io: add display unit

added rendering for modes 3,4,5
also changed how memory structuring works

Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
This commit is contained in:
2024-06-22 04:16:12 +05:30
parent 54fc472399
commit 58a503d2c4
13 changed files with 652 additions and 275 deletions

View File

@@ -2,9 +2,8 @@
#include "header.hh" #include "header.hh"
#include "io/io.hh" #include "io/io.hh"
#include "memory.hh"
#include <memory> #include <memory>
#include <optional>
#include <span>
#include <vector> #include <vector>
namespace matar { namespace matar {
@@ -85,7 +84,7 @@ class Bus {
} }
template<typename T> template<typename T>
std::optional<T> read(uint32_t address) const; T read(uint32_t address) const;
template<typename T> template<typename T>
void write(uint32_t address, T value); void write(uint32_t address, T value);
@@ -101,45 +100,11 @@ class Bus {
static constexpr decltype(cycle_map) init_cycle_count(); static constexpr decltype(cycle_map) init_cycle_count();
std::unique_ptr<IoDevices> io; std::unique_ptr<IoDevices> io;
Memory<BIOS_SIZE> bios = {};
Memory<0x40000> board_wram = {};
Memory<0x80000> chip_wram = {};
Memory<> rom;
#define MEMORY_REGION(name, start) \
static constexpr uint32_t name##_START = start; \
static constexpr uint8_t name##_REGION = start >> 24 & 0xF;
#define DECL_MEMORY(name, ident, start, end) \
MEMORY_REGION(name, start) \
std::array<uint8_t, end - start + 1> ident = {};
MEMORY_REGION(BIOS, 0x00000000)
std::array<uint8_t, BIOS_SIZE> bios = {};
// board working RAM
DECL_MEMORY(BOARD_WRAM, board_wram, 0x02000000, 0x0203FFFF)
// chip working RAM
DECL_MEMORY(CHIP_WRAM, chip_wram, 0x03000000, 0x03007FFF)
// palette RAM
DECL_MEMORY(PALETTE_RAM, palette_ram, 0x05000000, 0x050003FF)
// video RAM
DECL_MEMORY(VRAM, vram, 0x06000000, 0x06017FFF)
// OAM OBJ attributes
DECL_MEMORY(OAM_OBJ_ATTR, oam_obj_attr, 0x07000000, 0x070003FF)
#undef DECL_MEMORY
MEMORY_REGION(ROM_0, 0x08000000)
MEMORY_REGION(ROM_1, 0x0A000000)
MEMORY_REGION(ROM_2, 0x0C000000)
MEMORY_REGION(IO, 0x04000000)
static constexpr uint32_t IO_END = 0x040003FE;
#undef MEMORY_REGION
std::vector<uint8_t> rom;
Header header; Header header;
void parse_header(); void parse_header();
}; };

View File

@@ -0,0 +1,159 @@
#include "memory.hh"
#include <array>
#include <bit>
#include <cstdint>
#include <sys/types.h>
// NOLINTBEGIN(cppcoreguidelines-avoid-c-arrays)
namespace matar {
namespace display {
static constexpr int LCD_WIDTH = 240;
// there are 5 modes
static constexpr uint N_MODES = 6;
// there are 4 backgrounds that can be layered depending on mode
// there is also 1 object layer
static constexpr uint N_BACKGROUNDS = 4;
static constexpr uint32_t PRAM_START = 0x5000000;
static constexpr uint32_t VRAM_START = 0x6000000;
static constexpr uint32_t OAM_START = 0x7000000;
template<typename T, typename = std::enable_if_t<std::is_arithmetic_v<T>>>
struct Point {
T x;
T y;
};
struct Color {
public:
Color(uint16_t raw)
: red(raw & 0b11111)
, green(raw >> 5 & 0b11111)
, blue(raw >> 10 & 0b11111) {}
uint16_t read() const {
return (red & 0b11111) | ((green << 5) & 0b11111) |
((blue << 10) & 0b11111);
}
private:
uint8_t red;
uint8_t green;
uint8_t blue;
};
struct DisplayControl {
struct {
uint8_t mode : 3;
int : 1; // unused
bool frame_select_1 : 1;
bool hblank_free_interval : 1;
bool obj_character_vram_mapping : 1;
bool forced_blank : 1;
bool screen_display_0 : 1;
bool screen_display_1 : 1;
bool screen_display_2 : 1;
bool screen_display_3 : 1;
bool screen_display_obj : 1;
bool window_display_0 : 1;
bool window_display_1 : 1;
bool obj_window_display : 1;
} value;
uint16_t read() const { return std::bit_cast<uint16_t>(value); };
void write(uint16_t raw) { value = std::bit_cast<decltype(value)>(raw); };
};
struct DisplayStatus {
struct {
bool vblank_flag : 1;
bool hblank_flag : 1;
bool vcounter_flag : 1;
bool vblank_irq_enable : 1;
bool hblank_irq_enable : 1;
bool vcounter_irq_enable : 1;
int : 2; // unused
uint8_t vcount_setting : 8;
} value;
uint16_t read() const { return std::bit_cast<uint16_t>(value); };
void write(uint16_t raw) { value = std::bit_cast<decltype(value)>(raw); };
};
struct BackgroundControl {
struct {
uint8_t priority : 2;
uint8_t character_base_block : 2;
int : 2; // unused
bool mosaic : 1;
bool colors256 : 1;
uint8_t screen_base_block : 5;
bool bg_2_3_wraparound : 1;
uint8_t screen_size : 2;
} value;
uint16_t read() const { return std::bit_cast<uint16_t>(value); };
void write(uint16_t raw) { value = std::bit_cast<decltype(value)>(raw); };
};
struct RotationScaling {
// these are all 16 bit signed "fixed point" floats
// shifted by 8
int16_t a;
int16_t b;
int16_t c;
int16_t d;
// following points have 28 bit signed "fixed point" floats as coords
// shifted by 8
Point<int32_t> ref;
private:
Point<int32_t> internal [[maybe_unused]]
;
};
struct Display {
public:
using u16 = uint16_t;
Memory<0x400> pram;
Memory<0x18000> vram;
Memory<0x400> oam;
DisplayControl lcd_control;
DisplayStatus general_lcd_status;
u16 vertical_counter;
BackgroundControl bg_control[4];
Point<u16> bg0_offset;
Point<u16> bg1_offset;
Point<u16> bg2_offset;
Point<u16> bg3_offset;
RotationScaling bg2_rot_scale;
RotationScaling bg3_rot_scale;
u16 win0_horizontal_dimensions;
u16 win1_horizontal_dimensions;
u16 win0_vertical_dimensions;
u16 win1_vertical_dimensions;
u16 inside_win_0_1;
u16 outside_win;
u16 mosaic_size;
u16 color_special_effects_selection;
u16 alpha_blending_coefficients;
u16 brightness_coefficient;
private:
// 1 color is 16 bits in ARGB555 format
std::array<std::array<uint16_t, LCD_WIDTH>, N_BACKGROUNDS> scanline_buffers;
template<int MODE,
typename = std::enable_if_t<MODE == 3 || MODE == 4 || MODE == 5>>
void render_bitmap_mode();
template<int LAYER, typename = std::enable_if_t<LAYER >= 0 && LAYER <= 3>>
void render_text_layer();
};
}
}
// NOLINTEND(cppcoreguidelines-avoid-c-arrays)

