_addr;
};
}

View File

@@ -1,43 +1,128 @@
#include "bus.hh"
#include <catch2/catch_test_macros.hpp>
static constexpr auto TAG = "[bus]";
#define TAG "[bus]"
using namespace matar;
class BusFixture {
public:
BusFixture()
: bus(Memory(std::array<uint8_t, Memory::BIOS_SIZE>(),
: bus(Bus::init(std::array<uint8_t, Bus::BIOS_SIZE>(),
std::vector<uint8_t>(Header::HEADER_SIZE))) {}
protected:
Bus bus;
std::shared_ptr<Bus> bus;
};
TEST_CASE_METHOD(BusFixture, "Byte", TAG) {
CHECK(bus.read_byte(3349) == 0);
TEST_CASE("bios", TAG) {
std::array<uint8_t, Bus::BIOS_SIZE> bios = { 0 };
bus.write_byte(3349, 0xEC);
CHECK(bus.read_byte(3349) == 0xEC);
CHECK(bus.read_word(3349) == 0xEC);
CHECK(bus.read_halfword(3349) == 0xEC);
// populate bios
bios[0] = 0xAC;
bios[0x3FFF] = 0x48;
bios[0x2A56] = 0x10;
auto bus =
Bus::init(std::move(bios), std::vector<uint8_t>(Header::HEADER_SIZE));
CHECK(bus->read_byte(0) == 0xAC);
CHECK(bus->read_byte(0x3FFF) == 0x48);
CHECK(bus->read_byte(0x2A56) == 0x10);
}
TEST_CASE_METHOD(BusFixture, "Halfword", TAG) {
CHECK(bus.read_halfword(33750745) == 0);
TEST_CASE_METHOD(BusFixture, "board wram", TAG) {
bus->write_byte(0x2000000, 0xAC);
CHECK(bus->read_byte(0x2000000) == 0xAC);
bus.write_halfword(33750745, 0x1A4A);
CHECK(bus.read_halfword(33750745) == 0x1A4A);
CHECK(bus.read_word(33750745) == 0x1A4A);
CHECK(bus.read_byte(33750745) == 0x4A);
bus->write_byte(0x203FFFF, 0x48);
CHECK(bus->read_byte(0x203FFFF) == 0x48);
bus->write_byte(0x2022A56, 0x10);
CHECK(bus->read_byte(0x2022A56) == 0x10);
}
TEST_CASE_METHOD(BusFixture, "Word", TAG) {
CHECK(bus.read_word(100724276) == 0);
TEST_CASE_METHOD(BusFixture, "chip wram", TAG) {
bus->write_byte(0x3000000, 0xAC);
CHECK(bus->read_byte(0x3000000) == 0xAC);
bus.write_word(100724276, 0x3ACC491D);
CHECK(bus.read_word(100724276) == 0x3ACC491D);
CHECK(bus.read_halfword(100724276) == 0x491D);
CHECK(bus.read_byte(100724276) == 0x1D);
bus->write_byte(0x3007FFF, 0x48);
CHECK(bus->read_byte(0x3007FFF) == 0x48);
bus->write_byte(0x3002A56, 0x10);
CHECK(bus->read_byte(0x3002A56) == 0x10);
}
TEST_CASE_METHOD(BusFixture, "palette ram", TAG) {
bus->write_byte(0x5000000, 0xAC);
CHECK(bus->read_byte(0x5000000) == 0xAC);
bus->write_byte(0x50003FF, 0x48);
CHECK(bus->read_byte(0x50003FF) == 0x48);
bus->write_byte(0x5000156, 0x10);
CHECK(bus->read_byte(0x5000156) == 0x10);
}
TEST_CASE_METHOD(BusFixture, "video ram", TAG) {
bus->write_byte(0x6000000, 0xAC);
CHECK(bus->read_byte(0x6000000) == 0xAC);
bus->write_byte(0x6017FFF, 0x48);
CHECK(bus->read_byte(0x6017FFF) == 0x48);
bus->write_byte(0x6012A56, 0x10);
CHECK(bus->read_byte(0x6012A56) == 0x10);
}
TEST_CASE_METHOD(BusFixture, "oam obj ram", TAG) {
bus->write_byte(0x7000000, 0xAC);
CHECK(bus->read_byte(0x7000000) == 0xAC);
bus->write_byte(0x70003FF, 0x48);
CHECK(bus->read_byte(0x70003FF) == 0x48);
bus->write_byte(0x7000156, 0x10);
CHECK(bus->read_byte(0x7000156) == 0x10);
}
TEST_CASE("rom", TAG) {
std::vector<uint8_t> rom(32 * 1024 * 1024, 0);
// populate rom
rom[0] = 0xAC;
rom[0x1FFFFFF] = 0x48;
rom[0x0EF0256] = 0x10;
// 32 megabyte ROM
auto bus = Bus::init(std::array<uint8_t, Bus::BIOS_SIZE>(), std::move(rom));
SECTION("ROM1") {
CHECK(bus->read_byte(0x8000000) == 0xAC);
CHECK(bus->read_byte(0x9FFFFFF) == 0x48);
CHECK(bus->read_byte(0x8EF0256) == 0x10);
}
SECTION("ROM2") {
CHECK(bus->read_byte(0xA000000) == 0xAC);
CHECK(bus->read_byte(0xBFFFFFF) == 0x48);
CHECK(bus->read_byte(0xAEF0256) == 0x10);
}
SECTION("ROM3") {
CHECK(bus->read_byte(0xC000000) == 0xAC);
CHECK(bus->read_byte(0xDFFFFFF) == 0x48);
CHECK(bus->read_byte(0xCEF0256) == 0x10);
}
}
TEST_CASE_METHOD(BusFixture, "internal cycle", TAG) {
uint32_t cycles = bus->get_cycles();
bus->internal_cycle();
bus->internal_cycle();
CHECK(bus->get_cycles() == cycles + 2);
}
#undef TAG

