1 Commits

Author SHA1 Message Date
b918b75f27 tests: add some exec tests
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-18 08:05:21 +05:30
53 changed files with 1573 additions and 2454 deletions

View File

@@ -6,5 +6,4 @@ Checks: '
, -cppcoreguidelines-macro-usage , -cppcoreguidelines-macro-usage
, -cppcoreguidelines-avoid-const-or-ref-data-members , -cppcoreguidelines-avoid-const-or-ref-data-members
, -cppcoreguidelines-non-private-member-variables-in-classes , -cppcoreguidelines-non-private-member-variables-in-classes
, -cppcoreguidelines-avoid-non-const-global-variables
' '

View File

@@ -1,36 +0,0 @@
name: matar-clang
on: [push, pull_request, workflow_dispatch]
env:
BUILDDIR: build
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: cachix/install-nix-action@v20
with:
extra_nix_config: |
auto-optimise-store = true
experimental-features = nix-command flakes
- uses: cachix/cachix-action@v12
with:
name: pain
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
- name: setup
run: nix develop .#matar-clang -c meson setup $BUILDDIR
- name: fmt
run: nix develop .#matar-clang -c ninja clang-format-check -C $BUILDDIR
- name: lint
run: nix develop .#matar-clang -c ninja clang-tidy -C $BUILDDIR
- name: tests
run: nix develop .#matar-clang -c ninja test -C $BUILDDIR
- name: build
run: nix develop .#matar-clang -c ninja -C $BUILDDIR

View File

@@ -1,4 +1,4 @@
name: matar-gcc name: matar
on: [push, pull_request, workflow_dispatch] on: [push, pull_request, workflow_dispatch]
env: env:
@@ -14,17 +14,18 @@ jobs:
extra_nix_config: | extra_nix_config: |
auto-optimise-store = true auto-optimise-store = true
experimental-features = nix-command flakes experimental-features = nix-command flakes
- uses: cachix/cachix-action@v12
with:
name: pain
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
- name: setup - name: setup
run: nix develop .#matar -c meson setup $BUILDDIR run: nix develop -c meson setup $BUILDDIR
- name: fmt
run: nix develop -c ninja clang-format-check -C $BUILDDIR
- name: lint
run: nix develop -c ninja clang-tidy -C $BUILDDIR
- name: tests - name: tests
run: nix develop .#matar -c ninja test -C $BUILDDIR run: nix develop -c ninja test -C $BUILDDIR
- name: build - name: build
run: nix develop .#matar -c ninja -C $BUILDDIR run: nix develop -c ninja -C $BUILDDIR

View File

@@ -1,7 +1,6 @@
#include "bus.hh" #include "bus.hh"
#include "cpu/cpu.hh" #include "cpu/cpu.hh"
#include "memory.hh" #include "memory.hh"
#include "util/loglevel.hh"
#include <array> #include <array>
#include <cstdlib> #include <cstdlib>
#include <fstream> #include <fstream>
@@ -16,7 +15,7 @@
int int
main(int argc, const char* argv[]) { main(int argc, const char* argv[]) {
std::vector<uint8_t> rom; std::vector<uint8_t> rom;
std::array<uint8_t, matar::Memory::BIOS_SIZE> bios = { 0 }; std::array<uint8_t, Memory::BIOS_SIZE> bios = { 0 };
auto usage = [argv]() { auto usage = [argv]() {
std::cerr << "Usage: " << argv[0] << " <file> [-b <bios>]" << std::endl; std::cerr << "Usage: " << argv[0] << " <file> [-b <bios>]" << std::endl;
@@ -66,7 +65,7 @@ main(int argc, const char* argv[]) {
ifile.seekg(0, std::ios::end); ifile.seekg(0, std::ios::end);
bios_size = ifile.tellg(); bios_size = ifile.tellg();
if (bios_size != matar::Memory::BIOS_SIZE) { if (bios_size != Memory::BIOS_SIZE) {
throw std::ios::failure("BIOS file has invalid size", throw std::ios::failure("BIOS file has invalid size",
std::error_code()); std::error_code());
} }
@@ -85,15 +84,13 @@ main(int argc, const char* argv[]) {
std::flush(std::cout); std::flush(std::cout);
std::flush(std::cout); std::flush(std::cout);
matar::set_log_level(matar::LogLevel::Debug);
try { try {
matar::Memory memory(std::move(bios), std::move(rom)); Memory memory(std::move(bios), std::move(rom));
matar::Bus bus(memory); Bus bus(memory);
matar::Cpu cpu(bus); Cpu cpu(bus);
while (true) { while (true) {
cpu.step(); cpu.step();
sleep(2); sleep(1);
} }
} catch (const std::exception& e) { } catch (const std::exception& e) {
std::cerr << "Exception: " << e.what() << std::endl; std::cerr << "Exception: " << e.what() << std::endl;

View File

@@ -7,7 +7,7 @@ target_sources = files(
) )
executable( executable(
'matar', meson.project_name(),
target_sources, target_sources,
link_with: target_deps, link_with: target_deps,
include_directories: inc, include_directories: inc,

45
flake.lock generated
View File

@@ -1,60 +1,23 @@
{ {
"nodes": { "nodes": {
"flake-parts": {
"inputs": {
"nixpkgs-lib": "nixpkgs-lib"
},
"locked": {
"lastModified": 1693611461,
"narHash": "sha256-aPODl8vAgGQ0ZYFIRisxYG5MOGSkIczvu2Cd8Gb9+1Y=",
"owner": "hercules-ci",
"repo": "flake-parts",
"rev": "7f53fdb7bdc5bb237da7fefef12d099e4fd611ca",
"type": "github"
},
"original": {
"owner": "hercules-ci",
"repo": "flake-parts",
"type": "github"
}
},
"nixpkgs": { "nixpkgs": {
"locked": { "locked": {
"lastModified": 1695318763, "lastModified": 1694911158,
"narHash": "sha256-FHVPDRP2AfvsxAdc+AsgFJevMz5VBmnZglFUMlxBkcY=", "narHash": "sha256-5WENkcO8O5SuA5pozpVppLGByWfHVv/1wOWgB2+TfV4=",
"owner": "nixos", "owner": "nixos",
"repo": "nixpkgs", "repo": "nixpkgs",
"rev": "e12483116b3b51a185a33a272bf351e357ba9a99", "rev": "46423a1a750594236673c1d741def4e93cf5a8f7",
"type": "github" "type": "github"
}, },
"original": { "original": {
"owner": "nixos", "owner": "nixos",
"ref": "nixpkgs-unstable", "ref": "master",
"repo": "nixpkgs",
"type": "github"
}
},
"nixpkgs-lib": {
"locked": {
"dir": "lib",
"lastModified": 1693471703,
"narHash": "sha256-0l03ZBL8P1P6z8MaSDS/MvuU8E75rVxe5eE1N6gxeTo=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "3e52e76b70d5508f3cec70b882a29199f4d1ee85",
"type": "github"
},
"original": {
"dir": "lib",
"owner": "NixOS",
"ref": "nixos-unstable",
"repo": "nixpkgs", "repo": "nixpkgs",
"type": "github" "type": "github"
} }
}, },
"root": { "root": {
"inputs": { "inputs": {
"flake-parts": "flake-parts",
"nixpkgs": "nixpkgs" "nixpkgs": "nixpkgs"
} }
} }

View File

@@ -2,39 +2,80 @@
description = "matar"; description = "matar";
inputs = { inputs = {
nixpkgs.url = github:nixos/nixpkgs/nixpkgs-unstable; nixpkgs.url = github:nixos/nixpkgs/master;
flake-parts.url = github:hercules-ci/flake-parts;
}; };
outputs = inputs@{ self, nixpkgs, flake-parts }: outputs = { self, nixpkgs }:
flake-parts.lib.mkFlake { inherit inputs; } { let
systems = [ systems = [
"x86_64-linux" "x86_64-linux"
"aarch64-linux" "aarch64-linux"
]; ];
imports = [ eachSystem = with nixpkgs.lib; f: foldAttrs mergeAttrs { }
./nix (map (s: mapAttrs (_: v: { ${s} = v; }) (f s)) systems);
]; in
eachSystem (system:
let
pkgs = import nixpkgs { inherit system; };
perSystem = { self', system, ... }: # aliases
let llvm = pkgs.llvmPackages_16;
pkgs = import nixpkgs { inherit system; }; stdenv = llvm.libcxxStdenv;
src = pkgs.lib.sourceFilesBySuffices ./. [
".hh" # TODO: this is ugly
".cc" #dependencies
".build" nativeBuildInputs = with pkgs;
"meson_options.txt" [
meson
ninja
# libraries
pkg-config
cmake
((pkgs.fmt.override {
inherit stdenv;
enableShared = false;
}).overrideAttrs (oa: {
cmakeFlags = oa.cmakeFlags ++ [ "-DFMT_TEST=off" ];
})).dev
(catch2_3.override { inherit stdenv; }).out
]; ];
in in
rec { rec {
_module.args = { packages = rec {
inherit src pkgs; inherit (llvm) libcxxabi;
}; matar = stdenv.mkDerivation rec {
name = "matar";
version = "0.1";
src = pkgs.lib.sourceFilesBySuffices ./. [
".hh"
".cc"
".build"
"meson_options.txt"
];
outputs = [ "out" "dev" ];
formatter = pkgs.nixpkgs-fmt; inherit nativeBuildInputs;
enableParallelBuilding = true;
};
default = matar;
}; };
};
devShells = rec {
matar = pkgs.mkShell.override { inherit stdenv; } {
name = "matar";
packages = nativeBuildInputs ++ (with pkgs; [
# lsp
clang-tools_16
]);
};
default = matar;
};
formatter = pkgs.nixpkgs-fmt;
});
} }

View File

@@ -3,7 +3,6 @@
#include "memory.hh" #include "memory.hh"
#include <memory> #include <memory>
namespace matar {
class Bus { class Bus {
public: public:
Bus(const Memory& memory); Bus(const Memory& memory);
@@ -20,4 +19,3 @@ class Bus {
private: private:
std::shared_ptr<Memory> memory; std::shared_ptr<Memory> memory;
}; };
}

View File

@@ -1,13 +1,7 @@
#pragma once #include "cpu/utility.hh"
#include "cpu/alu.hh"
#include "cpu/psr.hh"
#include <cstdint> #include <cstdint>
#include <fmt/ostream.h>
#include <variant> #include <variant>
namespace matar {
namespace arm {
template<class... Ts> template<class... Ts>
struct overloaded : Ts... { struct overloaded : Ts... {
using Ts::operator()...; using Ts::operator()...;
@@ -15,8 +9,7 @@ struct overloaded : Ts... {
template<class... Ts> template<class... Ts>
overloaded(Ts...) -> overloaded<Ts...>; overloaded(Ts...) -> overloaded<Ts...>;
static constexpr size_t INSTRUCTION_SIZE = 4; namespace arm {
struct BranchAndExchange { struct BranchAndExchange {
uint8_t rn; uint8_t rn;
}; };
@@ -87,25 +80,6 @@ struct BlockDataTransfer {
}; };
struct DataProcessing { struct DataProcessing {
enum class OpCode {
AND = 0b0000,
EOR = 0b0001,
SUB = 0b0010,
RSB = 0b0011,
ADD = 0b0100,
ADC = 0b0101,
SBC = 0b0110,
RSC = 0b0111,
TST = 0b1000,
TEQ = 0b1001,
CMP = 0b1010,
CMN = 0b1011,
ORR = 0b1100,
MOV = 0b1101,
BIC = 0b1110,
MVN = 0b1111
};
std::variant<Shift, uint32_t> operand; std::variant<Shift, uint32_t> operand;
uint8_t rd; uint8_t rd;
uint8_t rn; uint8_t rn;
@@ -188,13 +162,4 @@ struct Instruction {
std::string disassemble(); std::string disassemble();
}; };
std::ostream&
operator<<(std::ostream& os, const DataProcessing::OpCode cond);
}
}
namespace fmt {
template<>
struct formatter<matar::arm::DataProcessing::OpCode> : ostream_formatter {};
} }

View File

@@ -0,0 +1,3 @@
headers += files(
'instruction.hh',
)

View File

@@ -1,21 +1,60 @@
#include "bus.hh" #pragma once
namespace matar { #include "arm/instruction.hh"
class CpuImpl; #include "bus.hh"
#include "psr.hh"
#include <cstdint>
using std::size_t;
class Cpu { class Cpu {
public: public:
Cpu(const Bus& bus) noexcept; Cpu(const Bus& bus);
Cpu(const Cpu&) = delete;
Cpu(Cpu&&) = delete;
Cpu& operator=(const Cpu&) = delete;
Cpu& operator=(Cpu&&) = delete;
~Cpu();
void step(); void step();
private: private:
std::unique_ptr<CpuImpl> impl; static constexpr uint8_t GPR_COUNT = 16;
static constexpr uint8_t GPR_FIQ_FIRST = 8;
static constexpr uint8_t GPR_SVC_FIRST = 13;
static constexpr uint8_t GPR_ABT_FIRST = 13;
static constexpr uint8_t GPR_IRQ_FIRST = 13;
static constexpr uint8_t GPR_UND_FIRST = 13;
static constexpr uint8_t GPR_SYS_USR_FIRST = 8;
std::shared_ptr<Bus> bus;
std::array<uint32_t, GPR_COUNT> gpr; // general purpose registers
Psr cpsr; // current program status register
Psr spsr; // status program status register
static constexpr uint8_t PC_INDEX = 15;
static_assert(PC_INDEX < GPR_COUNT);
uint32_t& pc = gpr[PC_INDEX];
bool is_flushed;
void chg_mode(const Mode to);
void exec_arm(const arm::Instruction instruction);
struct {
std::array<uint32_t, GPR_COUNT - GPR_FIQ_FIRST - 1> fiq;
std::array<uint32_t, GPR_COUNT - GPR_SVC_FIRST - 1> svc;
std::array<uint32_t, GPR_COUNT - GPR_ABT_FIRST - 1> abt;
std::array<uint32_t, GPR_COUNT - GPR_IRQ_FIRST - 1> irq;
std::array<uint32_t, GPR_COUNT - GPR_UND_FIRST - 1> und;
// visible registers before the mode switch
std::array<uint32_t, GPR_COUNT - GPR_SYS_USR_FIRST> old;
} gpr_banked; // banked general purpose registers
struct {
Psr fiq;
Psr svc;
Psr abt;
Psr irq;
Psr und;
} spsr_banked; // banked saved program status registers
}; };
}