39
include/io/dma.hh Normal file
View File

@@ -0,0 +1,39 @@
#include <bit>
#include <cstdint>
namespace matar {
// NOLINTBEGIN(cppcoreguidelines-avoid-c-arrays)
struct DmaControl {
struct {
int : 4; // this is supposed to be 5 bits, however, to align the struct
// to 16 bits, we will adjust for the first LSB in the
// read/write
uint8_t dst_adjustment : 2;
uint8_t src_adjustment : 2;
bool repeat : 1;
bool transfer_32 : 1;
int : 1;
uint8_t start_timing : 2;
bool irq_enable : 1;
bool enable : 1;
} value;
uint16_t read() const { return std::bit_cast<uint16_t>(value) << 1; };
void write(uint16_t raw) {
value = std::bit_cast<decltype(value)>(static_cast<uint16_t>(raw >> 1));
};
};
struct Dma {
using u16 = uint16_t;
struct {
u16 source[2];
u16 destination[2];
u16 word_count;
DmaControl control;
} channels[4];
};
// NOLINTEND(cppcoreguidelines-avoid-c-arrays)
}

View File

@@ -1,11 +1,14 @@
#pragma once #pragma once
#include "lcd.hh"
#include "display/display.hh"
#include "dma.hh"
#include "sound.hh" #include "sound.hh"
#include <cstdint> #include <cstdint>
#include <memory> #include <memory>
namespace matar { namespace matar {
class Bus; class Bus; // forward declaration
class IoDevices { class IoDevices {
public: public:
IoDevices(std::weak_ptr<Bus>); IoDevices(std::weak_ptr<Bus>);
@@ -30,9 +33,11 @@ class IoDevices {
bool low_power_mode; bool low_power_mode;
} system = {}; } system = {};
struct lcd lcd = {}; display::Display display = {};
struct sound sound = {}; Sound sound = {};
Dma dma = {};
std::weak_ptr<Bus> bus; std::weak_ptr<Bus> bus;
friend class Bus;
}; };
} }

View File

@@ -1,84 +0,0 @@
#include <cstdint>
// NOLINTBEGIN(cppcoreguidelines-avoid-c-arrays)
/*
4000000h 2 R/W DISPCNT LCD Control
4000002h 2 R/W - Undocumented - Green Swap
4000004h 2 R/W DISPSTAT General LCD Status (STAT,LYC)
4000006h 2 R VCOUNT Vertical Counter (LY)
4000008h 2 R/W BG0CNT BG0 Control
400000Ah 2 R/W BG1CNT BG1 Control
400000Ch 2 R/W BG2CNT BG2 Control
400000Eh 2 R/W BG3CNT BG3 Control
4000010h 2 W BG0HOFS BG0 X-Offset
4000012h 2 W BG0VOFS BG0 Y-Offset
4000014h 2 W BG1HOFS BG1 X-Offset
4000016h 2 W BG1VOFS BG1 Y-Offset
4000018h 2 W BG2HOFS BG2 X-Offset
400001Ah 2 W BG2VOFS BG2 Y-Offset
400001Ch 2 W BG3HOFS BG3 X-Offset
400001Eh 2 W BG3VOFS BG3 Y-Offset
4000020h 2 W BG2PA BG2 Rotation/Scaling Parameter A (dx)
4000022h 2 W BG2PB BG2 Rotation/Scaling Parameter B (dmx)
4000024h 2 W BG2PC BG2 Rotation/Scaling Parameter C (dy)
4000026h 2 W BG2PD BG2 Rotation/Scaling Parameter D (dmy)
4000028h 4 W BG2X BG2 Reference Point X-Coordinate
400002Ch 4 W BG2Y BG2 Reference Point Y-Coordinate
4000030h 2 W BG3PA BG3 Rotation/Scaling Parameter A (dx)
4000032h 2 W BG3PB BG3 Rotation/Scaling Parameter B (dmx)
4000034h 2 W BG3PC BG3 Rotation/Scaling Parameter C (dy)
4000036h 2 W BG3PD BG3 Rotation/Scaling Parameter D (dmy)
4000038h 4 W BG3X BG3 Reference Point X-Coordinate
400003Ch 4 W BG3Y BG3 Reference Point Y-Coordinate
4000040h 2 W WIN0H Window 0 Horizontal Dimensions
4000042h 2 W WIN1H Window 1 Horizontal Dimensions
4000044h 2 W WIN0V Window 0 Vertical Dimensions
4000046h 2 W WIN1V Window 1 Vertical Dimensions
4000048h 2 R/W WININ Inside of Window 0 and 1
400004Ah 2 R/W WINOUT Inside of OBJ Window & Outside of Windows
400004Ch 2 W MOSAIC Mosaic Size
400004Eh - - Not used
4000050h 2 R/W BLDCNT Color Special Effects Selection
4000052h 2 R/W BLDALPHA Alpha Blending Coefficients
4000054h 2 W BLDY Brightness (Fade-In/Out) Coefficient
4000056h - - Not used
*/
struct lcd {
using u16 = uint16_t;
u16 lcd_control;
u16 general_lcd_status;
u16 vertical_counter;
u16 bg0_control;
u16 bg1_control;
u16 bg2_control;
u16 bg3_control;
u16 bg0_x_offset;
u16 bg0_y_offset;
u16 bg1_x_offset;
u16 bg1_y_offset;
u16 bg2_x_offset;
u16 bg2_y_offset;
u16 bg3_x_offset;
u16 bg3_y_offset;
u16 bg2_rot_scaling_parameters[4];
u16 bg2_reference_x[2];
u16 bg2_reference_y[2];
u16 bg3_rot_scaling_parameters[4];
u16 bg3_reference_x[2];
u16 bg3_reference_y[2];
u16 win0_horizontal_dimensions;
u16 win1_horizontal_dimensions;
u16 win0_vertical_dimensions;
u16 win1_vertical_dimensions;
u16 inside_win_0_1;
u16 outside_win;
u16 mosaic_size;
u16 color_special_effects_selection;
u16 alpha_blending_coefficients;
u16 brightness_coefficient;
};
// NOLINTEND(cppcoreguidelines-avoid-c-arrays)

