128
file.org
128
file.org
@@ -355,3 +355,131 @@ int main() {
|
||||
free(matrix);
|
||||
}
|
||||
#+end_src
|
||||
|
||||
#+LATEX: \clearpage
|
||||
|
||||
* Program for finding inverse of linear equations using Gauss Jordan method.
|
||||
#+ATTR_LATEX: :options frame=single,breaklines=true
|
||||
#+begin_src C :tangle 9.c :results output :exports both :wrap src text
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
double **inverse(double **matrix, int order) {
|
||||
double **inverse = calloc(order, sizeof(double *));
|
||||
for (int i = 0; i < order; i++) {
|
||||
inverse[i] = calloc(2 * order, sizeof(double));
|
||||
inverse[i][order + i] = 1;
|
||||
memcpy(inverse[i], matrix[i], order * sizeof(double));
|
||||
}
|
||||
|
||||
for (int i = 0; i < order; i++) {
|
||||
for (int j = 0; j < order; j++) {
|
||||
if (i == j)
|
||||
continue;
|
||||
double r = inverse[j][i] / inverse[i][i];
|
||||
|
||||
for (int k = 0; k < order * 2; k++)
|
||||
inverse[j][k] -= r * inverse[i][k];
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < order; i++) {
|
||||
for (int j = 0; j < order; j++)
|
||||
inverse[i][j + order] /= inverse[i][i];
|
||||
}
|
||||
|
||||
return inverse;
|
||||
}
|
||||
|
||||
int main() {
|
||||
const int ORDER = 3;
|
||||
|
||||
double **matrix = malloc(ORDER * sizeof(double *));
|
||||
for (int i = 0; i < ORDER; i++)
|
||||
matrix[i] = malloc(ORDER * sizeof(double));
|
||||
|
||||
matrix[0][0] = 92, matrix[0][1] = 4.5, matrix[0][2] = 61; // 92x + 4.5y + 61z = 0
|
||||
matrix[1][0] = -2, matrix[1][1] = 0, matrix[1][2] = 92387; // -2x + 92387z = 0
|
||||
matrix[2][0] = -2, matrix[2][1] = 0, matrix[2][2] = -23; // -2x - 23z = 0
|
||||
|
||||
double **inv = inverse(matrix, ORDER);
|
||||
|
||||
for (int i = 0; i < ORDER; i++) {
|
||||
for (int j = 0; j < ORDER; j++)
|
||||
printf("%lf ", inv[i][j + ORDER]);
|
||||
printf("\n");
|
||||
free(inv[i]);
|
||||
free(matrix[i]);
|
||||
}
|
||||
free(inv);
|
||||
free(matrix);
|
||||
}
|
||||
#+end_src
|
||||
|
||||
* Program for finding eigen values using power method.
|
||||
#+ATTR_LATEX: :options frame=single,breaklines=true
|
||||
#+begin_src C :tangle 10.c :results output :exports both :wrap src text
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#define EPSILON 0.0000001
|
||||
|
||||
double *eigen(double **matrix, int order) {
|
||||
double mxerr = 0;
|
||||
double *prev = calloc(order, sizeof(double));
|
||||
*prev = 1;
|
||||
|
||||
do {
|
||||
double *eigen = calloc(order, sizeof(double));
|
||||
|
||||
for (int i = 0; i < order; i++)
|
||||
for (int j = 0; j < order; j++)
|
||||
eigen[i] += matrix[i][j] * prev[j];
|
||||
|
||||
double mx = fabs(eigen[0]);
|
||||
for (int i = 1; i < order; i++)
|
||||
mx = fabs(eigen[i]) > mx ? fabs(eigen[i]) : mx;
|
||||
|
||||
for (int i = 0; i < order; i++)
|
||||
eigen[i] /= mx;
|
||||
|
||||
double error[order];
|
||||
|
||||
for (int i = 0; i < order; i++)
|
||||
error[i] = fabs(eigen[i] - prev[i]);
|
||||
|
||||
mxerr = error[0];
|
||||
for (int i = 1; i < order; i++)
|
||||
mxerr = error[i] > mxerr ? error[i] : mxerr;
|
||||
|
||||
free(prev);
|
||||
prev = eigen;
|
||||
|
||||
} while (mxerr > EPSILON);
|
||||
|
||||
return prev;
|
||||
}
|
||||
|
||||
int main() {
|
||||
const int ORDER = 3;
|
||||
|
||||
double **matrix = malloc(ORDER * sizeof(double *));
|
||||
for (int i = 0; i < ORDER; i++)
|
||||
matrix[i] = malloc(ORDER * sizeof(double));
|
||||
|
||||
matrix[0][0] = 21, matrix[0][1] = -99, matrix[0][2] = 0;
|
||||
matrix[1][0] = -12, matrix[1][1] = 64, matrix[1][2] = 0;
|
||||
matrix[2][0] = 9, matrix[2][1] = -0.5, matrix[2][2] = 4;
|
||||
|
||||
double *egn = eigen(matrix, ORDER);
|
||||
|
||||
for (int i = 0; i < ORDER; i++) {
|
||||
printf("%lf ", egn[i]);
|
||||
free(matrix[i]);
|
||||
}
|
||||
free(egn);
|
||||
free(matrix);
|
||||
}
|
||||
#+end_src
|
||||
|
Reference in New Issue
Block a user