View File

@@ -1,3 +1,7 @@
headers += files( headers += files(
'cpu.hh', 'cpu.hh',
) 'psr.hh',
'utility.hh'
)
subdir('arm')

View File

@@ -1,42 +1,7 @@
#pragma once #pragma once
#include "utility.hh"
#include <cstdint> #include <cstdint>
#include <fmt/ostream.h>
namespace matar {
enum class Mode {
/* M[4:0] in PSR */
User = 0b10000,
Fiq = 0b10001,
Irq = 0b10010,
Supervisor = 0b10011,
Abort = 0b10111,
Undefined = 0b11011,
System = 0b11111,
};
enum class State {
Arm = 0,
Thumb = 1
};
enum class Condition {
EQ = 0b0000,
NE = 0b0001,
CS = 0b0010,
CC = 0b0011,
MI = 0b0100,
PL = 0b0101,
VS = 0b0110,
VC = 0b0111,
HI = 0b1000,
LS = 0b1001,
GE = 0b1010,
LT = 0b1011,
GT = 0b1100,
LE = 0b1101,
AL = 0b1110
};
class Psr { class Psr {
public: public:
@@ -88,13 +53,3 @@ class Psr {
uint32_t psr; uint32_t psr;
}; };
// https://fmt.dev/dev/api.html#std-ostream-support
std::ostream&
operator<<(std::ostream& os, const Condition cond);
}
namespace fmt {
template<>
struct formatter<matar::Condition> : ostream_formatter {};
}

99
include/cpu/utility.hh Normal file
View File

@@ -0,0 +1,99 @@
#pragma once
#include <fmt/ostream.h>
#include <ostream>
static constexpr size_t ARM_INSTRUCTION_SIZE = 4;
static constexpr size_t THUMB_INSTRUCTION_SIZE = 2;
enum class Mode {
/* M[4:0] in PSR */
User = 0b10000,
Fiq = 0b10001,
Irq = 0b10010,
Supervisor = 0b10011,
Abort = 0b10111,
Undefined = 0b11011,
System = 0b11111,
};
enum class State {
Arm = 0,
Thumb = 1
};
enum class Condition {
EQ = 0b0000,
NE = 0b0001,
CS = 0b0010,
CC = 0b0011,
MI = 0b0100,
PL = 0b0101,
VS = 0b0110,
VC = 0b0111,
HI = 0b1000,
LS = 0b1001,
GE = 0b1010,
LT = 0b1011,
GT = 0b1100,
LE = 0b1101,
AL = 0b1110
};
// https://fmt.dev/dev/api.html#std-ostream-support
std::ostream&
operator<<(std::ostream& os, const Condition cond);
template<>
struct fmt::formatter<Condition> : ostream_formatter {};
enum class OpCode {
AND = 0b0000,
EOR = 0b0001,
SUB = 0b0010,
RSB = 0b0011,
ADD = 0b0100,
ADC = 0b0101,
SBC = 0b0110,
RSC = 0b0111,
TST = 0b1000,
TEQ = 0b1001,
CMP = 0b1010,
CMN = 0b1011,
ORR = 0b1100,
MOV = 0b1101,
BIC = 0b1110,
MVN = 0b1111
};
// https://fmt.dev/dev/api.html#std-ostream-support
std::ostream&
operator<<(std::ostream& os, const OpCode cond);
template<>
struct fmt::formatter<OpCode> : ostream_formatter {};
enum class ShiftType {
LSL = 0b00,
LSR = 0b01,
ASR = 0b10,
ROR = 0b11
};
struct ShiftData {
ShiftType type;
bool immediate;
uint8_t operand;
};
struct Shift {
uint8_t rm;
ShiftData data;
};
uint32_t
eval_shift(ShiftType shift_type, uint32_t value, uint8_t amount, bool& carry);
// https://fmt.dev/dev/api.html#std-ostream-support
std::ostream&
operator<<(std::ostream& os, const ShiftType cond);
template<>
struct fmt::formatter<ShiftType> : ostream_formatter {};

View File

@@ -3,10 +3,7 @@
#include <cstdint> #include <cstdint>
#include <string> #include <string>
namespace matar {
struct Header { struct Header {
static constexpr uint8_t HEADER_SIZE = 192;
enum class UniqueCode { enum class UniqueCode {
Old, // old games Old, // old games
New, // new games New, // new games
@@ -45,4 +42,3 @@ struct Header {
uint32_t multiboot_entrypoint; uint32_t multiboot_entrypoint;
uint8_t slave_id; uint8_t slave_id;
}; };
}

View File

@@ -4,10 +4,8 @@
#include <array> #include <array>
#include <cstddef> #include <cstddef>
#include <cstdint> #include <cstdint>
#include <unordered_map>
#include <vector> #include <vector>
namespace matar {
class Memory { class Memory {
public: public:
static constexpr size_t BIOS_SIZE = 1024 * 16; static constexpr size_t BIOS_SIZE = 1024 * 16;
@@ -17,6 +15,12 @@ class Memory {
uint8_t read(size_t address) const; uint8_t read(size_t address) const;
void write(size_t address, uint8_t byte); void write(size_t address, uint8_t byte);
uint16_t read_halfword(size_t address) const;
void write_halfword(size_t address, uint16_t halfword);
uint32_t read_word(size_t address) const;
void write_word(size_t address, uint32_t word);
private: private:
#define MEMORY_REGION(name, start, end) \ #define MEMORY_REGION(name, start, end) \
static constexpr size_t name##_START = start; \ static constexpr size_t name##_START = start; \
@@ -53,9 +57,7 @@ class Memory {
#undef MEMORY_REGION #undef MEMORY_REGION
std::unordered_map<size_t, uint8_t> invalid_mem;
std::vector<uint8_t> rom; std::vector<uint8_t> rom;
Header header; Header header;
void parse_header(); void parse_header();
}; };
}

View File

@@ -4,9 +4,6 @@ headers = files(
'header.hh', 'header.hh',
) )
inc = include_directories('.')
subdir('cpu') subdir('cpu')
subdir('util')
install_headers(headers, subdir: meson.project_name(), preserve_path: true) install_headers(headers, subdir: meson.project_name(), preserve_path: true)

View File

@@ -1,14 +0,0 @@
#pragma once
namespace matar {
enum class LogLevel {
Off = 1 << 0,
Error = 1 << 1,
Warn = 1 << 2,
Info = 1 << 3,
Debug = 1 << 4
};
void
set_log_level(LogLevel level);
}

View File

@@ -1,3 +0,0 @@
headers += files(
'loglevel.hh'
)

View File

@@ -4,8 +4,7 @@ project('matar', 'cpp',
default_options : ['warning_level=3', default_options : ['warning_level=3',
'werror=true', 'werror=true',
'optimization=3', 'optimization=3',
'cpp_std=c++20', 'cpp_std=c++20'])
'default_library=static'])
compiler = meson.get_compiler('cpp') compiler = meson.get_compiler('cpp')
@@ -31,6 +30,8 @@ else
endif endif
''' '''
inc = include_directories('include')
subdir('include') subdir('include')
subdir('src') subdir('src')
subdir('apps') subdir('apps')

View File

@@ -1,23 +0,0 @@
{ stdenv
, meson
, ninja
, pkg-config
, src ? "../."
, libraries ? [ ]
}:
stdenv.mkDerivation {
name = "matar";
version = "0.1";
inherit src;
outputs = [ "out" "dev" ];
nativeBuildInputs = [
meson
ninja
pkg-config
] ++ libraries;
enableParallelBuilding = true;
}

View File

@@ -1,11 +0,0 @@
{ ... }: {
imports = [
./matar.nix
./matar-clang.nix
];
perSystem = { self', pkgs, ... }: {
packages.default = self'.packages.matar-clang;
devShells.default = self'.devShells.matar-clang;
};
}

View File

@@ -1,25 +0,0 @@
{ ... }: {
perSystem = { pkgs, src, ... }:
let
llvm = pkgs.llvmPackages_16;
stdenv = llvm.libcxxStdenv;
libraries = with pkgs; [
((pkgs.fmt.override {
inherit stdenv;
enableShared = false;
}).overrideAttrs (oa: {
cmakeFlags = oa.cmakeFlags ++ [ "-DFMT_TEST=off" ];
})).dev
(catch2_3.override { inherit stdenv; }).out
];
in
{
packages.matar-clang = pkgs.callPackage ./build.nix { inherit src libraries stdenv; };
devShells.matar-clang = pkgs.callPackage ./shell.nix {
inherit libraries stdenv;
tools = with pkgs; [ clang-tools_16 ];
};
};
}

View File

@@ -1,13 +0,0 @@
{ ... }: {
perSystem = { pkgs, src, ... }:
let
libraries = with pkgs; [
(pkgs.fmt.override { enableShared = false; }).dev
catch2_3.out
];
in
{
packages.matar = pkgs.callPackage ./build.nix { inherit src libraries; };
devShells.matar = pkgs.callPackage ./shell.nix { inherit libraries; };
};
}

View File

@@ -1,20 +0,0 @@
{ stdenv
, mkShell
, meson
, ninja
, pkg-config
, libraries ? [ ]
, tools ? [ ]
}:
mkShell.override { inherit stdenv; } {
name = "matar";
packages = [
meson
ninja
pkg-config
] ++ libraries ++ tools;
enableParallelBuilding = true;
}

View File

@@ -1,8 +1,6 @@
#include "bus.hh" #include "bus.hh"
#include "util/log.hh"
#include <memory> #include <memory>
namespace matar {
Bus::Bus(const Memory& memory) Bus::Bus(const Memory& memory)
: memory(std::make_shared<Memory>(memory)) {} : memory(std::make_shared<Memory>(memory)) {}
@@ -18,38 +16,20 @@ Bus::write_byte(size_t address, uint8_t byte) {
uint16_t uint16_t
Bus::read_halfword(size_t address) { Bus::read_halfword(size_t address) {
if (address & 0b01) return memory->read_halfword(address);
glogger.warn("Reading a non aligned halfword address");
return memory->read(address) | memory->read(address + 1) << 8;
} }
void void
Bus::write_halfword(size_t address, uint16_t halfword) { Bus::write_halfword(size_t address, uint16_t halfword) {
if (address & 0b01) memory->write_halfword(address, halfword);
glogger.warn("Writing to a non aligned halfword address");
memory->write(address, halfword & 0xFF);
memory->write(address + 1, halfword >> 8 & 0xFF);
} }
uint32_t uint32_t
Bus::read_word(size_t address) { Bus::read_word(size_t address) {
if (address & 0b11) return memory->read_word(address);
glogger.warn("Reading a non aligned word address");
return memory->read(address) | memory->read(address + 1) << 8 |
memory->read(address + 2) << 16 | memory->read(address + 3) << 24;
} }
void void
Bus::write_word(size_t address, uint32_t word) { Bus::write_word(size_t address, uint32_t word) {
if (address & 0b11) memory->write_word(address, word);
glogger.warn("Writing to a non aligned word address");
memory->write(address, word & 0xFF);
memory->write(address + 1, word >> 8 & 0xFF);
memory->write(address + 2, word >> 16 & 0xFF);
memory->write(address + 3, word >> 24 & 0xFF);
}
} }

View File

@@ -1,35 +0,0 @@
#pragma once
#include <cstdint>
#include <fmt/ostream.h>
namespace matar {
enum class ShiftType {
LSL = 0b00,
LSR = 0b01,
ASR = 0b10,
ROR = 0b11
};
struct ShiftData {
ShiftType type;
bool immediate;
uint8_t operand;
};
struct Shift {
uint8_t rm;
ShiftData data;
};
uint32_t
eval_shift(ShiftType shift_type, uint32_t value, uint8_t amount, bool& carry);
// https://fmt.dev/dev/api.html#std-ostream-support
std::ostream&
operator<<(std::ostream& os, const ShiftType cond);
}
namespace fmt {
template<>
struct formatter<matar::ShiftType> : ostream_formatter {};
}