View File

@@ -30,7 +30,7 @@
40000A4h 4 W FIFO_B Channel B FIFO, Data 0-3 40000A4h 4 W FIFO_B Channel B FIFO, Data 0-3
*/ */
struct sound { struct Sound {
using u16 = uint16_t; using u16 = uint16_t;
// channel 1 // channel 1

60
include/memory.hh Normal file
View File

@@ -0,0 +1,60 @@
#pragma once
#include <array>
#include <cstddef>
#include <cstdint>
#include <vector>
// ill use [] instead of at because i dont want if (...) throw conditions for
// all accesses to improve performance (?)
// we are also not gonna perform bound checks, as i expect the user to handle
// those
namespace matar {
template<std::size_t N = 0>
class Memory {
// we can use either a vector or an array with this
using Container = std::
conditional_t<(N != 0), std::array<uint8_t, N>, std::vector<uint8_t>>;
public:
Memory() = default;
Memory(auto x)
: memory(x) {}
uint8_t read_byte(std::size_t idx) const { return memory[idx]; }
void write_byte(std::size_t idx, uint8_t byte) { memory[idx] = byte; }
uint16_t read_halfword(std::size_t idx) const {
return memory[idx] | memory[idx + 1] << 8;
}
void write_halfword(std::size_t idx, uint16_t halfword) {
memory[idx] = halfword & 0xFF;
memory[idx + 1] = halfword >> 8 & 0xFF;
}
uint32_t read_word(std::size_t idx) const {
return memory[idx] | memory[idx + 1] << 8 | memory[idx + 2] << 16 |
memory[idx + 3] << 24;
}
void write_word(std::size_t idx, uint32_t word) {
memory[idx] = word & 0xFF;
memory[idx + 1] = word >> 8 & 0xFF;
memory[idx + 2] = word >> 16 & 0xFF;
memory[idx + 3] = word >> 24 & 0xFF;
}
uint8_t& operator[](std::size_t idx) { return memory.at(idx); }
Container& data() { return memory; }
std::size_t size() const { return memory.size(); }
private:
Container memory;
};
}