File diff suppressed because it is too large Load Diff

View File

@@ -1,7 +1,7 @@
#include "cpu/arm/instruction.hh"
#include <catch2/catch_test_macros.hpp>
static constexpr auto TAG = "[arm][disassembly]";
#define TAG "[arm][disassembly]"
using namespace matar;
using namespace arm;
@@ -31,15 +31,16 @@ TEST_CASE("Branch", TAG) {
// last 24 bits = 8748995
// (8748995 << 8) >> 6 sign extended = 0xFE15FF0C
// Also +8 since PC is two instructions ahead
CHECK(b->offset == 0xFE15FF14);
CHECK(b->offset == static_cast<int32_t>(0xfe15ff0c));
CHECK(b->link == true);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "BL 0xFE15FF14");
// take prefetch into account
// offset + 8 = 0xfe15ff0c + 8 = -0x1ea00e4 + 8
CHECK(instruction.disassemble() == "BL -0x1ea00ec");
b->link = false;
CHECK(instruction.disassemble() == "B 0xFE15FF14");
CHECK(instruction.disassemble() == "B -0x1ea00ec");
#endif
}
@@ -505,3 +506,5 @@ TEST_CASE("Software Interrupt", TAG) {
CHECK(instruction.disassemble() == "SWIEQ");
#endif
}
#undef TAG