View File

@@ -1,12 +1,13 @@
#include "cpu/cpu-impl.hh" #include "cpu/cpu.hh"
#include "util/bits.hh" #include "util/bits.hh"
#include "util/log.hh" #include "util/log.hh"
namespace matar { using namespace logger;
void void
CpuImpl::exec_arm(const arm::Instruction instruction) { Cpu::exec_arm(const arm::Instruction instruction) {
Condition cond = instruction.condition; auto cond = instruction.condition;
arm::InstructionData data = instruction.data; auto data = instruction.data;
if (!cpsr.condition(cond)) { if (!cpsr.condition(cond)) {
return; return;
@@ -14,12 +15,12 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
auto pc_error = [](uint8_t r) { auto pc_error = [](uint8_t r) {
if (r == PC_INDEX) if (r == PC_INDEX)
glogger.error("Using PC (R15) as operand register"); log_error("Using PC (R15) as operand register");
}; };
auto pc_warn = [](uint8_t r) { auto pc_warn = [](uint8_t r) {
if (r == PC_INDEX) if (r == PC_INDEX)
glogger.warn("Using PC (R15) as operand register"); log_warn("Using PC (R15) as operand register");
}; };
using namespace arm; using namespace arm;
@@ -48,19 +49,20 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
}, },
[this](Branch& data) { [this](Branch& data) {
if (data.link) if (data.link)
gpr[14] = pc - INSTRUCTION_SIZE; gpr[14] = pc - ARM_INSTRUCTION_SIZE;
// data.offset accounts for two instructions ahead when // data.offset accounts for two instructions ahead when
// disassembling, so need to adjust // disassembling, so need to adjust
pc = static_cast<int32_t>(pc) - 2 * INSTRUCTION_SIZE + data.offset; pc =
static_cast<int32_t>(pc) - 2 * ARM_INSTRUCTION_SIZE + data.offset;
// pc is affected so flush the pipeline // pc is affected so flush the pipeline
is_flushed = true; is_flushed = true;
}, },
[this, pc_error](Multiply& data) { [this, pc_error](Multiply& data) {
if (data.rd == data.rm) if (data.rd == data.rm)
glogger.error("rd and rm are not distinct in {}", log_error("rd and rm are not distinct in {}",
typeid(data).name()); typeid(data).name());
pc_error(data.rd); pc_error(data.rd);
pc_error(data.rd); pc_error(data.rd);
@@ -78,8 +80,8 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
[this, pc_error](MultiplyLong& data) { [this, pc_error](MultiplyLong& data) {
if (data.rdhi == data.rdlo || data.rdhi == data.rm || if (data.rdhi == data.rdlo || data.rdhi == data.rm ||
data.rdlo == data.rm) data.rdlo == data.rm)
glogger.error("rdhi, rdlo and rm are not distinct in {}", log_error("rdhi, rdlo and rm are not distinct in {}",
typeid(data).name()); typeid(data).name());
pc_error(data.rdhi); pc_error(data.rdhi);
pc_error(data.rdlo); pc_error(data.rdlo);
@@ -87,27 +89,23 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
pc_error(data.rs); pc_error(data.rs);
if (data.uns) { if (data.uns) {
auto cast = [](uint32_t x) -> uint64_t { uint64_t eval =
return static_cast<uint64_t>(x); static_cast<uint64_t>(gpr[data.rm]) *
}; static_cast<uint64_t>(gpr[data.rs]) +
(data.acc ? (static_cast<uint64_t>(gpr[data.rdhi]) << 32) |
uint64_t eval = cast(gpr[data.rm]) * cast(gpr[data.rs]) + static_cast<uint64_t>(gpr[data.rdlo])
(data.acc ? (cast(gpr[data.rdhi]) << 32) | : 0);
cast(gpr[data.rdlo])
: 0);
gpr[data.rdlo] = bit_range(eval, 0, 31); gpr[data.rdlo] = bit_range(eval, 0, 31);
gpr[data.rdhi] = bit_range(eval, 32, 63); gpr[data.rdhi] = bit_range(eval, 32, 63);
} else { } else {
auto cast = [](uint32_t x) -> int64_t { int64_t eval =
return static_cast<int64_t>(static_cast<int32_t>(x)); static_cast<int64_t>(gpr[data.rm]) *
}; static_cast<int64_t>(gpr[data.rs]) +
(data.acc ? static_cast<int64_t>(gpr[data.rdhi]) << 32 |
int64_t eval = cast(gpr[data.rm]) * cast(gpr[data.rs]) + static_cast<int64_t>(gpr[data.rdlo])
(data.acc ? (cast(gpr[data.rdhi]) << 32) | : 0);
cast(gpr[data.rdlo])
: 0);
gpr[data.rdlo] = bit_range(eval, 0, 31); gpr[data.rdlo] = bit_range(eval, 0, 31);
gpr[data.rdhi] = bit_range(eval, 32, 63); gpr[data.rdhi] = bit_range(eval, 32, 63);
@@ -120,7 +118,7 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
cpsr.set_v(0); cpsr.set_v(0);
} }
}, },
[](Undefined) { glogger.warn("Undefined instruction"); }, [](Undefined) { log_warn("Undefined instruction"); },
[this, pc_error](SingleDataSwap& data) { [this, pc_error](SingleDataSwap& data) {
pc_error(data.rm); pc_error(data.rm);
pc_error(data.rn); pc_error(data.rn);
@@ -139,12 +137,12 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
uint32_t address = gpr[data.rn]; uint32_t address = gpr[data.rn];
if (!data.pre && data.write) if (!data.pre && data.write)
glogger.warn("Write-back enabled with post-indexing in {}", log_warn("Write-back enabled with post-indexing in {}",
typeid(data).name()); typeid(data).name());
if (data.rn == PC_INDEX && data.write) if (data.rn == PC_INDEX && data.write)
glogger.warn("Write-back enabled with base register as PC {}", log_warn("Write-back enabled with base register as PC {}",
typeid(data).name()); typeid(data).name());
if (data.write) if (data.write)
pc_warn(data.rn); pc_warn(data.rn);
@@ -172,11 +170,13 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
// PC is always two instructions ahead // PC is always two instructions ahead
if (data.rn == PC_INDEX) if (data.rn == PC_INDEX)
address -= 2 * INSTRUCTION_SIZE; address -= 2 * ARM_INSTRUCTION_SIZE;
if (data.pre) if (data.pre)
address += (data.up ? offset : -offset); address += (data.up ? offset : -offset);
debug(address);
// load // load
if (data.load) { if (data.load) {
// byte // byte
@@ -189,7 +189,7 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
} else { } else {
// take PC into consideration // take PC into consideration
if (data.rd == PC_INDEX) if (data.rd == PC_INDEX)
address += INSTRUCTION_SIZE; address += ARM_INSTRUCTION_SIZE;
// byte // byte
if (data.byte) if (data.byte)
@@ -210,32 +210,23 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
}, },
[this, pc_warn, pc_error](HalfwordTransfer& data) { [this, pc_warn, pc_error](HalfwordTransfer& data) {
uint32_t address = gpr[data.rn]; uint32_t address = gpr[data.rn];
uint32_t offset = 0;
if (!data.pre && data.write) if (!data.pre && data.write)
glogger.error("Write-back enabled with post-indexing in {}", log_error("Write-back enabled with post-indexing in {}",
typeid(data).name()); typeid(data).name());
if (data.sign && !data.load) if (data.sign && !data.load)
glogger.error("Signed data found in {}", typeid(data).name()); log_error("Signed data found in {}", typeid(data).name());
if (data.write) if (data.write)
pc_warn(data.rn); pc_warn(data.rn);
// offset is register number (4 bits) when not an immediate // offset is register number (4 bits) when not an immediate
if (!data.imm) { if (!data.imm)
pc_error(data.offset); pc_error(data.offset);
offset = gpr[data.offset];
} else {
offset = data.offset;
}
// PC is always two instructions ahead
if (data.rn == PC_INDEX)
address -= 2 * INSTRUCTION_SIZE;
if (data.pre) if (data.pre)
address += (data.up ? offset : -offset); address += (data.up ? data.offset : -data.offset);
// load // load
if (data.load) { if (data.load) {
@@ -265,7 +256,7 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
} else { } else {
// take PC into consideration // take PC into consideration
if (data.rd == PC_INDEX) if (data.rd == PC_INDEX)
address += INSTRUCTION_SIZE; address += ARM_INSTRUCTION_SIZE;
// halfword // halfword
if (data.half) if (data.half)
@@ -273,7 +264,7 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
} }
if (!data.pre) if (!data.pre)
address += (data.up ? offset : -offset); address += (data.up ? data.offset : -data.offset);
if (!data.pre || data.write) if (!data.pre || data.write)
gpr[data.rn] = address; gpr[data.rn] = address;
@@ -291,8 +282,8 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
pc_error(data.rn); pc_error(data.rn);
if (cpsr.mode() == Mode::User && data.s) { if (cpsr.mode() == Mode::User && data.s) {
glogger.error("Bit S is set outside priviliged modes in {}", log_error("Bit S is set outside priviliged modes in {}",
typeid(data).name()); typeid(data).name());
} }
// we just change modes to load user registers // we just change modes to load user registers
@@ -301,9 +292,8 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
chg_mode(Mode::User); chg_mode(Mode::User);
if (data.write) { if (data.write) {
glogger.error( log_error("Write-back enable for user bank registers in {}",
"Write-back enable for user bank registers in {}", typeid(data).name());
typeid(data).name());
} }
} }
@@ -342,8 +332,6 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
// reset back to original address + offset if incremented earlier // reset back to original address + offset if incremented earlier
if (data.up) if (data.up)
address -= n_regs * alignment; address -= n_regs * alignment;
else
address -= alignment;
if (!data.pre || data.write) if (!data.pre || data.write)
gpr[data.rn] = address; gpr[data.rn] = address;
@@ -356,8 +344,8 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
}, },
[this, pc_error](PsrTransfer& data) { [this, pc_error](PsrTransfer& data) {
if (data.spsr && cpsr.mode() == Mode::User) { if (data.spsr && cpsr.mode() == Mode::User) {
glogger.error("Accessing SPSR in User mode in {}", log_error("Accessing SPSR in User mode in {}",
typeid(data).name()); typeid(data).name());
} }
Psr& psr = data.spsr ? spsr : cpsr; Psr& psr = data.spsr ? spsr : cpsr;
@@ -375,23 +363,24 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
} }
break; break;
case PsrTransfer::Type::Msr_flg: case PsrTransfer::Type::Msr_flg:
uint32_t operand = psr.set_n(get_bit(data.operand, 31));
(data.imm ? data.operand : gpr[data.operand]); psr.set_z(get_bit(data.operand, 30));
psr.set_n(get_bit(operand, 31)); psr.set_c(get_bit(data.operand, 29));
psr.set_z(get_bit(operand, 30)); psr.set_v(get_bit(data.operand, 28));
psr.set_c(get_bit(operand, 29));
psr.set_v(get_bit(operand, 28));
break; break;
} }
}, },
[this, pc_error](DataProcessing& data) { [this, pc_error](DataProcessing& data) {
using OpCode = DataProcessing::OpCode;
uint32_t op_1 = gpr[data.rn]; uint32_t op_1 = gpr[data.rn];
uint32_t op_2 = 0; uint32_t op_2 = 0;
uint32_t result = 0; uint32_t result = 0;
bool overflow = cpsr.v();
bool carry = cpsr.c();
bool negative = cpsr.n();
bool zero = cpsr.z();
if (const uint32_t* immediate = if (const uint32_t* immediate =
std::get_if<uint32_t>(&data.operand)) { std::get_if<uint32_t>(&data.operand)) {
op_2 = *immediate; op_2 = *immediate;
@@ -413,107 +402,154 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
// PC is 12 bytes ahead when shifting // PC is 12 bytes ahead when shifting
if (data.rn == PC_INDEX) if (data.rn == PC_INDEX)
op_1 += INSTRUCTION_SIZE; op_1 += ARM_INSTRUCTION_SIZE;
} }
bool overflow = cpsr.v();
bool carry = cpsr.c();
auto sub = [&carry, &overflow](uint32_t a, uint32_t b) -> uint32_t {
bool s1 = get_bit(a, 31);
bool s2 = get_bit(b, 31);
uint32_t result = a - b;
carry = b <= a;
overflow = s1 != s2 && s2 == get_bit(result, 31);
return result;
};
auto add = [&carry, &overflow](
uint32_t a, uint32_t b, bool c = 0) -> uint32_t {
bool s1 = get_bit(a, 31);
bool s2 = get_bit(b, 31);
// 33 bits
uint64_t result_ = a + b + c;
uint32_t result = result_ & 0xFFFFFFFF;
carry = get_bit(result_, 32);
overflow = s1 == s2 && s2 != get_bit(result, 31);
return result;
};
auto sbc = [&carry,
&overflow](uint32_t a, uint32_t b, bool c) -> uint32_t {
bool s1 = get_bit(a, 31);
bool s2 = get_bit(b, 31);
uint64_t result_ = a - b + c - 1;
uint32_t result = result_ & 0xFFFFFFFF;
carry = get_bit(result_, 32);
overflow = s1 != s2 && s2 == get_bit(result, 31);
return result;
};
switch (data.opcode) { switch (data.opcode) {
case OpCode::AND: case OpCode::AND: {
case OpCode::TST:
result = op_1 & op_2; result = op_1 & op_2;
result = op_1 & op_2;
break; negative = get_bit(result, 31);
case OpCode::EOR: } break;
case OpCode::TEQ: case OpCode::EOR: {
result = op_1 ^ op_2; result = op_1 ^ op_2;
break;
case OpCode::SUB: negative = get_bit(result, 31);
case OpCode::CMP: } break;
result = sub(op_1, op_2); case OpCode::SUB: {
break; bool s1 = get_bit(op_1, 31);
case OpCode::RSB: bool s2 = get_bit(op_2, 31);
result = sub(op_2, op_1); result = op_1 - op_2;
break; negative = get_bit(result, 31);
case OpCode::ADD: carry = op_1 < op_2;
case OpCode::CMN: overflow = s1 != s2 && s2 == negative;
result = add(op_1, op_2); } break;
break; case OpCode::RSB: {
case OpCode::ADC: bool s1 = get_bit(op_1, 31);
result = add(op_1, op_2, carry); bool s2 = get_bit(op_2, 31);
break; result = op_2 - op_1;
case OpCode::SBC:
result = sbc(op_1, op_2, carry); negative = get_bit(result, 31);
break; carry = op_2 < op_1;
case OpCode::RSC: overflow = s1 != s2 && s1 == negative;
result = sbc(op_2, op_1, carry); } break;
break; case OpCode::ADD: {
case OpCode::ORR: bool s1 = get_bit(op_1, 31);
bool s2 = get_bit(op_2, 31);
// result_ is 33 bits
uint64_t result_ = op_2 + op_1;
result = result_ & 0xFFFFFFFF;
negative = get_bit(result, 31);
carry = get_bit(result_, 32);
overflow = s1 == s2 && s1 != negative;
} break;
case OpCode::ADC: {
bool s1 = get_bit(op_1, 31);
bool s2 = get_bit(op_2, 31);
uint64_t result_ = op_2 + op_1 + carry;
result = result_ & 0xFFFFFFFF;
negative = get_bit(result, 31);
carry = get_bit(result_, 32);
overflow = s1 == s2 && s1 != negative;
} break;
case OpCode::SBC: {
bool s1 = get_bit(op_1, 31);
bool s2 = get_bit(op_2, 31);
uint64_t result_ = op_1 - op_2 + carry - 1;
result = result_ & 0xFFFFFFFF;
negative = get_bit(result, 31);
carry = get_bit(result_, 32);
overflow = s1 != s2 && s2 == negative;
} break;
case OpCode::RSC: {
bool s1 = get_bit(op_1, 31);
bool s2 = get_bit(op_2, 31);
uint64_t result_ = op_1 - op_2 + carry - 1;
result = result_ & 0xFFFFFFFF;
negative = get_bit(result, 31);
carry = get_bit(result_, 32);
overflow = s1 != s2 && s1 == negative;
} break;
case OpCode::TST: {
result = op_1 & op_2;
negative = get_bit(result, 31);
} break;
case OpCode::TEQ: {
result = op_1 ^ op_2;
negative = get_bit(result, 31);
} break;
case OpCode::CMP: {
bool s1 = get_bit(op_1, 31);
bool s2 = get_bit(op_2, 31);
result = op_1 - op_2;
negative = get_bit(result, 31);
carry = op_1 < op_2;
overflow = s1 != s2 && s2 == negative;
} break;
case OpCode::CMN: {
bool s1 = get_bit(op_1, 31);
bool s2 = get_bit(op_2, 31);
uint64_t result_ = op_2 + op_1;
result = result_ & 0xFFFFFFFF;
negative = get_bit(result, 31);
carry = get_bit(result_, 32);
overflow = s1 == s2 && s1 != negative;
} break;
case OpCode::ORR: {
result = op_1 | op_2; result = op_1 | op_2;
break;
case OpCode::MOV: negative = get_bit(result, 31);
} break;
case OpCode::MOV: {
result = op_2; result = op_2;
break;
case OpCode::BIC: negative = get_bit(result, 31);
} break;
case OpCode::BIC: {
result = op_1 & ~op_2; result = op_1 & ~op_2;
break;
case OpCode::MVN: negative = get_bit(result, 31);
} break;
case OpCode::MVN: {
result = ~op_2; result = ~op_2;
break;
negative = get_bit(result, 31);
} break;
} }
auto set_conditions = [this, carry, overflow, result]() { zero = result == 0;
debug(carry);
debug(overflow);
debug(zero);
debug(negative);
auto set_conditions = [this, carry, overflow, negative, zero]() {
cpsr.set_c(carry); cpsr.set_c(carry);
cpsr.set_v(overflow); cpsr.set_v(overflow);
cpsr.set_n(get_bit(result, 31)); cpsr.set_n(negative);
cpsr.set_z(result == 0); cpsr.set_z(zero);
}; };
if (data.set) { if (data.set) {
if (data.rd == PC_INDEX) { if (data.rd == 15) {
if (cpsr.mode() == Mode::User) if (cpsr.mode() == Mode::User)
glogger.error("Running {} in User mode", log_error("Running {} in User mode",
typeid(data).name()); typeid(data).name());
spsr = cpsr;
} else { } else {
set_conditions(); set_conditions();
} }
@@ -524,7 +560,7 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
set_conditions(); set_conditions();
} else { } else {
gpr[data.rd] = result; gpr[data.rd] = result;
if (data.rd == PC_INDEX || data.opcode == OpCode::MVN) if (data.rd == 15 || data.opcode == OpCode::MVN)
is_flushed = true; is_flushed = true;
} }
}, },
@@ -534,8 +570,7 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
spsr = cpsr; spsr = cpsr;
}, },
[](auto& data) { [](auto& data) {
glogger.error("Unimplemented {} instruction", typeid(data).name()); log_error("Unimplemented {} instruction", typeid(data).name());
} }, } },
data); data);
} }
}