View File

@@ -5,13 +5,32 @@
namespace matar { namespace matar {
// Constants
#define MEMORY(AREA, start) \
static constexpr uint32_t AREA##_START = start; \
static constexpr uint8_t AREA##_REGION = (AREA##_START >> 24) & 0xFF;
MEMORY(BIOS, 0x0000000);
MEMORY(BOARD_WRAM, 0x2000000);
MEMORY(CHIP_WRAM, 0x3000000);
MEMORY(PRAM, display::PRAM_START);
MEMORY(VRAM, display::VRAM_START);
MEMORY(OAM, display::OAM_START);
MEMORY(ROM_0, 0x8000000);
MEMORY(ROM_1, 0xA000000);
MEMORY(ROM_2, 0xC000000);
static constexpr uint32_t IO_START = 0x4000000;
static constexpr uint32_t IO_END = 0x40003FE;
#undef MEMORY
Bus::Bus(Private, Bus::Bus(Private,
std::array<uint8_t, BIOS_SIZE>&& bios, std::array<uint8_t, BIOS_SIZE>&& bios,
std::vector<uint8_t>&& rom) std::vector<uint8_t>&& rom)
: cycle_map(init_cycle_count()) : cycle_map(init_cycle_count())
, bios(std::move(bios)) , bios(std::move(bios))
, rom(std::move(rom)) { , rom(std::move(rom)) {
std::string bios_hash = crypto::sha256(this->bios); std::string bios_hash = crypto::sha256(this->bios.data());
static constexpr std::string_view expected_hash = static constexpr std::string_view expected_hash =
"fd2547724b505f487e6dcb29ec2ecff3af35a841a77ab2e85fd87350abd36570"; "fd2547724b505f487e6dcb29ec2ecff3af35a841a77ab2e85fd87350abd36570";
@@ -69,17 +88,16 @@ Bus::init_cycle_count() {
map[IO_REGION] = { 1, 1, 1, 1 }; map[IO_REGION] = { 1, 1, 1, 1 };
map[OAM_REGION] = { 1, 1, 1, 1 }; map[OAM_REGION] = { 1, 1, 1, 1 };
*/ */
map[3] = { 1, 1, 1, 1 }; map[BOARD_WRAM_REGION] = { .n16 = 3, .n32 = 6, .s16 = 3, .s32 = 6 };
map[BOARD_WRAM_REGION] = { .n16 = 3, .n32 = 6, .s16 = 3, .s32 = 6 }; map[PRAM_REGION] = { .n16 = 1, .n32 = 2, .s16 = 1, .s32 = 2 };
map[PALETTE_RAM_REGION] = { .n16 = 1, .n32 = 2, .s16 = 1, .s32 = 2 }; map[VRAM_REGION] = { .n16 = 1, .n32 = 2, .s16 = 1, .s32 = 2 };
map[VRAM_REGION] = { .n16 = 1, .n32 = 2, .s16 = 1, .s32 = 2 };
// TODO: GamePak access cycles // TODO: GamePak access cycles
return map; return map;
} }
template<typename T> template<typename T>
std::optional<T> T
Bus::read(uint32_t address) const { Bus::read(uint32_t address) const {
// this is cleaned than std::enable_if // this is cleaned than std::enable_if
@@ -99,12 +117,11 @@ Bus::read(uint32_t address) const {
if (i > area.size() - N) \ if (i > area.size() - N) \
break; \ break; \
if constexpr (std::is_same_v<T, uint8_t>) \ if constexpr (std::is_same_v<T, uint8_t>) \
return area[i]; \ return area.read_byte(i); \
else if constexpr (std::is_same_v<T, uint16_t>) \ else if constexpr (std::is_same_v<T, uint16_t>) \
return area[i] | area[i + 1] << 8; \ return area.read_halfword(i); \
else if constexpr (std::is_same_v<T, uint32_t>) \ else if constexpr (std::is_same_v<T, uint32_t>) \
return area[i] | area[i + 1] << 8 | area[i + 2] << 16 | \ return area.read_word(i); \
area[i + 3] << 24; \
} }
#define MATCHES_PAK(AREA, area) \ #define MATCHES_PAK(AREA, area) \
@@ -114,9 +131,9 @@ Bus::read(uint32_t address) const {
MATCHES(BIOS, bios) MATCHES(BIOS, bios)
MATCHES(BOARD_WRAM, board_wram) MATCHES(BOARD_WRAM, board_wram)
MATCHES(CHIP_WRAM, chip_wram) MATCHES(CHIP_WRAM, chip_wram)
MATCHES(PALETTE_RAM, palette_ram) MATCHES(PRAM, io->display.pram)
MATCHES(VRAM, vram) MATCHES(VRAM, io->display.vram)
MATCHES(OAM_OBJ_ATTR, oam_obj_attr) MATCHES(OAM, io->display.oam)
MATCHES_PAK(ROM_0, rom) MATCHES_PAK(ROM_0, rom)
MATCHES_PAK(ROM_1, rom) MATCHES_PAK(ROM_1, rom)
@@ -125,8 +142,14 @@ Bus::read(uint32_t address) const {
#undef MATCHES #undef MATCHES
} }
glogger.error("Invalid memory region read"); glogger.error("invalid memory region read at {:08x}", address);
return {};
if constexpr (std::is_same_v<T, uint8_t>)
return 0xFF;
else if constexpr (std::is_same_v<T, uint16_t>)
return 0xFFFF;
else if constexpr (std::is_same_v<T, uint32_t>)
return 0xFFFFFFFF;
} }
template<typename T> template<typename T>
@@ -140,36 +163,32 @@ Bus::write(uint32_t address, T value) {
: std::is_same_v<T, uint16_t> ? 2 : std::is_same_v<T, uint16_t> ? 2
: std::is_same_v<T, uint32_t> ? 4 : std::is_same_v<T, uint32_t> ? 4
: 0; : 0;
switch (address >> 24 & 0xF) { switch (address >> 24 & 0xF) {
#define MATCHES(AREA, area) \ #define MATCHES(AREA, area) \
case AREA##_REGION: { \ case AREA##_REGION: { \
uint32_t i = address - AREA##_START; \ uint32_t i = address - AREA##_START; \
if (i > area.size() - N) \ if (i > area.size() - N) \
break; \ break; \
if constexpr (std::is_same_v<T, uint8_t>) { \ if constexpr (std::is_same_v<T, uint8_t>) \
area[i] = value; \ area.write_byte(i, value); \
} else if constexpr (std::is_same_v<T, uint16_t>) { \ else if constexpr (std::is_same_v<T, uint16_t>) \
area[i] = value & 0xFF; \ area.write_halfword(i, value); \
area[i + 1] = value >> 8 & 0xFF; \ else if constexpr (std::is_same_v<T, uint32_t>) \
} else if constexpr (std::is_same_v<T, uint32_t>) { \ area.write_word(i, value); \
area[i] = value & 0xFF; \
area[i + 1] = value >> 8 & 0xFF; \
area[i + 2] = value >> 16 & 0xFF; \
area[i + 3] = value >> 24 & 0xFF; \
} \
return; \ return; \
} }
MATCHES(BOARD_WRAM, board_wram) MATCHES(BOARD_WRAM, board_wram)
MATCHES(CHIP_WRAM, chip_wram) MATCHES(CHIP_WRAM, chip_wram)
MATCHES(PALETTE_RAM, palette_ram) MATCHES(PRAM, io->display.pram)
MATCHES(VRAM, vram) MATCHES(VRAM, io->display.vram)
MATCHES(OAM_OBJ_ATTR, oam_obj_attr) MATCHES(OAM, io->display.oam)
#undef MATCHES #undef MATCHES
} }
glogger.error("Invalid memory region written"); glogger.error("invalid memory region written at {:08x}", address);
} }
uint8_t uint8_t
@@ -177,7 +196,7 @@ Bus::read_byte(uint32_t address) {
if (address >= IO_START && address <= IO_END) if (address >= IO_START && address <= IO_END)
return io->read_byte(address); return io->read_byte(address);
return read<uint8_t>(address).value_or(0xFF); return read<uint8_t>(address);
} }
void void
@@ -198,7 +217,7 @@ Bus::read_halfword(uint32_t address) {
if (address >= IO_START && address <= IO_END) if (address >= IO_START && address <= IO_END)
return io->read_halfword(address); return io->read_halfword(address);
return read<uint16_t>(address).value_or(0xFFFF); return read<uint16_t>(address);
} }
void void
@@ -222,7 +241,7 @@ Bus::read_word(uint32_t address) {
if (address >= IO_START && address <= IO_END) if (address >= IO_START && address <= IO_END)
return io->read_word(address); return io->read_word(address);
return read<uint32_t>(address).value_or(0xFFFFFFFF); return read<uint32_t>(address);
} }
void void