99
tests/cpu/cpu-fixture.cc Normal file
View File

@@ -0,0 +1,99 @@
#include "cpu-fixture.hh"
Psr
CpuFixture::psr(bool spsr) {
uint32_t pc = getr(15);
Psr psr(0);
Cpu tmp = cpu;
arm::Instruction instruction(
Condition::AL,
arm::PsrTransfer{ .operand = 0,
.spsr = spsr,
.type = arm::PsrTransfer::Type::Mrs,
.imm = false });
tmp.exec(instruction);
psr.set_all(getr_(0, tmp));
// reset pc
setr(15, pc);
return psr;
}
void
CpuFixture::set_psr(Psr psr, bool spsr) {
uint32_t pc = getr(15);
uint32_t old = getr(0);
setr(0, psr.raw());
arm::Instruction instruction(
Condition::AL,
arm::PsrTransfer{ .operand = 0,
.spsr = spsr,
.type = arm::PsrTransfer::Type::Msr,
.imm = false });
cpu.exec(instruction);
setr(0, old);
// reset PC
setr(15, pc);
}
// We need these workarounds to just use the public API and not private
// fields. Assuming that these work correctly is necessary. Besides, all that
// matters is that the public API is correct.
uint32_t
CpuFixture::getr_(uint8_t r, Cpu tmp) {
uint32_t addr = 0x02000000;
uint32_t word = bus->read_word(addr);
uint32_t ret = 0xFFFFFFFF;
uint8_t base = r ? 0 : 1;
// set R0/R1 = addr
arm::Instruction zero(
Condition::AL,
arm::DataProcessing{ .operand = addr,
.rd = base,
.rn = 0,
.set = false,
.opcode = arm::DataProcessing::OpCode::MOV });
// get register
arm::Instruction get(
Condition::AL,
arm::SingleDataTransfer{ .offset = static_cast<uint16_t>(0),
.rd = r,
.rn = base,
.load = false,
.write = false,
.byte = false,
.up = true,
.pre = true });
tmp.exec(zero);
tmp.exec(get);
ret = bus->read_word(addr);
bus->write_word(addr, word);
return ret - (r == 15 ? 4 : 0); // +4 for rd = 15 in str
}
void
CpuFixture::setr_(uint8_t r, uint32_t value, Cpu& cpu) {
// set register
arm::Instruction set(
Condition::AL,
arm::DataProcessing{
.operand = (r == 15 ? value - 8 : value), // account for pipeline flush
.rd = r,
.rn = 0,
.set = false,
.opcode = arm::DataProcessing::OpCode::MOV });
cpu.exec(set);
}

71
tests/cpu/cpu-fixture.hh Normal file
View File

@@ -0,0 +1,71 @@
#include "cpu/cpu.hh"
using namespace matar;
class CpuFixture {
public:
CpuFixture()
: bus(Bus::init(std::array<uint8_t, Bus::BIOS_SIZE>(),
std::vector<uint8_t>(Header::HEADER_SIZE)))
, cpu(bus) {}
protected:
void exec(arm::InstructionData data, Condition condition = Condition::AL) {
// hack to account for one fetch cycle
bus->internal_cycle();
arm::Instruction instruction(condition, data);
cpu.exec(instruction);
}
void exec(thumb::InstructionData data) {
// hack to account for one fetch cycle
bus->internal_cycle();
thumb::Instruction instruction(data);
cpu.exec(instruction);
}
void reset(uint32_t value = 0) { setr(15, value + 8); }
uint32_t getr(uint8_t r) {
uint32_t pc = 0;
if (r != 15)
pc = getr_(15, cpu);
uint32_t ret = getr_(r, cpu);
if (r == 15)
pc = ret;
// undo PC advance
setr_(15, pc, cpu);
return ret;
}
void setr(uint8_t r, uint32_t value) {
uint32_t pc = getr_(15, cpu);
setr_(r, value, cpu);
// undo PC advance when r != 15
// when r is 15, setr_ takes account of pipeline flush
if (r != 15)
setr_(15, pc, cpu);
}
Psr psr(bool spsr = false);
void set_psr(Psr psr, bool spsr = false);
std::shared_ptr<Bus> bus;
Cpu cpu;
private:
// hack to get a register
uint32_t getr_(uint8_t r, Cpu tmp);
// hack to set a register
void setr_(uint8_t r, uint32_t value, Cpu& cpu);
};

View File

@@ -1,2 +1,6 @@
tests_sources += files(
'cpu-fixture.cc'
)
subdir('arm')
subdir('thumb')