View File

@@ -1,9 +1,9 @@
#include "instruction.hh" #include "cpu/arm/instruction.hh"
#include "cpu/utility.hh"
#include "util/bits.hh" #include "util/bits.hh"
#include <iterator> #include <iterator>
namespace matar { using namespace arm;
namespace arm {
Instruction::Instruction(uint32_t insn) Instruction::Instruction(uint32_t insn)
: condition(static_cast<Condition>(bit_range(insn, 28, 31))) { : condition(static_cast<Condition>(bit_range(insn, 28, 31))) {
@@ -21,7 +21,7 @@ Instruction::Instruction(uint32_t insn)
// lsh 2 and sign extend the 26 bit offset to 32 bits // lsh 2 and sign extend the 26 bit offset to 32 bits
offset = (static_cast<int32_t>(offset) << 8) >> 6; offset = (static_cast<int32_t>(offset) << 8) >> 6;
offset += 2 * INSTRUCTION_SIZE; offset += 2 * ARM_INSTRUCTION_SIZE;
data = Branch{ .link = link, .offset = offset }; data = Branch{ .link = link, .offset = offset };
@@ -152,8 +152,6 @@ Instruction::Instruction(uint32_t insn)
// Data Processing // Data Processing
} else if ((insn & 0x0C000000) == 0x00000000) { } else if ((insn & 0x0C000000) == 0x00000000) {
using OpCode = DataProcessing::OpCode;
uint8_t rd = bit_range(insn, 12, 15); uint8_t rd = bit_range(insn, 12, 15);
uint8_t rn = bit_range(insn, 16, 19); uint8_t rn = bit_range(insn, 16, 19);
bool set = get_bit(insn, 20); bool set = get_bit(insn, 20);
@@ -421,8 +419,6 @@ Instruction::disassemble() {
} }
}, },
[this](DataProcessing& data) { [this](DataProcessing& data) {
using OpCode = DataProcessing::OpCode;
std::string op_2; std::string op_2;
if (const uint32_t* operand = if (const uint32_t* operand =
@@ -499,37 +495,3 @@ Instruction::disassemble() {
[](auto) { return std::string("unknown instruction"); } }, [](auto) { return std::string("unknown instruction"); } },
data); data);
} }
std::ostream&
operator<<(std::ostream& os, const DataProcessing::OpCode opcode) {
#define CASE(opcode) \
case DataProcessing::OpCode::opcode: \
os << #opcode; \
break;
switch (opcode) {
CASE(AND)
CASE(EOR)
CASE(SUB)
CASE(RSB)
CASE(ADD)
CASE(ADC)
CASE(SBC)
CASE(RSC)
CASE(TST)
CASE(TEQ)
CASE(CMP)
CASE(CMN)
CASE(ORR)
CASE(MOV)
CASE(BIC)
CASE(MVN)
}
#undef CASE
return os;
}
}
}

View File

@@ -1,142 +0,0 @@
#include "cpu-impl.hh"
#include "util/bits.hh"
#include "util/log.hh"
#include <algorithm>
#include <cstdio>
namespace matar {
CpuImpl::CpuImpl(const Bus& bus) noexcept
: bus(std::make_shared<Bus>(bus))
, gpr({ 0 })
, cpsr(0)
, spsr(0)
, is_flushed(false)
, gpr_banked({ { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 } })
, spsr_banked({ 0, 0, 0, 0, 0 }) {
cpsr.set_mode(Mode::Supervisor);
cpsr.set_irq_disabled(true);
cpsr.set_fiq_disabled(true);
cpsr.set_state(State::Arm);
glogger.info("CPU successfully initialised");
// PC always points to two instructions ahead
// PC - 2 is the instruction being executed
pc += 2 * arm::INSTRUCTION_SIZE;
}
/* change modes */
void
CpuImpl::chg_mode(const Mode to) {
Mode from = cpsr.mode();
if (from == to)
return;
/* TODO: replace visible registers with view once I understand how to
* concatenate views */
#define STORE_BANKED(mode, MODE) \
std::copy(gpr.begin() + GPR_##MODE##_FIRST, \
gpr.begin() + gpr.size() - 1, \
gpr_banked.mode.begin())
switch (from) {
case Mode::Fiq:
STORE_BANKED(fiq, FIQ);
spsr_banked.fiq = spsr;
break;
case Mode::Supervisor:
STORE_BANKED(svc, SVC);
spsr_banked.svc = spsr;
break;
case Mode::Abort:
STORE_BANKED(abt, ABT);
spsr_banked.abt = spsr;
break;
case Mode::Irq:
STORE_BANKED(irq, IRQ);
spsr_banked.irq = spsr;
break;
case Mode::Undefined:
STORE_BANKED(und, UND);
spsr_banked.und = spsr;
break;
case Mode::User:
case Mode::System:
STORE_BANKED(old, SYS_USR);
break;
}
#define RESTORE_BANKED(mode, MODE) \
std::copy(gpr_banked.mode.begin(), \
gpr_banked.mode.end(), \
gpr.begin() + GPR_##MODE##_FIRST)
switch (to) {
case Mode::Fiq:
RESTORE_BANKED(fiq, FIQ);
spsr = spsr_banked.fiq;
break;
case Mode::Supervisor:
RESTORE_BANKED(svc, SVC);
spsr = spsr_banked.svc;
break;
case Mode::Abort:
RESTORE_BANKED(abt, ABT);
spsr = spsr_banked.abt;
break;
case Mode::Irq:
RESTORE_BANKED(irq, IRQ);
spsr = spsr_banked.irq;
break;
case Mode::Undefined:
RESTORE_BANKED(und, UND);
spsr = spsr_banked.und;
break;
case Mode::User:
case Mode::System:
STORE_BANKED(old, SYS_USR);
break;
}
#undef RESTORE_BANKED
cpsr.set_mode(to);
}
void
CpuImpl::step() {
// Current instruction is two instructions behind PC
uint32_t cur_pc = pc - 2 * arm::INSTRUCTION_SIZE;
if (cpsr.state() == State::Arm) {
uint32_t x = bus->read_word(cur_pc);
arm::Instruction instruction(x);
glogger.info("{:#034b}", x);
exec_arm(instruction);
glogger.info("0x{:08X} : {}", cur_pc, instruction.disassemble());
if (is_flushed) {
// if flushed, do not increment the PC, instead set it to two
// instructions ahead to account for flushed "fetch" and "decode"
// instructions
pc += 2 * arm::INSTRUCTION_SIZE;
is_flushed = false;
} else {
// if not flushed continue like normal
pc += arm::INSTRUCTION_SIZE;
}
}
}
}

View File

@@ -1,59 +0,0 @@
#pragma once
#include "bus.hh"
#include "cpu/arm/instruction.hh"
#include "cpu/psr.hh"
#include <cstdint>
namespace matar {
class CpuImpl {
public:
CpuImpl(const Bus& bus) noexcept;
void step();
void chg_mode(const Mode to);
void exec_arm(const arm::Instruction instruction);
static constexpr uint8_t GPR_COUNT = 16;
static constexpr uint8_t GPR_FIQ_FIRST = 8;
static constexpr uint8_t GPR_SVC_FIRST = 13;
static constexpr uint8_t GPR_ABT_FIRST = 13;
static constexpr uint8_t GPR_IRQ_FIRST = 13;
static constexpr uint8_t GPR_UND_FIRST = 13;
static constexpr uint8_t GPR_SYS_USR_FIRST = 8;
std::shared_ptr<Bus> bus;
std::array<uint32_t, GPR_COUNT> gpr; // general purpose registers
Psr cpsr; // current program status register
Psr spsr; // status program status register
static constexpr uint8_t PC_INDEX = 15;
static_assert(PC_INDEX < GPR_COUNT);
uint32_t& pc = gpr[PC_INDEX];
bool is_flushed;
struct {
std::array<uint32_t, GPR_COUNT - GPR_FIQ_FIRST - 1> fiq;
std::array<uint32_t, GPR_COUNT - GPR_SVC_FIRST - 1> svc;
std::array<uint32_t, GPR_COUNT - GPR_ABT_FIRST - 1> abt;
std::array<uint32_t, GPR_COUNT - GPR_IRQ_FIRST - 1> irq;
std::array<uint32_t, GPR_COUNT - GPR_UND_FIRST - 1> und;
// visible registers before the mode switch
std::array<uint32_t, GPR_COUNT - GPR_SYS_USR_FIRST> old;
} gpr_banked; // banked general purpose registers
struct {
Psr fiq;
Psr svc;
Psr abt;
Psr irq;
Psr und;
} spsr_banked; // banked saved program status registers
};
}