23
src/io/display/display.cc Normal file
View File

@@ -0,0 +1,23 @@
#include "io/display/display.hh"
namespace matar {
namespace display {
/*
static constexpr uint LCD_HEIGHT = 160;
static constexpr uint LCD_WIDTH = 240;
static constexpr uint BLANK = 68;
static constexpr uint PIXEL_CYCLES = 4; // 4
static constexpr uint HDRAW_CYCLES = LCD_WIDTH * PIXEL_CYCLES + 46; // 1006
static constexpr uint HBLANK_CYCLES = BLANK * PIXEL_CYCLES - 46; // 226
static constexpr uint HREFRESH_CYCLES = HDRAW_CYCLES + HBLANK_CYCLES; // 1232
static constexpr uint VDRAW_CYCLES = LCD_HEIGHT * HREFRESH_CYCLES; // 197120
static constexpr uint VBLANK_CYCLES = BLANK * HREFRESH_CYCLES; // 83776
static constexpr uint VREFRESH_CYCLES = VDRAW_CYCLES + VBLANK_CYCLES; // 280896
*/
void
Display::mode_3() {}
}
}

View File

@@ -0,0 +1,3 @@
lib_sources += files(
'display.cc'
)

51
src/io/display/render.cc Normal file
View File

@@ -0,0 +1,51 @@
#include "io/display/display.hh"
namespace matar {
namespace display {
struct TextScreen {
uint16_t tile_number : 10;
bool mirror_horizontal : 1;
bool mirror_vertical : 1;
uint8_t palette_number : 4;
};
// if 16th bit is set, this will denote the transparent color in rgb555 format
static constexpr uint16_t TRANSPARENT_RGB555 = 0x8000;
template<int MODE, typename>
void
Display::render_bitmap_mode() {
static constexpr std::size_t VIEWPORT_WIDTH = MODE == 5 ? 160 : 240;
for (int x = 0; x < LCD_WIDTH; x++) {
// pixel to texel for x
// shift by 8 cuz both ref.x and a are fixed point floats shifted by 8
int32_t x_ = (bg2_rot_scale.ref.x + x * bg2_rot_scale.a) >> 8;
int32_t y_ = (bg2_rot_scale.ref.y + x * bg2_rot_scale.c) >> 8;
// ignore handling area overflow for bitmap modes
// i am not sure how well this will turn out
std::size_t idx = y_ * VIEWPORT_WIDTH + x_;
// mode 3 and 5 takes 2 bytes per pixel
if constexpr (MODE != 4)
idx *= 2;
// offset
if constexpr (MODE != 3) {
std::size_t offset =
lcd_control.value.frame_select_1 ? 0xA000 : 0x0000;
idx += offset;
}
// read two bytes
if constexpr (MODE == 4)
scanline_buffers[2][x] = pram.read_halfword(vram.read_byte(idx));
else
scanline_buffers[2][x] = vram.read_halfword(idx);
}
}
}
}

