12 KiB
12 KiB
Programs are followed by their respective inputs and outputs i.e, both stdin and stdout are shown together |
Program for finding roots of f(x) = 0 using Newton Raphson Method
#include <math.h>
#include <stdio.h>
#define EPSILON 0.0000001
#define f(x) ((352 * x * x * x) - (64 * x * x) + (198 * x) - 36)
#define f1(x) ((1056 * x * x) - (128 * x) + 198)
double newtonRaphson(double x) {
double h = f(x) / f1(x);
if (f(x) == 0 || fabs(h) < EPSILON)
return x;
return newtonRaphson(x - h);
}
int main() {
printf("Root for f(x) = 352x^3 - 64x^2 + 198x - 36 is %lf",
newtonRaphson(-4));
}
Program for nding roots of f(x) = 0 using bisection method
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define EPSILON 0.0000001
#define f(x) ((352 * x * x * x) - (64 * x * x) + (198 * x) - 36)
double bisection(double a, double b) {
double x;
if (f(a) * f(b) > 0) {
printf("The values of function at the respective initial guesses must have "
"opposite signs");
exit(1);
}
x = (a + b) / 2;
if (f(x) == 0 || fabs(b - a) < EPSILON)
return x;
if (f(x) > 0)
return bisection(x, b);
return bisection(a, x);
}
int main() {
printf("Root for f(x) = 352x^3 - 64x^2 + 198x - 36 is %lf",
bisection(1.6, -4));
}
Program for finding roots of f(x) = 0 using secant method
#include <math.h>
#include <stdio.h>
#define EPSILON 0.0000001
#define f(x) ((352 * x * x * x) - (64 * x * x) + (198 * x) - 36)
double secant(double a, double b) {
double x1;
x1 = (a * f(b) - b * f(a)) / (f(b) - f(a));
if (f(x1) == 0 || fabs(a - b) < EPSILON)
return x1;
return secant(b, x1);
}
int main() {
printf("Root for f(x) = 352x^3 - 64x^2 + 198x - 36 is %lf", secant(1.6, -4));
}
Program to implement Langrange Interpolation.
#include <stdio.h>
int main() {
double xp, yp = 0, p;
int i, j, n;
printf("Number of inputs: ");
scanf("%d", &n);
double x[n], y[n];
printf("Input sample space:\n");
for (i = 0; i < n; i++) {
printf("x%d: ", i);
scanf("%lf", x + i);
printf("y%d: ", i);
scanf("%lf", y + i);
}
printf("Enter interpolation point x: ");
scanf("%lf", &xp);
for (i = 0; i < n; i++) {
p = 1;
for (j = 0; j < n; j++) {
if (i != j) {
p *= (xp - x[j]) / (x[i] - x[j]);
}
}
yp += p * y[i];
}
printf("Interpolated value for %lf is %lf.", xp, yp);
}
Number of inputs: 4
Input sample space:
x0: 0
y0: 2
x1: 1
y1: 3
x2: 2
y2: 12
x3: 5
y3: 147
Enter interpolation point x: 3
Interpolated value for 3.000000 is 35.000000.
Program to implement Newton's Divided Difference formula.
#include <stdio.h>
int main() {
int n, i, j = 1;
double xp, yp, f1, f2 = 0;
printf("Enter the number of inputs: ");
scanf("%d", &n);
double x[n], y[n];
printf("Enter input values:\n");
for (i = 0; i < n; i++) {
printf("x%d=", i);
scanf("%lf", x + i);
printf("y%d=", i);
scanf("%lf", y + i);
}
yp = y[0];
printf("Enter interpolation point x: ");
scanf("%lf", &xp);
do {
for (i = 0; i < n - 1; i++)
y[i] = ((y[i + 1] - y[i]) / (x[i + j] - x[i]));
f1 = 1;
for (i = 0; i < j; i++) {
f1 *= (xp - x[i]);
}
f2 += (y[0] * f1);
j++;
} while ((--n) > 1);
yp += f2;
printf("Interpolated value for %lf is %lf.", xp, yp);
}
Enter the number of inputs: 4
Enter input values:
x0=3
y0=9
x1=5
y1=12
x2=9
y2=666
x3=15
y3=10245
Enter interpolation point x: 999
Interpolated value for 999.000000 is 9525764925.000002.
Program for solving numerical integration by trapezoidal method.
#include <math.h>
#include <stdio.h>
#define f(x) ((352 * x * x * x) - (64 * x * x) + (198 * x) - 36)
double trapezoidal_integral(double a, double b, double n) {
double h = (b - a) / n;
double s = (f(a) + f(b)) / 2;
// Add the other heights
for (int i = 1; i < n; i++)
s += f(a + i * h);
return s * h;
}
int main() {
printf("The area under the curve f(x) = 352x^3 - 64x^2 + 198x - 36 from x=3 "
"to x=4 is %lf",
trapezoidal_integral(3, 4, 10000));
}
Program for solving numerical integration by Simpson's 1/3 rule.
#include <math.h>
#include <stdio.h>
#define f(x) ((352 * x * x * x) - (64 * x * x) + (198 * x) - 36)
double simpsons_1_3(double a, double b, double n) {
double h = (b - a) / n;
double s = f(a) + f(b);
// Add the other heights
for (int i = 1; i < n; i += 2)
s += 4 * f(a + i * h);
for (int i = 2; i < n; i += 2)
s += 2 * f(a + i * h);
return (h / 3) * s;
}
int main() {
printf("The area under the curve f(x) = 352x^3 - 64x^2 + 198x - 36 from x=3 "
"to x=4 is %lf",
simpsons_1_3(3, 4, 10000));
}
Program for solving numerical integration by Simpson's 3/8 rule.