View File

@@ -1,14 +1,144 @@
#include "cpu/cpu.hh" #include "cpu/cpu.hh"
#include "cpu-impl.hh" #include "cpu/utility.hh"
#include "util/bits.hh"
#include "util/log.hh"
#include <algorithm>
#include <cstdio>
namespace matar { using namespace logger;
Cpu::Cpu(const Bus& bus) noexcept
: impl(std::make_unique<CpuImpl>(bus)){};
Cpu::~Cpu() = default; Cpu::Cpu(const Bus& bus)
: bus(std::make_shared<Bus>(bus))
, gpr({ 0 })
, cpsr(0)
, spsr(0)
, is_flushed(false)
, gpr_banked({ { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 } })
, spsr_banked({ 0, 0, 0, 0, 0 }) {
cpsr.set_mode(Mode::Supervisor);
cpsr.set_irq_disabled(true);
cpsr.set_fiq_disabled(true);
cpsr.set_state(State::Arm);
log_info("CPU successfully initialised");
// PC always points to two instructions ahead
// PC - 2 is the instruction being executed
pc += 2 * ARM_INSTRUCTION_SIZE;
}
/* change modes */
void
Cpu::chg_mode(const Mode to) {
Mode from = cpsr.mode();
if (from == to)
return;
/* TODO: replace visible registers with view once I understand how to
* concatenate views */
#define STORE_BANKED(mode, MODE) \
std::copy(gpr.begin() + GPR_##MODE##_FIRST, \
gpr.begin() + gpr.size() - 1, \
gpr_banked.mode.begin())
switch (from) {
case Mode::Fiq:
STORE_BANKED(fiq, FIQ);
spsr_banked.fiq = spsr;
break;
case Mode::Supervisor:
STORE_BANKED(svc, SVC);
spsr_banked.svc = spsr;
break;
case Mode::Abort:
STORE_BANKED(abt, ABT);
spsr_banked.abt = spsr;
break;
case Mode::Irq:
STORE_BANKED(irq, IRQ);
spsr_banked.irq = spsr;
break;
case Mode::Undefined:
STORE_BANKED(und, UND);
spsr_banked.und = spsr;
break;
case Mode::User:
case Mode::System:
STORE_BANKED(old, SYS_USR);
break;
}
#define RESTORE_BANKED(mode, MODE) \
std::copy(gpr_banked.mode.begin(), \
gpr_banked.mode.end(), \
gpr.begin() + GPR_##MODE##_FIRST)
switch (to) {
case Mode::Fiq:
RESTORE_BANKED(fiq, FIQ);
spsr = spsr_banked.fiq;
break;
case Mode::Supervisor:
RESTORE_BANKED(svc, SVC);
spsr = spsr_banked.svc;
break;
case Mode::Abort:
RESTORE_BANKED(abt, ABT);
spsr = spsr_banked.abt;
break;
case Mode::Irq:
RESTORE_BANKED(irq, IRQ);
spsr = spsr_banked.irq;
break;
case Mode::Undefined:
RESTORE_BANKED(und, UND);
spsr = spsr_banked.und;
break;
case Mode::User:
case Mode::System:
STORE_BANKED(old, SYS_USR);
break;
}
#undef RESTORE_BANKED
cpsr.set_mode(to);
}
void void
Cpu::step() { Cpu::step() {
impl->step(); // Current instruction is two instructions behind PC
}; uint32_t cur_pc = pc - 2 * ARM_INSTRUCTION_SIZE;
if (cpsr.state() == State::Arm) {
debug(cur_pc);
uint32_t x = bus->read_word(cur_pc);
arm::Instruction instruction(x);
log_info("{:#034b}", x);
exec_arm(instruction);
log_info("0x{:08X} : {}", cur_pc, instruction.disassemble());
if (is_flushed) {
// if flushed, do not increment the PC, instead set it to two
// instructions ahead to account for flushed "fetch" and "decode"
// instructions
pc += 2 * ARM_INSTRUCTION_SIZE;
is_flushed = false;
} else {
// if not flushed continue like normal
pc += ARM_INSTRUCTION_SIZE;
}
}
} }

View File

@@ -1,8 +1,7 @@
lib_sources += files( lib_sources += files(
'cpu-impl.cc',
'cpu.cc', 'cpu.cc',
'psr.cc', 'psr.cc',
'alu.cc' 'utility.cc'
) )
subdir('arm') subdir('arm')

View File

@@ -1,8 +1,7 @@
#include "psr.hh" #include "cpu/psr.hh"
#include "util/bits.hh" #include "util/bits.hh"
#include "util/log.hh" #include "util/log.hh"
namespace matar {
Psr::Psr(uint32_t raw) Psr::Psr(uint32_t raw)
: psr(raw & PSR_CLEAR_RESERVED) {} : psr(raw & PSR_CLEAR_RESERVED) {}
@@ -91,42 +90,8 @@ Psr::condition(Condition cond) const {
case Condition::LE: case Condition::LE:
return z() || (n() != v()); return z() || (n() != v());
case Condition::AL: case Condition::AL:
return true && state() == State::Arm; return true;
} }
return false; return false;
} }
std::ostream&
operator<<(std::ostream& os, const Condition cond) {
#define CASE(cond) \
case Condition::cond: \
os << #cond; \
break;
switch (cond) {
CASE(EQ)
CASE(NE)
CASE(CS)
CASE(CC)
CASE(MI)
CASE(PL)
CASE(VS)
CASE(VC)
CASE(HI)
CASE(LS)
CASE(GE)
CASE(LT)
CASE(GT)
CASE(LE)
case Condition::AL: {
// empty
}
}
#undef CASE
return os;
}
}

View File

@@ -1,7 +1,72 @@
#include "alu.hh" #include "cpu/utility.hh"
#include "util/bits.hh" #include "util/bits.hh"
#include <bit>
std::ostream&
operator<<(std::ostream& os, const Condition cond) {
#define CASE(cond) \
case Condition::cond: \
os << #cond; \
break;
switch (cond) {
CASE(EQ)
CASE(NE)
CASE(CS)
CASE(CC)
CASE(MI)
CASE(PL)
CASE(VS)
CASE(VC)
CASE(HI)
CASE(LS)
CASE(GE)
CASE(LT)
CASE(GT)
CASE(LE)
case Condition::AL: {
// empty
}
}
#undef CASE
return os;
}
std::ostream&
operator<<(std::ostream& os, const OpCode opcode) {
#define CASE(opcode) \
case OpCode::opcode: \
os << #opcode; \
break;
switch (opcode) {
CASE(AND)
CASE(EOR)
CASE(SUB)
CASE(RSB)
CASE(ADD)
CASE(ADC)
CASE(SBC)
CASE(RSC)
CASE(TST)
CASE(TEQ)
CASE(CMP)
CASE(CMN)
CASE(ORR)
CASE(MOV)
CASE(BIC)
CASE(MVN)
}
#undef CASE
return os;
}
namespace matar {
uint32_t uint32_t
eval_shift(ShiftType shift_type, uint32_t value, uint8_t amount, bool& carry) { eval_shift(ShiftType shift_type, uint32_t value, uint8_t amount, bool& carry) {
uint32_t eval = 0; uint32_t eval = 0;
@@ -37,11 +102,13 @@ eval_shift(ShiftType shift_type, uint32_t value, uint8_t amount, bool& carry) {
break; break;
case ShiftType::ROR: case ShiftType::ROR:
if (amount == 0) { if (amount == 0) {
eval = (value >> 1) | (carry << 31); bool old_carry = carry;
carry = get_bit(value, 0); carry = get_bit(value, 0);
eval = (value >> 1) | (old_carry << 31);
} else { } else {
eval = std::rotr(value, amount);
carry = get_bit(value, (amount % 32 + 31) % 32); carry = get_bit(value, (amount % 32 + 31) % 32);
eval = std::rotr(value, amount);
} }
break; break;
} }
@@ -68,4 +135,3 @@ operator<<(std::ostream& os, const ShiftType shift_type) {
return os; return os;
} }
}

View File

@@ -1,12 +1,13 @@
#include "memory.hh" #include "memory.hh"
#include "header.hh" #include "header.hh"
#include "util/bits.hh" #include "util/bits.hh"
#include "util/crypto.hh"
#include "util/log.hh" #include "util/log.hh"
#include "util/utils.hh"
#include <bitset> #include <bitset>
#include <stdexcept> #include <stdexcept>
namespace matar { using namespace logger;
Memory::Memory(std::array<uint8_t, BIOS_SIZE>&& bios, Memory::Memory(std::array<uint8_t, BIOS_SIZE>&& bios,
std::vector<uint8_t>&& rom) std::vector<uint8_t>&& rom)
: bios(std::move(bios)) : bios(std::move(bios))
@@ -21,17 +22,17 @@ Memory::Memory(std::array<uint8_t, BIOS_SIZE>&& bios,
"fd2547724b505f487e6dcb29ec2ecff3af35a841a77ab2e85fd87350abd36570"; "fd2547724b505f487e6dcb29ec2ecff3af35a841a77ab2e85fd87350abd36570";
if (bios_hash != expected_hash) { if (bios_hash != expected_hash) {
glogger.warn("BIOS hash failed to match, run at your own risk" log_warn("BIOS hash failed to match, run at your own risk"
"\nExpected : {} " "\nExpected : {} "
"\nGot : {}", "\nGot : {}",
expected_hash, expected_hash,
bios_hash); bios_hash);
} }
parse_header(); parse_header();
glogger.info("Memory successfully initialised"); log_info("Memory successfully initialised");
glogger.info("Cartridge Title: {}", header.title); log_info("Cartridge Title: {}", header.title);
}; };
#define MATCHES(area) address >= area##_START&& address <= area##_END #define MATCHES(area) address >= area##_START&& address <= area##_END
@@ -57,7 +58,7 @@ Memory::read(size_t address) const {
} else if (MATCHES(ROM_2)) { } else if (MATCHES(ROM_2)) {
return rom[address - ROM_2_START]; return rom[address - ROM_2_START];
} else { } else {
glogger.error("Invalid memory region accessed"); log_error("Invalid memory region accessed");
return 0xFF; return 0xFF;
} }
} }
@@ -83,16 +84,53 @@ Memory::write(size_t address, uint8_t byte) {
} else if (MATCHES(ROM_2)) { } else if (MATCHES(ROM_2)) {
rom[address - ROM_2_START] = byte; rom[address - ROM_2_START] = byte;
} else { } else {
glogger.error("Invalid memory region accessed"); log_error("Invalid memory region accessed");
} }
} }
#undef MATCHES #undef MATCHES
uint16_t
Memory::read_halfword(size_t address) const {
if (address & 0b01)
log_warn("Reading a non aligned halfword address");
return read(address) | read(address + 1) << 8;
}
void
Memory::write_halfword(size_t address, uint16_t halfword) {
if (address & 0b01)
log_warn("Writing to a non aligned halfword address");
write(address, halfword & 0xFF);
write(address + 1, halfword >> 8 & 0xFF);
}
uint32_t
Memory::read_word(size_t address) const {
if (address & 0b11)
log_warn("Reading a non aligned word address");
return read(address) | read(address + 1) << 8 | read(address + 2) << 16 |
read(address + 3) << 24;
}
void
Memory::write_word(size_t address, uint32_t word) {
if (address & 0b11)
log_warn("Writing to a non aligned word address");
write(address, word & 0xFF);
write(address + 1, word >> 8 & 0xFF);
write(address + 2, word >> 16 & 0xFF);
write(address + 3, word >> 24 & 0xFF);
}
void void
Memory::parse_header() { Memory::parse_header() {
if (rom.size() < header.HEADER_SIZE) { if (rom.size() < 192) {
throw std::out_of_range( throw std::out_of_range(
"ROM is not large enough to even have a header"); "ROM is not large enough to even have a header");
} }
@@ -103,7 +141,7 @@ Memory::parse_header() {
// nintendo logo // nintendo logo
if (rom[0x9C] != 0x21) if (rom[0x9C] != 0x21)
glogger.info("HEADER: BIOS debugger bits not set to 0"); log_info("HEADER: BIOS debugger bits not set to 0");
// game info // game info
header.title = std::string(&rom[0xA0], &rom[0xA0 + 12]); header.title = std::string(&rom[0xA0], &rom[0xA0 + 12]);
@@ -138,7 +176,7 @@ Memory::parse_header() {
break; break;
default: default:
glogger.error("HEADER: invalid unique code: {}", rom[0xAC]); log_error("HEADER: invalid unique code: {}", rom[0xAC]);
} }
header.title_code = std::string(&rom[0xAD], &rom[0xAE]); header.title_code = std::string(&rom[0xAD], &rom[0xAE]);
@@ -167,16 +205,15 @@ Memory::parse_header() {
break; break;
default: default:
glogger.error("HEADER: invalid destination/language: {}", log_error("HEADER: invalid destination/language: {}", rom[0xAF]);
rom[0xAF]);
} }
if (rom[0xB2] != 0x96) if (rom[0xB2] != 0x96)
glogger.error("HEADER: invalid fixed byte at 0xB2"); log_error("HEADER: invalid fixed byte at 0xB2");
for (size_t i = 0xB5; i < 0xBC; i++) { for (size_t i = 0xB5; i < 0xBC; i++) {
if (rom[i] != 0x00) if (rom[i] != 0x00)
glogger.error("HEADER: invalid fixed bytes at 0xB5"); log_error("HEADER: invalid fixed bytes at 0xB5");
} }
header.version = rom[0xBC]; header.version = rom[0xBC];
@@ -190,9 +227,8 @@ Memory::parse_header() {
chk &= 0xFF; chk &= 0xFF;
if (chk != rom[0xBD]) if (chk != rom[0xBD])
glogger.error("HEADER: checksum does not match"); log_error("HEADER: checksum does not match");
} }
// multiboot not required right now // multiboot not required right now
} }
}

View File

@@ -3,24 +3,15 @@ lib_sources = files(
'bus.cc' 'bus.cc'
) )
subdir('util')
subdir('cpu') subdir('cpu')
lib_cpp_args = [ ] fmt = dependency('fmt', version : '>=10.1.0')
fmt = dependency('fmt', version : '>=10.1.0', static: true)
if not fmt.found()
fmt = dependency('fmt', version : '>=10.1.0', static: false)
lib_cpp_args += 'DFMT_HEADER_ONLY'
endif
lib = library( lib = library(
meson.project_name(), meson.project_name(),
lib_sources, lib_sources,
dependencies: [fmt], dependencies: [fmt],
include_directories: inc, include_directories: inc,
install: true, install: true
cpp_args: lib_cpp_args
) )
import('pkgconfig').generate(lib) import('pkgconfig').generate(lib)