View File

@@ -76,6 +76,24 @@ ADDR FIFO_A_H = 0x40000A2;
ADDR FIFO_B_L = 0x40000A4; ADDR FIFO_B_L = 0x40000A4;
ADDR FIFO_B_H = 0x40000A6; ADDR FIFO_B_H = 0x40000A6;
// dma
ADDR DMA0SAD = 0x40000B0;
ADDR DMA0DAD = 0x40000B4;
ADDR DMA0CNT_L = 0x40000B8;
ADDR DMA0CNT_H = 0x40000BA;
ADDR DMA1SAD = 0x40000BC;
ADDR DMA1DAD = 0x40000C0;
ADDR DMA1CNT_L = 0x40000C4;
ADDR DMA1CNT_H = 0x40000C6;
ADDR DMA2SAD = 0x40000C8;
ADDR DMA2DAD = 0x40000CC;
ADDR DMA2CNT_L = 0x40000D0;
ADDR DMA2CNT_H = 0x40000D2;
ADDR DMA3SAD = 0x40000D4;
ADDR DMA3DAD = 0x40000D8;
ADDR DMA3CNT_L = 0x40000DC;
ADDR DMA3CNT_H = 0x40000DE;
// system // system
ADDR POSTFLG = 0x4000300; ADDR POSTFLG = 0x4000300;
ADDR IME = 0x4000208; ADDR IME = 0x4000208;
@@ -130,45 +148,87 @@ IoDevices::read_halfword(uint32_t address) const {
case name: \ case name: \
return var; return var;
// lcd // lcd
READ(DISPCNT, lcd.lcd_control) case DISPCNT:
READ(DISPSTAT, lcd.general_lcd_status) return display.lcd_control.read();
READ(VCOUNT, lcd.vertical_counter) case DISPSTAT:
READ(WININ, lcd.inside_win_0_1) return display.general_lcd_status.read();
READ(WINOUT, lcd.outside_win) case BG0CNT:
READ(BLDCNT, lcd.color_special_effects_selection) return display.bg_control[0].read();
READ(BLDALPHA, lcd.alpha_blending_coefficients) case BG1CNT:
return display.bg_control[1].read();
case BG2CNT:
return display.bg_control[2].read();
case BG3CNT:
return display.bg_control[3].read();
// sound READ(VCOUNT, display.vertical_counter)
READ(SOUND1CNT_L, sound.ch1_sweep) READ(WININ, display.inside_win_0_1)
READ(SOUND1CNT_H, sound.ch1_duty_length_env) READ(WINOUT, display.outside_win)
READ(SOUND1CNT_X, sound.ch1_freq_control) READ(BLDCNT, display.color_special_effects_selection)
READ(SOUND2CNT_L, sound.ch2_duty_length_env) READ(BLDALPHA, display.alpha_blending_coefficients)
READ(SOUND2CNT_H, sound.ch2_freq_control)
READ(SOUND3CNT_L, sound.ch3_stop_wave_ram_select)
READ(SOUND3CNT_H, sound.ch3_length_volume)
READ(SOUND3CNT_X, sound.ch3_freq_control)
READ(WAVE_RAM0_L, sound.ch3_wave_pattern[0]);
READ(WAVE_RAM0_H, sound.ch3_wave_pattern[1]);
READ(WAVE_RAM1_L, sound.ch3_wave_pattern[2]);
READ(WAVE_RAM1_H, sound.ch3_wave_pattern[3]);
READ(WAVE_RAM2_L, sound.ch3_wave_pattern[4]);
READ(WAVE_RAM2_H, sound.ch3_wave_pattern[5]);
READ(WAVE_RAM3_L, sound.ch3_wave_pattern[6]);
READ(WAVE_RAM3_H, sound.ch3_wave_pattern[7]);
READ(SOUND4CNT_L, sound.ch4_length_env);
READ(SOUND4CNT_H, sound.ch4_freq_control);
READ(SOUNDCNT_L, sound.ctrl_stereo_volume);
READ(SOUNDCNT_H, sound.ctrl_mixing);
READ(SOUNDCNT_X, sound.ctrl_sound_on_off);
READ(SOUNDBIAS, sound.pwm_control);
// system // sound
READ(POSTFLG, system.post_boot_flag) READ(SOUND1CNT_L, sound.ch1_sweep)
READ(IME, system.interrupt_master_enabler) READ(SOUND1CNT_H, sound.ch1_duty_length_env)
READ(IE, system.interrupt_enable); READ(SOUND1CNT_X, sound.ch1_freq_control)
READ(IF, system.interrupt_request_flags); READ(SOUND2CNT_L, sound.ch2_duty_length_env)
READ(WAITCNT, system.waitstate_control); READ(SOUND2CNT_H, sound.ch2_freq_control)
READ(SOUND3CNT_L, sound.ch3_stop_wave_ram_select)
READ(SOUND3CNT_H, sound.ch3_length_volume)
READ(SOUND3CNT_X, sound.ch3_freq_control)
READ(WAVE_RAM0_L, sound.ch3_wave_pattern[0]);
READ(WAVE_RAM0_H, sound.ch3_wave_pattern[1]);
READ(WAVE_RAM1_L, sound.ch3_wave_pattern[2]);
READ(WAVE_RAM1_H, sound.ch3_wave_pattern[3]);
READ(WAVE_RAM2_L, sound.ch3_wave_pattern[4]);
READ(WAVE_RAM2_H, sound.ch3_wave_pattern[5]);
READ(WAVE_RAM3_L, sound.ch3_wave_pattern[6]);
READ(WAVE_RAM3_H, sound.ch3_wave_pattern[7]);
READ(SOUND4CNT_L, sound.ch4_length_env);
READ(SOUND4CNT_H, sound.ch4_freq_control);
READ(SOUNDCNT_L, sound.ctrl_stereo_volume);
READ(SOUNDCNT_H, sound.ctrl_mixing);
READ(SOUNDCNT_X, sound.ctrl_sound_on_off);
READ(SOUNDBIAS, sound.pwm_control);
// dma
case DMA0CNT_H:
return dma.channels[0].control.read();
case DMA1CNT_H:
return dma.channels[1].control.read();
case DMA2CNT_H:
return dma.channels[2].control.read();
case DMA3CNT_H:
return dma.channels[3].control.read();
READ(DMA0SAD, dma.channels[0].source[0]);
READ(DMA0SAD + 2, dma.channels[0].source[1]);
READ(DMA0DAD, dma.channels[0].destination[0]);
READ(DMA0DAD + 2, dma.channels[0].destination[1]);
READ(DMA0CNT_L, dma.channels[0].word_count);
READ(DMA1SAD, dma.channels[1].source[0]);
READ(DMA1SAD + 2, dma.channels[1].source[1]);
READ(DMA1DAD, dma.channels[1].destination[0]);
READ(DMA1DAD + 2, dma.channels[1].destination[1]);
READ(DMA1CNT_L, dma.channels[1].word_count);
READ(DMA2SAD, dma.channels[2].source[0]);
READ(DMA2SAD + 2, dma.channels[2].source[1]);
READ(DMA2DAD, dma.channels[2].destination[0]);
READ(DMA2DAD + 2, dma.channels[2].destination[1]);