1139
tests/cpu/thumb/exec.cc Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,7 +1,7 @@
#include "cpu/thumb/instruction.hh"
#include <catch2/catch_test_macros.hpp>
static constexpr auto TAG = "[thumb][disassembly]";
#define TAG "[thumb][disassembly]"
using namespace matar;
using namespace thumb;
@@ -178,11 +178,12 @@ TEST_CASE("PC Relative Load", TAG) {
PcRelativeLoad* ldr = nullptr;
REQUIRE((ldr = std::get_if<PcRelativeLoad>(&instruction.data)));
CHECK(ldr->word == 230);
// 230 << 2
CHECK(ldr->word == 920);
CHECK(ldr->rd == 2);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "LDR R2,[PC,#230]");
CHECK(instruction.disassemble() == "LDR R2,[PC,#920]");
#endif
}
@@ -247,21 +248,32 @@ TEST_CASE("Load/Store with Immediate Offset", TAG) {
REQUIRE((ldr = std::get_if<LoadStoreImmediateOffset>(&instruction.data)));
CHECK(ldr->rd == 5);
CHECK(ldr->rb == 3);
CHECK(ldr->offset == 22);
// 22 << 4 when byte == false
CHECK(ldr->offset == 88);
CHECK(ldr->byte == false);
CHECK(ldr->load == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "STR R5,[R3,#22]");
CHECK(instruction.disassemble() == "STR R5,[R3,#88]");
ldr->byte = true;
ldr->load = true;
CHECK(instruction.disassemble() == "LDR R5,[R3,#88]");
#endif
// byte
raw = 0b0111010110011101;
instruction = Instruction(raw);
INFO(instruction.data.index());
REQUIRE((ldr = std::get_if<LoadStoreImmediateOffset>(&instruction.data)));
CHECK(ldr->byte == true);
CHECK(ldr->offset == 22);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "STRB R5,[R3,#22]");
ldr->load = true;
CHECK(instruction.disassemble() == "LDRB R5,[R3,#22]");
ldr->byte = false;
CHECK(instruction.disassemble() == "LDR R5,[R3,#22]");
#endif
}
@@ -273,14 +285,15 @@ TEST_CASE("Load/Store Halfword", TAG) {
REQUIRE((ldr = std::get_if<LoadStoreHalfword>(&instruction.data)));
CHECK(ldr->rd == 5);
CHECK(ldr->rb == 3);
CHECK(ldr->offset == 26);
// 26 << 1
CHECK(ldr->offset == 52);
CHECK(ldr->load == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "STRH R5,[R3,#26]");
CHECK(instruction.disassemble() == "STRH R5,[R3,#52]");
ldr->load = true;
CHECK(instruction.disassemble() == "LDRH R5,[R3,#26]");
CHECK(instruction.disassemble() == "LDRH R5,[R3,#52]");
#endif
}
@@ -291,14 +304,15 @@ TEST_CASE("SP-Relative Load/Store", TAG) {
REQUIRE((ldr = std::get_if<SpRelativeLoad>(&instruction.data)));
CHECK(ldr->rd == 4);
CHECK(ldr->word == 157);
// 157 << 2
CHECK(ldr->word == 628);
CHECK(ldr->load == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "STR R4,[SP,#157]");
CHECK(instruction.disassemble() == "STR R4,[SP,#628]");
ldr->load = true;
CHECK(instruction.disassemble() == "LDR R4,[SP,#157]");
CHECK(instruction.disassemble() == "LDR R4,[SP,#628]");
#endif
}
@@ -308,15 +322,16 @@ TEST_CASE("Load Adress", TAG) {
LoadAddress* add = nullptr;
REQUIRE((add = std::get_if<LoadAddress>(&instruction.data)));
CHECK(add->word == 143);
// 143 << 2