View File

@@ -14,19 +14,19 @@ get_bit(Int num, size_t n) {
template<std::integral Int> template<std::integral Int>
inline void inline void
set_bit(Int& num, size_t n) { set_bit(Int& num, size_t n) {
num |= (static_cast<Int>(1) << n); num |= (1 << n);
} }
template<std::integral Int> template<std::integral Int>
inline void inline void
rst_bit(Int& num, size_t n) { rst_bit(Int& num, size_t n) {
num &= ~(static_cast<Int>(1) << n); num &= ~(1 << n);
} }
template<std::integral Int> template<std::integral Int>
inline void inline void
chg_bit(Int& num, size_t n, bool x) { chg_bit(Int& num, size_t n, bool x) {
num = (num & ~(static_cast<Int>(1) << n)) | (static_cast<Int>(x) << n); num = (num & ~(1 << n)) | (x << n);
} }
/// read range of bits from start to end inclusive /// read range of bits from start to end inclusive
@@ -36,5 +36,5 @@ bit_range(Int num, size_t start, size_t end) {
// NOTE: we do not require -1 if it is a signed integral // NOTE: we do not require -1 if it is a signed integral
Int left = Int left =
std::numeric_limits<Int>::digits - (std::is_unsigned<Int>::value) - end; std::numeric_limits<Int>::digits - (std::is_unsigned<Int>::value) - end;
return static_cast<Int>(num << left) >> (left + start); return num << left >> (left + start);
} }

View File

@@ -1,8 +0,0 @@
#include "log.hh"
logging::Logger glogger = logging::Logger();
void
matar::set_log_level(LogLevel level) {
glogger.set_level(level);
}

View File

@@ -1,83 +1,58 @@
#pragma once #pragma once
#include "util/loglevel.hh"
#include <fmt/ostream.h> #include <fmt/ostream.h>
#include <iostream> #include <iostream>
namespace logging {
namespace ansi {
static constexpr auto RED = "\033[31m";
static constexpr auto YELLOW = "\033[33m";
static constexpr auto MAGENTA = "\033[35m";
static constexpr auto WHITE = "\033[37m";
static constexpr auto BOLD = "\033[1m";
static constexpr auto RESET = "\033[0m";
}
using fmt::print; using fmt::print;
using std::clog;
class Logger { namespace logger {
using LogLevel = matar::LogLevel; namespace ansi {
static constexpr std::string_view RED = "\033[31m";
public: static constexpr std::string_view YELLOW = "\033[33m";
Logger(LogLevel level = LogLevel::Debug, FILE* stream = stderr) static constexpr std::string_view MAGENTA = "\033[35m";
: level(0) static constexpr std::string_view WHITE = "\033[37m";
, stream(stream) { static constexpr std::string_view BOLD = "\033[1m";
set_level(level); static constexpr std::string_view RESET = "\033[0m";
}
template<typename... Args>
void log(const fmt::format_string<Args...>& fmt, Args&&... args) {
fmt::println(stream, fmt, std::forward<Args>(args)...);
}
template<typename... Args>
void debug(const fmt::format_string<Args...>& fmt, Args&&... args) {
if (level & static_cast<uint8_t>(LogLevel::Debug)) {
print(stream, "{}{}[DEBUG] ", ansi::MAGENTA, ansi::BOLD);
log(fmt, std::forward<Args>(args)...);
print(stream, ansi::RESET);
}
}
template<typename... Args>
void info(const fmt::format_string<Args...>& fmt, Args&&... args) {
if (level & static_cast<uint8_t>(LogLevel::Info)) {
print(stream, "{}[INFO] ", ansi::WHITE);
log(fmt, std::forward<Args>(args)...);
print(stream, ansi::RESET);
}
}
template<typename... Args>
void warn(const fmt::format_string<Args...>& fmt, Args&&... args) {
if (level & static_cast<uint8_t>(LogLevel::Warn)) {
print(stream, "{}[WARN] ", ansi::YELLOW);
log(fmt, std::forward<Args>(args)...);
print(stream, ansi::RESET);
}
}
template<typename... Args>
void error(const fmt::format_string<Args...>& fmt, Args&&... args) {
if (level & static_cast<uint8_t>(LogLevel::Error)) {
print(stream, "{}{}[ERROR] ", ansi::RED, ansi::BOLD);
log(fmt, std::forward<Args>(args)...);
print(stream, ansi::RESET);
}
}
void set_level(LogLevel level) {
this->level = (static_cast<uint8_t>(level) << 1) - 1;
}
void set_stream(FILE* stream) { this->stream = stream; }
private:
uint8_t level;
FILE* stream;
};
} }
extern logging::Logger glogger; template<typename... Args>
inline void
log_raw(const fmt::format_string<Args...>& fmt, Args&&... args) {
fmt::println(clog, fmt, std::forward<Args>(args)...);
}
#define debug(x) glogger.debug("{} = {}", #x, x); template<typename... Args>
inline void
log_debug(const fmt::format_string<Args...>& fmt, Args&&... args) {
print(clog, "{}{}[DEBUG] ", ansi::MAGENTA, ansi::BOLD);
log_raw(fmt, std::forward<Args>(args)...);
print(clog, ansi::RESET);
}
template<typename... Args>
inline void
log_info(const fmt::format_string<Args...>& fmt, Args&&... args) {
print(clog, "{}[INFO] ", ansi::WHITE);
log_raw(fmt, std::forward<Args>(args)...);
print(clog, ansi::RESET);
}
template<typename... Args>
inline void
log_warn(const fmt::format_string<Args...>& fmt, Args&&... args) {
print(clog, "{}[WARN] ", ansi::YELLOW);
log_raw(fmt, std::forward<Args>(args)...);
print(clog, ansi::RESET);
}
template<typename... Args>
inline void
log_error(const fmt::format_string<Args...>& fmt, Args&&... args) {
print(clog, "{}{}[ERROR] ", ansi::RED, ansi::BOLD);
log_raw(fmt, std::forward<Args>(args)...);
print(clog, ansi::RESET);
}
}
#define debug(value) logger::log_debug("{} = {}", #value, value)

View File

@@ -1,3 +0,0 @@
lib_sources += files(
'log.cc'
)