READ(DMA2CNT_L, dma.channels[2].word_count);
READ(DMA3SAD, dma.channels[3].source[0]);
READ(DMA3SAD + 2, dma.channels[3].source[1]);
READ(DMA3DAD, dma.channels[3].destination[0]);
READ(DMA3DAD + 2, dma.channels[3].destination[1]);
READ(DMA3CNT_L, dma.channels[3].word_count);
// system
READ(POSTFLG, system.post_boot_flag)
READ(IME, system.interrupt_master_enabler)
READ(IE, system.interrupt_enable);
READ(IF, system.interrupt_request_flags);
READ(WAITCNT, system.waitstate_control);
#undef READ #undef READ
@@ -181,6 +241,18 @@ IoDevices::read_halfword(uint32_t address) const {
void void
IoDevices::write_halfword(uint32_t address, uint16_t halfword) { IoDevices::write_halfword(uint32_t address, uint16_t halfword) {
// set lower 16 bits for reference points (BG 2/3)
auto ref_low = [](uint32_t original, uint16_t low) {
return static_cast<int32_t>((original & 0xFFFF0000) | low);
};
// set upper 12 bits for reference points (BG 2/3)
// and sign extend
auto ref_high = [](uint32_t original, uint16_t high) {
return static_cast<int32_t>(
((((high & 0xFFF) << 16) | (original & 0xFFFF)) << 4) >> 4);
};
switch (address) { switch (address) {
#define WRITE(name, var) \ #define WRITE(name, var) \
@@ -194,82 +266,146 @@ IoDevices::write_halfword(uint32_t address, uint16_t halfword) {
break; break;
// lcd // lcd
WRITE(DISPCNT, lcd.lcd_control) case DISPCNT:
WRITE(DISPSTAT, lcd.general_lcd_status) display.lcd_control.write(halfword);
WRITE(BG0CNT, lcd.bg0_control) break;
WRITE(BG1CNT, lcd.bg1_control) case DISPSTAT:
WRITE(BG2CNT, lcd.bg2_control) display.general_lcd_status.write(halfword);
WRITE(BG3CNT, lcd.bg3_control) break;
WRITE(BG0HOFS, lcd.bg0_x_offset) case BG0CNT:
WRITE(BG0VOFS, lcd.bg0_y_offset) display.bg_control[0].write(halfword);
WRITE(BG1HOFS, lcd.bg1_x_offset) break;
WRITE(BG1VOFS, lcd.bg1_y_offset) case BG1CNT:
WRITE(BG2HOFS, lcd.bg2_x_offset) display.bg_control[1].write(halfword);
WRITE(BG2VOFS, lcd.bg2_y_offset) break;
WRITE(BG3HOFS, lcd.bg3_x_offset) case BG2CNT:
WRITE(BG3VOFS, lcd.bg3_y_offset) display.bg_control[2].write(halfword);
WRITE(BG2PA, lcd.bg2_rot_scaling_parameters[0]) break;
WRITE(BG2PB, lcd.bg2_rot_scaling_parameters[1]) case BG3CNT:
WRITE(BG2PC, lcd.bg2_rot_scaling_parameters[2]) display.bg_control[3].write(halfword);
WRITE(BG2PD, lcd.bg2_rot_scaling_parameters[3]) break;
WRITE(BG2X_L, lcd.bg2_reference_x[0])
WRITE(BG2X_H, lcd.bg2_reference_x[1])
WRITE(BG2Y_L, lcd.bg2_reference_y[0])
WRITE(BG2Y_H, lcd.bg2_reference_y[1])
WRITE(BG3PA, lcd.bg3_rot_scaling_parameters[0])
WRITE(BG3PB, lcd.bg3_rot_scaling_parameters[1])
WRITE(BG3PC, lcd.bg3_rot_scaling_parameters[2])
WRITE(BG3PD, lcd.bg3_rot_scaling_parameters[3])
WRITE(BG3X_L, lcd.bg3_reference_x[0])
WRITE(BG3X_H, lcd.bg3_reference_x[1])
WRITE(BG3Y_L, lcd.bg3_reference_y[0])
WRITE(BG3Y_H, lcd.bg3_reference_y[1])
WRITE(WIN0H, lcd.win0_horizontal_dimensions)
WRITE(WIN1H, lcd.win1_horizontal_dimensions)
WRITE(WIN0V, lcd.win0_vertical_dimensions)
WRITE(WIN1V, lcd.win1_vertical_dimensions)
WRITE(WININ, lcd.inside_win_0_1)
WRITE(WINOUT, lcd.outside_win)
WRITE(MOSAIC, lcd.mosaic_size)
WRITE(BLDCNT, lcd.color_special_effects_selection)
WRITE(BLDALPHA, lcd.alpha_blending_coefficients)
WRITE(BLDY, lcd.brightness_coefficient)
// sound WRITE(BG0HOFS, display.bg0_offset.x)
WRITE(SOUND1CNT_L, sound.ch1_sweep) WRITE(BG0VOFS, display.bg0_offset.y)
WRITE(SOUND1CNT_H, sound.ch1_duty_length_env) WRITE(BG1HOFS, display.bg1_offset.x)
WRITE(SOUND1CNT_X, sound.ch1_freq_control) WRITE(BG1VOFS, display.bg1_offset.y)
WRITE(SOUND2CNT_L, sound.ch2_duty_length_env) WRITE(BG2HOFS, display.bg2_offset.x)
WRITE(SOUND2CNT_H, sound.ch2_freq_control) WRITE(BG2VOFS, display.bg2_offset.y)
WRITE(SOUND3CNT_L, sound.ch3_stop_wave_ram_select) WRITE(BG3HOFS, display.bg3_offset.x)
WRITE(SOUND3CNT_H, sound.ch3_length_volume) WRITE(BG3VOFS, display.bg3_offset.y)
WRITE(SOUND3CNT_X, sound.ch3_freq_control) WRITE(BG2PA, display.bg2_rot_scale.a)
WRITE(WAVE_RAM0_L, sound.ch3_wave_pattern[0]); WRITE(BG2PB, display.bg2_rot_scale.b)
WRITE(WAVE_RAM0_H, sound.ch3_wave_pattern[1]); WRITE(BG2PC, display.bg2_rot_scale.c)
WRITE(WAVE_RAM1_L, sound.ch3_wave_pattern[2]); WRITE(BG2PD, display.bg2_rot_scale.d)
WRITE(WAVE_RAM1_H, sound.ch3_wave_pattern[3]); WRITE_2(BG2X_L,
WRITE(WAVE_RAM2_L, sound.ch3_wave_pattern[4]); display.bg2_rot_scale.ref.x,
WRITE(WAVE_RAM2_H, sound.ch3_wave_pattern[5]); ref_low(display.bg2_rot_scale.ref.x, halfword));
WRITE(WAVE_RAM3_L, sound.ch3_wave_pattern[6]); WRITE_2(BG2X_H,
WRITE(WAVE_RAM3_H, sound.ch3_wave_pattern[7]); display.bg2_rot_scale.ref.x,
WRITE(SOUND4CNT_L, sound.ch4_length_env); ref_high(display.bg2_rot_scale.ref.x, halfword));
WRITE(SOUND4CNT_H, sound.ch4_freq_control); WRITE_2(BG2Y_L,