CHECK(add->word == 572);
CHECK(add->rd == 1);
CHECK(add->sp == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "ADD R1,PC,#143");
CHECK(instruction.disassemble() == "ADD R1,PC,#572");
add->sp = true;
CHECK(instruction.disassemble() == "ADD R1,SP,#143");
CHECK(instruction.disassemble() == "ADD R1,SP,#572");
#endif
}
@@ -326,14 +341,21 @@ TEST_CASE("Add Offset to Stack Pointer", TAG) {
AddOffsetStackPointer* add = nullptr;
REQUIRE((add = std::get_if<AddOffsetStackPointer>(&instruction.data)));
CHECK(add->word == 37);
CHECK(add->sign == false);
// 37 << 2
CHECK(add->word == 148);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "ADD SP,#+37");
CHECK(instruction.disassemble() == "ADD SP,#148");
#endif
add->sign = true;
CHECK(instruction.disassemble() == "ADD SP,#-37");
raw = 0b1011000010100101;
instruction = Instruction(raw);
REQUIRE((add = std::get_if<AddOffsetStackPointer>(&instruction.data)));
CHECK(add->word == -148);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "ADD SP,#-148");
#endif
}
@@ -380,17 +402,19 @@ TEST_CASE("Multiple Load/Store", TAG) {
}
TEST_CASE("Conditional Branch", TAG) {
uint16_t raw = 0b1101100101110100;
uint16_t raw = 0b1101100110110100;
Instruction instruction(raw);
ConditionalBranch* b = nullptr;
REQUIRE((b = std::get_if<ConditionalBranch>(&instruction.data)));
// 116 << 2
CHECK(b->offset == 232);
// (-76 << 1)
CHECK(b->offset == -152);
CHECK(b->condition == Condition::LS);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "BLS 232");
// take prefetch into account
// offset + 4 = -152 + 4
CHECK(instruction.disassemble() == "BLS #-148");
#endif
}
@@ -402,7 +426,7 @@ TEST_CASE("SoftwareInterrupt") {
REQUIRE((swi = std::get_if<SoftwareInterrupt>(&instruction.data)));
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "SWI");
CHECK(instruction.disassemble() == "SWI 51");
#endif
}
@@ -412,28 +436,32 @@ TEST_CASE("Unconditional Branch") {
UnconditionalBranch* b = nullptr;
REQUIRE((b = std::get_if<UnconditionalBranch>(&instruction.data)));
// 1843 << 2
REQUIRE(b->offset == 3686);
// (2147483443 << 1)
REQUIRE(b->offset == -410);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "B 3686");
// take prefetch into account
// offset + 4 = -410 + 4
CHECK(instruction.disassemble() == "B #-406");
#endif
}
TEST_CASE("Long Branch with link") {
uint16_t raw = 0b1111010011101100;
uint16_t raw = 0b1111110011101100;
Instruction instruction(raw);
LongBranchWithLink* bl = nullptr;
REQUIRE((bl = std::get_if<LongBranchWithLink>(&instruction.data)));
// 1260 << 1
CHECK(bl->offset == 2520);
CHECK(bl->high == false);
CHECK(bl->offset == 1260);
CHECK(bl->low == true);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "BL 2520");
CHECK(instruction.disassemble() == "BL #1260");
bl->high = true;
CHECK(instruction.disassemble() == "BLH 2520");
bl->low = false;
CHECK(instruction.disassemble() == "BLH #1260");
#endif
}
#undef TAG