View File

@@ -1,43 +0,0 @@
#include "bus.hh"
#include <catch2/catch_test_macros.hpp>
static constexpr auto TAG = "[bus]";
using namespace matar;
class BusFixture {
public:
BusFixture()
: bus(Memory(std::array<uint8_t, Memory::BIOS_SIZE>(),
std::vector<uint8_t>(Header::HEADER_SIZE))) {}
protected:
Bus bus;
};
TEST_CASE_METHOD(BusFixture, "Byte", TAG) {
CHECK(bus.read_byte(3349) == 0);
bus.write_byte(3349, 0xEC);
CHECK(bus.read_byte(3349) == 0xEC);
CHECK(bus.read_word(3349) == 0xEC);
CHECK(bus.read_halfword(3349) == 0xEC);
}
TEST_CASE_METHOD(BusFixture, "Halfword", TAG) {
CHECK(bus.read_halfword(33750745) == 0);
bus.write_halfword(33750745, 0x1A4A);
CHECK(bus.read_halfword(33750745) == 0x1A4A);
CHECK(bus.read_word(33750745) == 0x1A4A);
CHECK(bus.read_byte(33750745) == 0x4A);
}
TEST_CASE_METHOD(BusFixture, "Word", TAG) {
CHECK(bus.read_word(100724276) == 0);
bus.write_word(100724276, 0x3ACC491D);
CHECK(bus.read_word(100724276) == 0x3ACC491D);
CHECK(bus.read_halfword(100724276) == 0x491D);
CHECK(bus.read_byte(100724276) == 0x1D);
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,9 +1,9 @@
#include "cpu/arm/instruction.hh" #include "cpu/arm/instruction.hh"
#include "cpu/utility.hh"
#include <catch2/catch_test_macros.hpp> #include <catch2/catch_test_macros.hpp>
static constexpr auto TAG = "[arm][disassembly]"; #define TAG "disassembler"
using namespace matar;
using namespace arm; using namespace arm;
TEST_CASE("Branch and Exchange", TAG) { TEST_CASE("Branch and Exchange", TAG) {
@@ -12,11 +12,11 @@ TEST_CASE("Branch and Exchange", TAG) {
BranchAndExchange* bx = nullptr; BranchAndExchange* bx = nullptr;
REQUIRE((bx = std::get_if<BranchAndExchange>(&instruction.data))); REQUIRE((bx = std::get_if<BranchAndExchange>(&instruction.data)));
CHECK(instruction.condition == Condition::GT); REQUIRE(instruction.condition == Condition::GT);
CHECK(bx->rn == 10); REQUIRE(bx->rn == 10);
CHECK(instruction.disassemble() == "BXGT R10"); REQUIRE(instruction.disassemble() == "BXGT R10");
} }
TEST_CASE("Branch", TAG) { TEST_CASE("Branch", TAG) {
@@ -25,18 +25,18 @@ TEST_CASE("Branch", TAG) {
Branch* b = nullptr; Branch* b = nullptr;
REQUIRE((b = std::get_if<Branch>(&instruction.data))); REQUIRE((b = std::get_if<Branch>(&instruction.data)));
CHECK(instruction.condition == Condition::AL); REQUIRE(instruction.condition == Condition::AL);
// last 24 bits = 8748995 // last 24 bits = 8748995
// (8748995 << 8) >> 6 sign extended = 0xFE15FF0C // (8748995 << 8) >> 6 sign extended = 0xFE15FF0C
// Also +8 since PC is two instructions ahead // Also +8 since PC is two instructions ahead
CHECK(b->offset == 0xFE15FF14); REQUIRE(b->offset == 0xFE15FF14);
CHECK(b->link == true); REQUIRE(b->link == true);
CHECK(instruction.disassemble() == "BL 0xFE15FF14"); REQUIRE(instruction.disassemble() == "BL 0xFE15FF14");
b->link = false; b->link = false;
CHECK(instruction.disassemble() == "B 0xFE15FF14"); REQUIRE(instruction.disassemble() == "B 0xFE15FF14");
} }
TEST_CASE("Multiply", TAG) { TEST_CASE("Multiply", TAG) {
@@ -45,20 +45,20 @@ TEST_CASE("Multiply", TAG) {
Multiply* mul = nullptr; Multiply* mul = nullptr;
REQUIRE((mul = std::get_if<Multiply>(&instruction.data))); REQUIRE((mul = std::get_if<Multiply>(&instruction.data)));
CHECK(instruction.condition == Condition::EQ); REQUIRE(instruction.condition == Condition::EQ);
CHECK(mul->rm == 0); REQUIRE(mul->rm == 0);
CHECK(mul->rs == 15); REQUIRE(mul->rs == 15);
CHECK(mul->rn == 14); REQUIRE(mul->rn == 14);
CHECK(mul->rd == 10); REQUIRE(mul->rd == 10);
CHECK(mul->acc == true); REQUIRE(mul->acc == true);
CHECK(mul->set == true); REQUIRE(mul->set == true);
CHECK(instruction.disassemble() == "MLAEQS R10,R0,R15,R14"); REQUIRE(instruction.disassemble() == "MLAEQS R10,R0,R15,R14");
mul->acc = false; mul->acc = false;
mul->set = false; mul->set = false;
CHECK(instruction.disassemble() == "MULEQ R10,R0,R15"); REQUIRE(instruction.disassemble() == "MULEQ R10,R0,R15");
} }
TEST_CASE("Multiply Long", TAG) { TEST_CASE("Multiply Long", TAG) {
@@ -67,24 +67,24 @@ TEST_CASE("Multiply Long", TAG) {
MultiplyLong* mull = nullptr; MultiplyLong* mull = nullptr;
REQUIRE((mull = std::get_if<MultiplyLong>(&instruction.data))); REQUIRE((mull = std::get_if<MultiplyLong>(&instruction.data)));
CHECK(instruction.condition == Condition::NE); REQUIRE(instruction.condition == Condition::NE);
CHECK(mull->rm == 2); REQUIRE(mull->rm == 2);
CHECK(mull->rs == 6); REQUIRE(mull->rs == 6);
CHECK(mull->rdlo == 7); REQUIRE(mull->rdlo == 7);
CHECK(mull->rdhi == 14); REQUIRE(mull->rdhi == 14);
CHECK(mull->acc == false); REQUIRE(mull->acc == false);
CHECK(mull->set == true); REQUIRE(mull->set == true);
CHECK(mull->uns == true); REQUIRE(mull->uns == true);
CHECK(instruction.disassemble() == "UMULLNES R7,R14,R2,R6"); REQUIRE(instruction.disassemble() == "UMULLNES R7,R14,R2,R6");
mull->acc = true; mull->acc = true;
CHECK(instruction.disassemble() == "UMLALNES R7,R14,R2,R6"); REQUIRE(instruction.disassemble() == "UMLALNES R7,R14,R2,R6");
mull->uns = false; mull->uns = false;
mull->set = false; mull->set = false;
CHECK(instruction.disassemble() == "SMLALNE R7,R14,R2,R6"); REQUIRE(instruction.disassemble() == "SMLALNE R7,R14,R2,R6");
} }
TEST_CASE("Undefined", TAG) { TEST_CASE("Undefined", TAG) {
@@ -93,8 +93,8 @@ TEST_CASE("Undefined", TAG) {
uint32_t raw = 0b11100111101000101010111100010110; uint32_t raw = 0b11100111101000101010111100010110;
Instruction instruction(raw); Instruction instruction(raw);
CHECK(instruction.condition == Condition::AL); REQUIRE(instruction.condition == Condition::AL);
CHECK(instruction.disassemble() == "UND"); REQUIRE(instruction.disassemble() == "UND");
} }
TEST_CASE("Single Data Swap", TAG) { TEST_CASE("Single Data Swap", TAG) {
@@ -103,17 +103,17 @@ TEST_CASE("Single Data Swap", TAG) {
SingleDataSwap* swp = nullptr; SingleDataSwap* swp = nullptr;
REQUIRE((swp = std::get_if<SingleDataSwap>(&instruction.data))); REQUIRE((swp = std::get_if<SingleDataSwap>(&instruction.data)));
CHECK(instruction.condition == Condition::GE); REQUIRE(instruction.condition == Condition::GE);
CHECK(swp->rm == 6); REQUIRE(swp->rm == 6);
CHECK(swp->rd == 5); REQUIRE(swp->rd == 5);
CHECK(swp->rn == 9); REQUIRE(swp->rn == 9);
CHECK(swp->byte == false); REQUIRE(swp->byte == false);
CHECK(instruction.disassemble() == "SWPGE R5,R6,[R9]"); REQUIRE(instruction.disassemble() == "SWPGE R5,R6,[R9]");
swp->byte = true; swp->byte = true;
CHECK(instruction.disassemble() == "SWPGEB R5,R6,[R9]"); REQUIRE(instruction.disassemble() == "SWPGEB R5,R6,[R9]");
} }
TEST_CASE("Single Data Transfer", TAG) { TEST_CASE("Single Data Transfer", TAG) {
@@ -123,36 +123,36 @@ TEST_CASE("Single Data Transfer", TAG) {
Shift* shift = nullptr; Shift* shift = nullptr;
REQUIRE((ldr = std::get_if<SingleDataTransfer>(&instruction.data))); REQUIRE((ldr = std::get_if<SingleDataTransfer>(&instruction.data)));
CHECK(instruction.condition == Condition::AL); REQUIRE(instruction.condition == Condition::AL);
REQUIRE((shift = std::get_if<Shift>(&ldr->offset))); REQUIRE((shift = std::get_if<Shift>(&ldr->offset)));
CHECK(shift->rm == 6); REQUIRE(shift->rm == 6);
CHECK(shift->data.immediate == true); REQUIRE(shift->data.immediate == true);
CHECK(shift->data.type == ShiftType::LSL); REQUIRE(shift->data.type == ShiftType::LSL);
CHECK(shift->data.operand == 30); REQUIRE(shift->data.operand == 30);
CHECK(ldr->rd == 10); REQUIRE(ldr->rd == 10);
CHECK(ldr->rn == 2); REQUIRE(ldr->rn == 2);
CHECK(ldr->load == false); REQUIRE(ldr->load == false);
CHECK(ldr->write == true); REQUIRE(ldr->write == true);
CHECK(ldr->byte == false); REQUIRE(ldr->byte == false);
CHECK(ldr->up == true); REQUIRE(ldr->up == true);
CHECK(ldr->pre == true); REQUIRE(ldr->pre == true);
ldr->load = true; ldr->load = true;
ldr->byte = true; ldr->byte = true;
ldr->write = false; ldr->write = false;
shift->data.type = ShiftType::ROR; shift->data.type = ShiftType::ROR;
CHECK(instruction.disassemble() == "LDRB R10,[R2,+R6,ROR #30]"); REQUIRE(instruction.disassemble() == "LDRB R10,[R2,+R6,ROR #30]");
ldr->up = false; ldr->up = false;
ldr->pre = false; ldr->pre = false;
CHECK(instruction.disassemble() == "LDRB R10,[R2],-R6,ROR #30"); REQUIRE(instruction.disassemble() == "LDRB R10,[R2],-R6,ROR #30");
ldr->offset = static_cast<uint16_t>(9023); ldr->offset = static_cast<uint16_t>(9023);
CHECK(instruction.disassemble() == "LDRB R10,[R2],-#9023"); REQUIRE(instruction.disassemble() == "LDRB R10,[R2],-#9023");
ldr->pre = true; ldr->pre = true;
CHECK(instruction.disassemble() == "LDRB R10,[R2,-#9023]"); REQUIRE(instruction.disassemble() == "LDRB R10,[R2,-#9023]");
} }
TEST_CASE("Halfword Transfer", TAG) { TEST_CASE("Halfword Transfer", TAG) {
@@ -161,38 +161,38 @@ TEST_CASE("Halfword Transfer", TAG) {
HalfwordTransfer* ldr = nullptr; HalfwordTransfer* ldr = nullptr;
REQUIRE((ldr = std::get_if<HalfwordTransfer>(&instruction.data))); REQUIRE((ldr = std::get_if<HalfwordTransfer>(&instruction.data)));
CHECK(instruction.condition == Condition::CC); REQUIRE(instruction.condition == Condition::CC);
// offset is not immediate // offset is not immediate
CHECK(ldr->imm == 0); REQUIRE(ldr->imm == 0);
// hence this offset is a register number (rm) // hence this offset is a register number (rm)
CHECK(ldr->offset == 6); REQUIRE(ldr->offset == 6);
CHECK(ldr->half == true); REQUIRE(ldr->half == true);
CHECK(ldr->sign == false); REQUIRE(ldr->sign == false);
CHECK(ldr->rd == 2); REQUIRE(ldr->rd == 2);
CHECK(ldr->rn == 15); REQUIRE(ldr->rn == 15);
CHECK(ldr->load == false); REQUIRE(ldr->load == false);
CHECK(ldr->write == true); REQUIRE(ldr->write == true);
CHECK(ldr->up == true); REQUIRE(ldr->up == true);
CHECK(ldr->pre == true); REQUIRE(ldr->pre == true);
CHECK(instruction.disassemble() == "STRCCH R2,[R15,+R6]!"); REQUIRE(instruction.disassemble() == "STRCCH R2,[R15,+R6]!");
ldr->pre = false; ldr->pre = false;
ldr->load = true; ldr->load = true;
ldr->sign = true; ldr->sign = true;
ldr->up = false; ldr->up = false;
CHECK(instruction.disassemble() == "LDRCCSH R2,[R15],-R6"); REQUIRE(instruction.disassemble() == "LDRCCSH R2,[R15],-R6");
ldr->half = false; ldr->half = false;
CHECK(instruction.disassemble() == "LDRCCSB R2,[R15],-R6"); REQUIRE(instruction.disassemble() == "LDRCCSB R2,[R15],-R6");
ldr->load = false; ldr->load = false;
// not a register anymore // not a register anymore
ldr->imm = 1; ldr->imm = 1;
ldr->offset = 90; ldr->offset = 90;
CHECK(instruction.disassemble() == "STRCCSB R2,[R15],-#90"); REQUIRE(instruction.disassemble() == "STRCCSB R2,[R15],-#90");
} }
TEST_CASE("Block Data Transfer", TAG) { TEST_CASE("Block Data Transfer", TAG) {
@@ -201,7 +201,7 @@ TEST_CASE("Block Data Transfer", TAG) {
BlockDataTransfer* ldm = nullptr; BlockDataTransfer* ldm = nullptr;
REQUIRE((ldm = std::get_if<BlockDataTransfer>(&instruction.data))); REQUIRE((ldm = std::get_if<BlockDataTransfer>(&instruction.data)));
CHECK(instruction.condition == Condition::LS); REQUIRE(instruction.condition == Condition::LS);
{ {
uint16_t regs = 0; uint16_t regs = 0;
@@ -213,23 +213,23 @@ TEST_CASE("Block Data Transfer", TAG) {
regs |= 1 << 8; regs |= 1 << 8;
regs |= 1 << 14; regs |= 1 << 14;
CHECK(ldm->regs == regs); REQUIRE(ldm->regs == regs);
} }
CHECK(ldm->rn == 7); REQUIRE(ldm->rn == 7);
CHECK(ldm->load == true); REQUIRE(ldm->load == true);
CHECK(ldm->write == false); REQUIRE(ldm->write == false);
CHECK(ldm->s == true); REQUIRE(ldm->s == true);
CHECK(ldm->up == false); REQUIRE(ldm->up == false);
CHECK(ldm->pre == true); REQUIRE(ldm->pre == true);
CHECK(instruction.disassemble() == "LDMLSDB R7,{R0,R2,R3,R5,R6,R8,R14}^"); REQUIRE(instruction.disassemble() == "LDMLSDB R7,{R0,R2,R3,R5,R6,R8,R14}^");
ldm->write = true; ldm->write = true;
ldm->s = false; ldm->s = false;
ldm->up = true; ldm->up = true;
CHECK(instruction.disassemble() == "LDMLSIB R7!,{R0,R2,R3,R5,R6,R8,R14}"); REQUIRE(instruction.disassemble() == "LDMLSIB R7!,{R0,R2,R3,R5,R6,R8,R14}");
ldm->regs &= ~(1 << 6); ldm->regs &= ~(1 << 6);
ldm->regs &= ~(1 << 3); ldm->regs &= ~(1 << 3);
@@ -237,7 +237,7 @@ TEST_CASE("Block Data Transfer", TAG) {
ldm->load = false; ldm->load = false;
ldm->pre = false; ldm->pre = false;
CHECK(instruction.disassemble() == "STMLSIA R7!,{R0,R2,R5,R14}"); REQUIRE(instruction.disassemble() == "STMLSIA R7!,{R0,R2,R5,R14}");
} }
TEST_CASE("PSR Transfer", TAG) { TEST_CASE("PSR Transfer", TAG) {
@@ -249,14 +249,14 @@ TEST_CASE("PSR Transfer", TAG) {
PsrTransfer* mrs = nullptr; PsrTransfer* mrs = nullptr;
REQUIRE((mrs = std::get_if<PsrTransfer>(&instruction.data))); REQUIRE((mrs = std::get_if<PsrTransfer>(&instruction.data)));
CHECK(instruction.condition == Condition::MI); REQUIRE(instruction.condition == Condition::MI);
CHECK(mrs->type == PsrTransfer::Type::Mrs); REQUIRE(mrs->type == PsrTransfer::Type::Mrs);
// Operand is a register in the case of MRS (PSR -> Register) // Operand is a register in the case of MRS (PSR -> Register)
CHECK(mrs->operand == 10); REQUIRE(mrs->operand == 10);
CHECK(mrs->spsr == true); REQUIRE(mrs->spsr == true);
CHECK(instruction.disassemble() == "MRSMI R10,SPSR_all"); REQUIRE(instruction.disassemble() == "MRSMI R10,SPSR_all");
} }
SECTION("MSR") { SECTION("MSR") {
@@ -265,14 +265,14 @@ TEST_CASE("PSR Transfer", TAG) {
PsrTransfer* msr = nullptr; PsrTransfer* msr = nullptr;
REQUIRE((msr = std::get_if<PsrTransfer>(&instruction.data))); REQUIRE((msr = std::get_if<PsrTransfer>(&instruction.data)));
CHECK(instruction.condition == Condition::AL); REQUIRE(instruction.condition == Condition::AL);
CHECK(msr->type == PsrTransfer::Type::Msr); REQUIRE(msr->type == PsrTransfer::Type::Msr);
// Operand is a register in the case of MSR (Register -> PSR) // Operand is a register in the case of MSR (Register -> PSR)
CHECK(msr->operand == 8); REQUIRE(msr->operand == 8);
CHECK(msr->spsr == false); REQUIRE(msr->spsr == false);
CHECK(instruction.disassemble() == "MSR CPSR_all,R8"); REQUIRE(instruction.disassemble() == "MSR CPSR_all,R8");
} }
SECTION("MSR_flg with register operand") { SECTION("MSR_flg with register operand") {
@@ -280,14 +280,14 @@ TEST_CASE("PSR Transfer", TAG) {
Instruction instruction(raw); Instruction instruction(raw);
REQUIRE((msr = std::get_if<PsrTransfer>(&instruction.data))); REQUIRE((msr = std::get_if<PsrTransfer>(&instruction.data)));
CHECK(instruction.condition == Condition::VS); REQUIRE(instruction.condition == Condition::VS);
CHECK(msr->type == PsrTransfer::Type::Msr_flg); REQUIRE(msr->type == PsrTransfer::Type::Msr_flg);
CHECK(msr->imm == 0); REQUIRE(msr->imm == 0);
CHECK(msr->operand == 8); REQUIRE(msr->operand == 8);
CHECK(msr->spsr == false); REQUIRE(msr->spsr == false);
CHECK(instruction.disassemble() == "MSRVS CPSR_flg,R8"); REQUIRE(instruction.disassemble() == "MSRVS CPSR_flg,R8");
} }
SECTION("MSR_flg with immediate operand") { SECTION("MSR_flg with immediate operand") {
@@ -295,102 +295,100 @@ TEST_CASE("PSR Transfer", TAG) {
Instruction instruction(raw); Instruction instruction(raw);
REQUIRE((msr = std::get_if<PsrTransfer>(&instruction.data))); REQUIRE((msr = std::get_if<PsrTransfer>(&instruction.data)));
CHECK(instruction.condition == Condition::AL); REQUIRE(instruction.condition == Condition::AL);
CHECK(msr->type == PsrTransfer::Type::Msr_flg); REQUIRE(msr->type == PsrTransfer::Type::Msr_flg);
CHECK(msr->imm == 1); REQUIRE(msr->imm == 1);
// 104 (32 bits) rotated by 2 * 7 // 104 (32 bits) rotated by 2 * 7
CHECK(msr->operand == 27262976); REQUIRE(msr->operand == 27262976);
CHECK(msr->spsr == true); REQUIRE(msr->spsr == true);
CHECK(instruction.disassemble() == "MSR SPSR_flg,#27262976"); REQUIRE(instruction.disassemble() == "MSR SPSR_flg,#27262976");
} }
} }
TEST_CASE("Data Processing", TAG) { TEST_CASE("Data Processing", TAG) {
using OpCode = DataProcessing::OpCode;
uint32_t raw = 0b11100000000111100111101101100001; uint32_t raw = 0b11100000000111100111101101100001;
Instruction instruction(raw); Instruction instruction(raw);
DataProcessing* alu = nullptr; DataProcessing* alu = nullptr;
Shift* shift = nullptr; Shift* shift = nullptr;
REQUIRE((alu = std::get_if<DataProcessing>(&instruction.data))); REQUIRE((alu = std::get_if<DataProcessing>(&instruction.data)));
CHECK(instruction.condition == Condition::AL); REQUIRE(instruction.condition == Condition::AL);
// operand 2 is a shifted register // operand 2 is a shifted register
REQUIRE((shift = std::get_if<Shift>(&alu->operand))); REQUIRE((shift = std::get_if<Shift>(&alu->operand)));
CHECK(shift->rm == 1); REQUIRE(shift->rm == 1);
CHECK(shift->data.immediate == true); REQUIRE(shift->data.immediate == true);
CHECK(shift->data.type == ShiftType::ROR); REQUIRE(shift->data.type == ShiftType::ROR);
CHECK(shift->data.operand == 22); REQUIRE(shift->data.operand == 22);
CHECK(alu->rd == 7); REQUIRE(alu->rd == 7);
CHECK(alu->rn == 14); REQUIRE(alu->rn == 14);
CHECK(alu->set == true); REQUIRE(alu->set == true);
CHECK(alu->opcode == OpCode::AND); REQUIRE(alu->opcode == OpCode::AND);
CHECK(instruction.disassemble() == "ANDS R7,R14,R1,ROR #22"); REQUIRE(instruction.disassemble() == "ANDS R7,R14,R1,ROR #22");
shift->data.immediate = false; shift->data.immediate = false;
shift->data.operand = 2; shift->data.operand = 2;
alu->set = false; alu->set = false;
CHECK(instruction.disassemble() == "AND R7,R14,R1,ROR R2"); REQUIRE(instruction.disassemble() == "AND R7,R14,R1,ROR R2");
alu->operand = static_cast<uint32_t>(3300012); alu->operand = static_cast<uint32_t>(3300012);
CHECK(instruction.disassemble() == "AND R7,R14,#3300012"); REQUIRE(instruction.disassemble() == "AND R7,R14,#3300012");
SECTION("set-only operations") { SECTION("set-only operations") {
alu->set = true; alu->set = true;
alu->opcode = OpCode::TST; alu->opcode = OpCode::TST;
CHECK(instruction.disassemble() == "TST R14,#3300012"); REQUIRE(instruction.disassemble() == "TST R14,#3300012");
alu->opcode = OpCode::TEQ; alu->opcode = OpCode::TEQ;
CHECK(instruction.disassemble() == "TEQ R14,#3300012"); REQUIRE(instruction.disassemble() == "TEQ R14,#3300012");
alu->opcode = OpCode::CMP; alu->opcode = OpCode::CMP;
CHECK(instruction.disassemble() == "CMP R14,#3300012"); REQUIRE(instruction.disassemble() == "CMP R14,#3300012");
alu->opcode = OpCode::CMN; alu->opcode = OpCode::CMN;
CHECK(instruction.disassemble() == "CMN R14,#3300012"); REQUIRE(instruction.disassemble() == "CMN R14,#3300012");
} }
SECTION("destination operations") { SECTION("destination operations") {
alu->opcode = OpCode::EOR; alu->opcode = OpCode::EOR;
CHECK(instruction.disassemble() == "EOR R7,R14,#3300012"); REQUIRE(instruction.disassemble() == "EOR R7,R14,#3300012");
alu->opcode = OpCode::SUB; alu->opcode = OpCode::SUB;
CHECK(instruction.disassemble() == "SUB R7,R14,#3300012"); REQUIRE(instruction.disassemble() == "SUB R7,R14,#3300012");
alu->opcode = OpCode::RSB; alu->opcode = OpCode::RSB;
CHECK(instruction.disassemble() == "RSB R7,R14,#3300012"); REQUIRE(instruction.disassemble() == "RSB R7,R14,#3300012");
alu->opcode = OpCode::SUB; alu->opcode = OpCode::SUB;
CHECK(instruction.disassemble() == "SUB R7,R14,#3300012"); REQUIRE(instruction.disassemble() == "SUB R7,R14,#3300012");
alu->opcode = OpCode::ADC; alu->opcode = OpCode::ADC;
CHECK(instruction.disassemble() == "ADC R7,R14,#3300012"); REQUIRE(instruction.disassemble() == "ADC R7,R14,#3300012");
alu->opcode = OpCode::SBC; alu->opcode = OpCode::SBC;
CHECK(instruction.disassemble() == "SBC R7,R14,#3300012"); REQUIRE(instruction.disassemble() == "SBC R7,R14,#3300012");
alu->opcode = OpCode::RSC; alu->opcode = OpCode::RSC;
CHECK(instruction.disassemble() == "RSC R7,R14,#3300012"); REQUIRE(instruction.disassemble() == "RSC R7,R14,#3300012");
alu->opcode = OpCode::ORR; alu->opcode = OpCode::ORR;
CHECK(instruction.disassemble() == "ORR R7,R14,#3300012"); REQUIRE(instruction.disassemble() == "ORR R7,R14,#3300012");
alu->opcode = OpCode::MOV; alu->opcode = OpCode::MOV;
CHECK(instruction.disassemble() == "MOV R7,#3300012"); REQUIRE(instruction.disassemble() == "MOV R7,#3300012");
alu->opcode = OpCode::BIC; alu->opcode = OpCode::BIC;
CHECK(instruction.disassemble() == "BIC R7,R14,#3300012"); REQUIRE(instruction.disassemble() == "BIC R7,R14,#3300012");
alu->opcode = OpCode::MVN; alu->opcode = OpCode::MVN;
CHECK(instruction.disassemble() == "MVN R7,#3300012"); REQUIRE(instruction.disassemble() == "MVN R7,#3300012");
} }
} }
@@ -400,26 +398,26 @@ TEST_CASE("Coprocessor Data Transfer", TAG) {
CoprocessorDataTransfer* ldc = nullptr; CoprocessorDataTransfer* ldc = nullptr;
REQUIRE((ldc = std::get_if<CoprocessorDataTransfer>(&instruction.data))); REQUIRE((ldc = std::get_if<CoprocessorDataTransfer>(&instruction.data)));
CHECK(instruction.condition == Condition::GE); REQUIRE(instruction.condition == Condition::GE);
CHECK(ldc->offset == 70); REQUIRE(ldc->offset == 70);
CHECK(ldc->cpn == 1); REQUIRE(ldc->cpn == 1);
CHECK(ldc->crd == 15); REQUIRE(ldc->crd == 15);
CHECK(ldc->rn == 5); REQUIRE(ldc->rn == 5);
CHECK(ldc->load == false); REQUIRE(ldc->load == false);
CHECK(ldc->write == true); REQUIRE(ldc->write == true);
CHECK(ldc->len == false); REQUIRE(ldc->len == false);
CHECK(ldc->up == true); REQUIRE(ldc->up == true);
CHECK(ldc->pre == true); REQUIRE(ldc->pre == true);
CHECK(instruction.disassemble() == "STCGE p1,c15,[R5,#70]!"); REQUIRE(instruction.disassemble() == "STCGE p1,c15,[R5,#70]!");
ldc->load = true; ldc->load = true;
ldc->pre = false; ldc->pre = false;
ldc->write = false; ldc->write = false;
ldc->len = true; ldc->len = true;
CHECK(instruction.disassemble() == "LDCGEL p1,c15,[R5],#70"); REQUIRE(instruction.disassemble() == "LDCGEL p1,c15,[R5],#70");
} }
TEST_CASE("Coprocessor Operand Operation", TAG) { TEST_CASE("Coprocessor Operand Operation", TAG) {
@@ -428,16 +426,16 @@ TEST_CASE("Coprocessor Operand Operation", TAG) {
CoprocessorDataOperation* cdp = nullptr; CoprocessorDataOperation* cdp = nullptr;
REQUIRE((cdp = std::get_if<CoprocessorDataOperation>(&instruction.data))); REQUIRE((cdp = std::get_if<CoprocessorDataOperation>(&instruction.data)));
CHECK(instruction.condition == Condition::AL); REQUIRE(instruction.condition == Condition::AL);
CHECK(cdp->crm == 6); REQUIRE(cdp->crm == 6);
CHECK(cdp->cp == 2); REQUIRE(cdp->cp == 2);
CHECK(cdp->cpn == 1); REQUIRE(cdp->cpn == 1);
CHECK(cdp->crd == 15); REQUIRE(cdp->crd == 15);
CHECK(cdp->crn == 5); REQUIRE(cdp->crn == 5);
CHECK(cdp->cp_opc == 10); REQUIRE(cdp->cp_opc == 10);
CHECK(instruction.disassemble() == "CDP p1,10,c15,c5,c6,2"); REQUIRE(instruction.disassemble() == "CDP p1,10,c15,c5,c6,2");
} }
TEST_CASE("Coprocessor Register Transfer", TAG) { TEST_CASE("Coprocessor Register Transfer", TAG) {
@@ -447,23 +445,25 @@ TEST_CASE("Coprocessor Register Transfer", TAG) {
REQUIRE( REQUIRE(
(mrc = std::get_if<CoprocessorRegisterTransfer>(&instruction.data))); (mrc = std::get_if<CoprocessorRegisterTransfer>(&instruction.data)));
CHECK(instruction.condition == Condition::AL); REQUIRE(instruction.condition == Condition::AL);
CHECK(mrc->crm == 6); REQUIRE(mrc->crm == 6);
CHECK(mrc->cp == 2); REQUIRE(mrc->cp == 2);
CHECK(mrc->cpn == 1); REQUIRE(mrc->cpn == 1);
CHECK(mrc->rd == 15); REQUIRE(mrc->rd == 15);
CHECK(mrc->crn == 5); REQUIRE(mrc->crn == 5);
CHECK(mrc->load == false); REQUIRE(mrc->load == false);
CHECK(mrc->cp_opc == 5); REQUIRE(mrc->cp_opc == 5);
CHECK(instruction.disassemble() == "MCR p1,5,R15,c5,c6,2"); REQUIRE(instruction.disassemble() == "MCR p1,5,R15,c5,c6,2");
} }
TEST_CASE("Software Interrupt", TAG) { TEST_CASE("Software Interrupt", TAG) {
uint32_t raw = 0b00001111101010101010101010101010; uint32_t raw = 0b00001111101010101010101010101010;
Instruction instruction(raw); Instruction instruction(raw);
CHECK(instruction.condition == Condition::EQ); REQUIRE(instruction.condition == Condition::EQ);
CHECK(instruction.disassemble() == "SWIEQ"); REQUIRE(instruction.disassemble() == "SWIEQ");
} }
#undef TAG