WRITE(SOUNDCNT_L, sound.ctrl_stereo_volume); display.bg2_rot_scale.ref.y,
WRITE(SOUNDCNT_H, sound.ctrl_mixing); ref_low(display.bg2_rot_scale.ref.y, halfword));
WRITE(SOUNDCNT_X, sound.ctrl_sound_on_off); WRITE_2(BG2Y_H,
WRITE(SOUNDBIAS, sound.pwm_control); display.bg2_rot_scale.ref.y,
WRITE(FIFO_A_L, sound.fifo_a[0]); ref_high(display.bg2_rot_scale.ref.y, halfword));
WRITE(FIFO_A_H, sound.fifo_a[1]); WRITE(BG3PA, display.bg3_rot_scale.a)
WRITE(FIFO_B_L, sound.fifo_b[0]); WRITE(BG3PB, display.bg3_rot_scale.b)
WRITE(FIFO_B_H, sound.fifo_b[1]); WRITE(BG3PC, display.bg3_rot_scale.c)
WRITE(BG3PD, display.bg3_rot_scale.d)
WRITE_2(BG3X_L,
display.bg3_rot_scale.ref.x,
ref_low(display.bg3_rot_scale.ref.x, halfword));
WRITE_2(BG3X_H,
display.bg3_rot_scale.ref.x,
ref_high(display.bg3_rot_scale.ref.x, halfword));
WRITE_2(BG3Y_L,
display.bg3_rot_scale.ref.y,
ref_low(display.bg3_rot_scale.ref.y, halfword));
WRITE_2(BG3Y_H,
display.bg3_rot_scale.ref.y,
ref_high(display.bg3_rot_scale.ref.y, halfword));
WRITE(WIN0H, display.win0_horizontal_dimensions)
WRITE(WIN1H, display.win1_horizontal_dimensions)
WRITE(WIN0V, display.win0_vertical_dimensions)
WRITE(WIN1V, display.win1_vertical_dimensions)
WRITE(WININ, display.inside_win_0_1)
WRITE(WINOUT, display.outside_win)
WRITE(MOSAIC, display.mosaic_size)
WRITE(BLDCNT, display.color_special_effects_selection)
WRITE(BLDALPHA, display.alpha_blending_coefficients)
WRITE(BLDY, display.brightness_coefficient)
// system // sound
WRITE_2(POSTFLG, system.post_boot_flag, halfword & 1) WRITE(SOUND1CNT_L, sound.ch1_sweep)
WRITE_2(IME, system.interrupt_master_enabler, halfword & 1) WRITE(SOUND1CNT_H, sound.ch1_duty_length_env)
WRITE(IE, system.interrupt_enable); WRITE(SOUND1CNT_X, sound.ch1_freq_control)
WRITE(IF, system.interrupt_request_flags); WRITE(SOUND2CNT_L, sound.ch2_duty_length_env)
WRITE(WAITCNT, system.waitstate_control); WRITE(SOUND2CNT_H, sound.ch2_freq_control)
WRITE_2(HALTCNT, system.low_power_mode, get_bit(halfword, 7)); WRITE(SOUND3CNT_L, sound.ch3_stop_wave_ram_select)
WRITE(SOUND3CNT_H, sound.ch3_length_volume)
WRITE(SOUND3CNT_X, sound.ch3_freq_control)
WRITE(WAVE_RAM0_L, sound.ch3_wave_pattern[0]);
WRITE(WAVE_RAM0_H, sound.ch3_wave_pattern[1]);
WRITE(WAVE_RAM1_L, sound.ch3_wave_pattern[2]);
WRITE(WAVE_RAM1_H, sound.ch3_wave_pattern[3]);
WRITE(WAVE_RAM2_L, sound.ch3_wave_pattern[4]);
WRITE(WAVE_RAM2_H, sound.ch3_wave_pattern[5]);
WRITE(WAVE_RAM3_L, sound.ch3_wave_pattern[6]);
WRITE(WAVE_RAM3_H, sound.ch3_wave_pattern[7]);
WRITE(SOUND4CNT_L, sound.ch4_length_env);
WRITE(SOUND4CNT_H, sound.ch4_freq_control);
WRITE(SOUNDCNT_L, sound.ctrl_stereo_volume);
WRITE(SOUNDCNT_H, sound.ctrl_mixing);
WRITE(SOUNDCNT_X, sound.ctrl_sound_on_off);
WRITE(SOUNDBIAS, sound.pwm_control);
WRITE(FIFO_A_L, sound.fifo_a[0]);
WRITE(FIFO_A_H, sound.fifo_a[1]);
WRITE(FIFO_B_L, sound.fifo_b[0]);
WRITE(FIFO_B_H, sound.fifo_b[1]);
// dma
case DMA0CNT_H:
dma.channels[0].control.write(halfword);
break;
case DMA1CNT_H:
dma.channels[1].control.write(halfword);
break;
case DMA2CNT_H:
dma.channels[2].control.write(halfword);
break;
case DMA3CNT_H:
dma.channels[3].control.write(halfword);
break;
WRITE(DMA0SAD, dma.channels[0].source[0]);
WRITE(DMA0SAD + 2, dma.channels[0].source[1]);
WRITE(DMA0DAD, dma.channels[0].destination[0]);
WRITE(DMA0DAD + 2, dma.channels[0].destination[1]);
WRITE(DMA0CNT_L, dma.channels[0].word_count);
WRITE(DMA1SAD, dma.channels[1].source[0]);
WRITE(DMA1SAD + 2, dma.channels[1].source[1]);
WRITE(DMA1DAD, dma.channels[1].destination[0]);
WRITE(DMA1DAD + 2, dma.channels[1].destination[1]);
WRITE(DMA1CNT_L, dma.channels[1].word_count);
WRITE(DMA2SAD, dma.channels[2].source[0]);
WRITE(DMA2SAD + 2, dma.channels[2].source[1]);
WRITE(DMA2DAD, dma.channels[2].destination[0]);
WRITE(DMA2DAD + 2, dma.channels[2].destination[1]);
WRITE(DMA2CNT_L, dma.channels[2].word_count);
WRITE(DMA3SAD, dma.channels[3].source[0]);
WRITE(DMA3SAD + 2, dma.channels[3].source[1]);
WRITE(DMA3DAD, dma.channels[3].destination[0]);
WRITE(DMA3DAD + 2, dma.channels[3].destination[1]);
WRITE(DMA3CNT_L, dma.channels[3].word_count);
// system
WRITE_2(POSTFLG, system.post_boot_flag, halfword & 1)
WRITE_2(IME, system.interrupt_master_enabler, halfword & 1)
WRITE(IE, system.interrupt_enable);
WRITE(IF, system.interrupt_request_flags);
WRITE(WAITCNT, system.waitstate_control);
WRITE_2(HALTCNT, system.low_power_mode, get_bit(halfword, 7));
#undef WRITE #undef WRITE
#undef WRITE_2 #undef WRITE_2
@@ -279,4 +415,5 @@ IoDevices::write_halfword(uint32_t address, uint16_t halfword) {
} }
return; return;
} }
} }

View File

@@ -1,3 +1,3 @@
lib_sources += files( lib_sources += files(
'io.cc', 'io.cc'
) )