#include <math.h>
#include <stdio.h>
#define f(x) ((352 * x * x * x) - (64 * x * x) + (198 * x) - 36)
double simpsons_1_3(double a, double b, double n) {
double h = (b - a) / n;
double s = f(a) + f(b);
// Add the other heights
for (int i = 1; i < n; i++)
s += 3 * f(a + i * h);
for (int i = 3; i < n; i += 3)
s -= f(a + i * h);
return (h / 8) * 3 * s;
}
int main() {
printf("The area under the curve f(x) = 352x^3 - 64x^2 + 198x - 36 from x=3 "
"to x=4 is %lf",
simpsons_1_3(3, 4, 10000));
}
Program for finding inverse of linear equations using Gauss Jordan method.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
double **inverse(double **matrix, int order) {
double **inverse = calloc(order, sizeof(double *));
for (int i = 0; i < order; i++) {
inverse[i] = calloc(2 * order, sizeof(double));
inverse[i][order + i] = 1;
memcpy(inverse[i], matrix[i], order * sizeof(double));
}
for (int i = 0; i < order; i++) {
for (int j = 0; j < order; j++) {
if (i == j)
continue;
double r = inverse[j][i] / inverse[i][i];
for (int k = 0; k < order * 2; k++)
inverse[j][k] -= r * inverse[i][k];
}
}
for (int i = 0; i < order; i++) {
for (int j = 0; j < order; j++)
inverse[i][j + order] /= inverse[i][i];
}
return inverse;
}
int main() {
const int ORDER = 3;
double **matrix = malloc(ORDER * sizeof(double *));
for (int i = 0; i < ORDER; i++)
matrix[i] = malloc(ORDER * sizeof(double));
matrix[0][0] = 92, matrix[0][1] = 4.5, matrix[0][2] = 61; // 92x + 4.5y + 61z = 0
matrix[1][0] = -2, matrix[1][1] = 0, matrix[1][2] = 92387; // -2x + 92387z = 0
matrix[2][0] = -2, matrix[2][1] = 0, matrix[2][2] = -23; // -2x - 23z = 0
double **inv = inverse(matrix, ORDER);
for (int i = 0; i < ORDER; i++) {
for (int j = 0; j < ORDER; j++)
printf("%lf ", inv[i][j + ORDER]);
printf("\n");
free(inv[i]);
free(matrix[i]);
}
free(inv);
free(matrix);
}
Program for finding inverse of linear equations using Gauss Jordan method.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
double **inverse(double **matrix, int order) {
double **inverse = calloc(order, sizeof(double *));
for (int i = 0; i < order; i++) {
inverse[i] = calloc(2 * order, sizeof(double));
inverse[i][order + i] = 1;
memcpy(inverse[i], matrix[i], order * sizeof(double));
}
for (int i = 0; i < order; i++) {
for (int j = 0; j < order; j++) {
if (i == j)
continue;
double r = inverse[j][i] / inverse[i][i];
for (int k = 0; k < order * 2; k++)
inverse[j][k] -= r * inverse[i][k];
}
}
for (int i = 0; i < order; i++) {
for (int j = 0; j < order; j++)
inverse[i][j + order] /= inverse[i][i];
}
return inverse;
}
int main() {
const int ORDER = 3;
double **matrix = malloc(ORDER * sizeof(double *));
for (int i = 0; i < ORDER; i++)
matrix[i] = malloc(ORDER * sizeof(double));
matrix[0][0] = 92, matrix[0][1] = 4.5, matrix[0][2] = 61; // 92x + 4.5y + 61z = 0
matrix[1][0] = -2, matrix[1][1] = 0, matrix[1][2] = 92387; // -2x + 92387z = 0
matrix[2][0] = -2, matrix[2][1] = 0, matrix[2][2] = -23; // -2x - 23z = 0
double **inv = inverse(matrix, ORDER);
for (int i = 0; i < ORDER; i++) {
for (int j = 0; j < ORDER; j++)
printf("%lf ", inv[i][j + ORDER]);
printf("\n");
free(inv[i]);
free(matrix[i]);
}
free(inv);
free(matrix);
}
Program for finding eigen values using power method.
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define EPSILON 0.0000001
double *eigen(double **matrix, int order) {
double mxerr = 0;
double *prev = calloc(order, sizeof(double));
*prev = 1;
do {
double *eigen = calloc(order, sizeof(double));
for (int i = 0; i < order; i++)
for (int j = 0; j < order; j++)
eigen[i] += matrix[i][j] * prev[j];
double mx = fabs(eigen[0]);
for (int i = 1; i < order; i++)
mx = fabs(eigen[i]) > mx ? fabs(eigen[i]) : mx;
for (int i = 0; i < order; i++)
eigen[i] /= mx;
double error[order];
for (int i = 0; i < order; i++)
error[i] = fabs(eigen[i] - prev[i]);
mxerr = error[0];
for (int i = 1; i < order; i++)
mxerr = error[i] > mxerr ? error[i] : mxerr;
free(prev);
prev = eigen;
} while (mxerr > EPSILON);
return prev;
}
int main() {
const int ORDER = 3;
double **matrix = malloc(ORDER * sizeof(double *));
for (int i = 0; i < ORDER; i++)
matrix[i] = malloc(ORDER * sizeof(double));
matrix[0][0] = 21, matrix[0][1] = -99, matrix[0][2] = 0;
matrix[1][0] = -12, matrix[1][1] = 64, matrix[1][2] = 0;
matrix[2][0] = 9, matrix[2][1] = -0.5, matrix[2][2] = 4;
double *egn = eigen(matrix, ORDER);
for (int i = 0; i < ORDER; i++) {
printf("%lf ", egn[i]);
free(matrix[i]);
}
free(egn);
free(matrix);
}