View File

@@ -1,3 +1,4 @@
tests_sources += files(
'instruction.cc'
'instruction.cc',
'exec.cc'
)

View File

@@ -1,121 +0,0 @@
#include "memory.hh"
#include <catch2/catch_test_macros.hpp>
static constexpr auto TAG = "[memory]";
using namespace matar;
class MemFixture {
public:
MemFixture()
: memory(std::array<uint8_t, Memory::BIOS_SIZE>(),
std::vector<uint8_t>(Header::HEADER_SIZE)) {}
protected:
Memory memory;
};
TEST_CASE_METHOD(MemFixture, "bios", TAG) {
memory.write(0, 0xAC);
CHECK(memory.read(0) == 0xAC);
memory.write(0x3FFF, 0x48);
CHECK(memory.read(0x3FFF) == 0x48);
memory.write(0x2A56, 0x10);
CHECK(memory.read(0x2A56) == 0x10);
}
TEST_CASE_METHOD(MemFixture, "board wram", TAG) {
memory.write(0x2000000, 0xAC);
CHECK(memory.read(0x2000000) == 0xAC);
memory.write(0x203FFFF, 0x48);
CHECK(memory.read(0x203FFFF) == 0x48);
memory.write(0x2022A56, 0x10);
CHECK(memory.read(0x2022A56) == 0x10);
}
TEST_CASE_METHOD(MemFixture, "chip wram", TAG) {
memory.write(0x3000000, 0xAC);
CHECK(memory.read(0x3000000) == 0xAC);
memory.write(0x3007FFF, 0x48);
CHECK(memory.read(0x3007FFF) == 0x48);
memory.write(0x3002A56, 0x10);
CHECK(memory.read(0x3002A56) == 0x10);
}
TEST_CASE_METHOD(MemFixture, "palette ram", TAG) {
memory.write(0x5000000, 0xAC);
CHECK(memory.read(0x5000000) == 0xAC);
memory.write(0x50003FF, 0x48);
CHECK(memory.read(0x50003FF) == 0x48);
memory.write(0x5000156, 0x10);
CHECK(memory.read(0x5000156) == 0x10);
}
TEST_CASE_METHOD(MemFixture, "video ram", TAG) {
memory.write(0x6000000, 0xAC);
CHECK(memory.read(0x6000000) == 0xAC);
memory.write(0x6017FFF, 0x48);
CHECK(memory.read(0x6017FFF) == 0x48);
memory.write(0x6012A56, 0x10);
CHECK(memory.read(0x6012A56) == 0x10);
}
TEST_CASE_METHOD(MemFixture, "oam obj ram", TAG) {
memory.write(0x7000000, 0xAC);
CHECK(memory.read(0x7000000) == 0xAC);
memory.write(0x70003FF, 0x48);
CHECK(memory.read(0x70003FF) == 0x48);
memory.write(0x7000156, 0x10);
CHECK(memory.read(0x7000156) == 0x10);
}
TEST_CASE("rom", TAG) {
// 32 megabyte ROM
Memory memory(std::array<uint8_t, Memory::BIOS_SIZE>(),
std::vector<uint8_t>(32 * 1024 * 1024));
SECTION("ROM1") {
memory.write(0x8000000, 0xAC);
CHECK(memory.read(0x8000000) == 0xAC);
memory.write(0x9FFFFFF, 0x48);
CHECK(memory.read(0x9FFFFFF) == 0x48);
memory.write(0x8ef0256, 0x10);
CHECK(memory.read(0x8ef0256) == 0x10);
}
SECTION("ROM2") {
memory.write(0xA000000, 0xAC);
CHECK(memory.read(0xA000000) == 0xAC);
memory.write(0xBFFFFFF, 0x48);
CHECK(memory.read(0xBFFFFFF) == 0x48);
memory.write(0xAEF0256, 0x10);
CHECK(memory.read(0xAEF0256) == 0x10);
}
SECTION("ROM3") {
memory.write(0xC000000, 0xAC);
CHECK(memory.read(0xC000000) == 0xAC);
memory.write(0xDFFFFFF, 0x48);
CHECK(memory.read(0xDFFFFFF) == 0x48);
memory.write(0xCEF0256, 0x10);
CHECK(memory.read(0xCEF0256) == 0x10);
}
}

View File

@@ -6,19 +6,14 @@ src = include_directories('../src')
tests_sources = files(
'main.cc',
'bus.cc',
'memory.cc'
'bus.cc'
)
tests_cpp_args = lib_cpp_args
subdir('cpu')
subdir('util')
tests_cpp_args = []
if get_option('disassembler')
tests_cpp_args += '-DDISASSEMBLER'
endif
catch2 = dependency('catch2', version: '>=3.4.0', static: true)
catch2_tests = executable(
'matar_tests',

View File

@@ -1,7 +1,7 @@
#include "util/bits.hh"
#include <catch2/catch_test_macros.hpp>
static constexpr auto TAG = "[util][bits]";
#define TAG "[util][bits]"
TEST_CASE("8 bits", TAG) {
uint8_t num = 45;
@@ -104,3 +104,5 @@ TEST_CASE("64 bits", TAG) {
// 0b011010001
CHECK(bit_range(num, 39, 47) == 209);
}
#undef TAG

View File

@@ -1,7 +1,7 @@
#include "util/crypto.hh"
#include <catch2/catch_test_macros.hpp>
static constexpr auto TAG = "[util][crypto]";
#define TAG "[util][crypto]"
TEST_CASE("sha256 matar", TAG) {
std::array<uint8_t, 5> data = { 'm', 'a', 't', 'a', 'r' };
@@ -19,3 +19,5 @@ TEST_CASE("sha256 forgis", TAG) {
CHECK(crypto::sha256(data) ==
"cfddca2ce2673f355518cbe2df2a8522693c54723a469e8b36a4f68b90d2b759");
}
#undef TAG