0
tests/cpu/cpu.cc Normal file
View File

467
tests/cpu/instruction.cc Normal file
View File

@@ -0,0 +1,467 @@
#include "cpu/arm/instruction.hh"
#include "cpu/utility.hh"
#include <catch2/catch_test_macros.hpp>
[[maybe_unused]] static constexpr auto TAG = "disassembler";
using namespace arm;
TEST_CASE("Branch and Exchange", TAG) {
uint32_t raw = 0b11000001001011111111111100011010;
Instruction instruction(raw);
BranchAndExchange* bx = nullptr;
REQUIRE((bx = std::get_if<BranchAndExchange>(&instruction.data)));
REQUIRE(instruction.condition == Condition::GT);
REQUIRE(bx->rn == 10);
REQUIRE(instruction.disassemble() == "BXGT R10");
}
TEST_CASE("Branch", TAG) {
uint32_t raw = 0b11101011100001010111111111000011;
Instruction instruction(raw);
Branch* b = nullptr;
REQUIRE((b = std::get_if<Branch>(&instruction.data)));
REQUIRE(instruction.condition == Condition::AL);
// last 24 bits = 8748995
// (8748995 << 8) >> 6 sign extended = 0xFE15FF0C
// Also +8 since PC is two instructions ahead
REQUIRE(b->offset == 0xFE15FF14);
REQUIRE(b->link == true);
REQUIRE(instruction.disassemble() == "BL 0xFE15FF14");
b->link = false;
REQUIRE(instruction.disassemble() == "B 0xFE15FF14");
}
TEST_CASE("Multiply", TAG) {
uint32_t raw = 0b00000000001110101110111110010000;
Instruction instruction(raw);
Multiply* mul = nullptr;
REQUIRE((mul = std::get_if<Multiply>(&instruction.data)));
REQUIRE(instruction.condition == Condition::EQ);
REQUIRE(mul->rm == 0);
REQUIRE(mul->rs == 15);
REQUIRE(mul->rn == 14);
REQUIRE(mul->rd == 10);
REQUIRE(mul->acc == true);
REQUIRE(mul->set == true);
REQUIRE(instruction.disassemble() == "MLAEQS R10,R0,R15,R14");
mul->acc = false;
mul->set = false;
REQUIRE(instruction.disassemble() == "MULEQ R10,R0,R15");
}
TEST_CASE("Multiply Long", TAG) {
uint32_t raw = 0b00010000100111100111011010010010;
Instruction instruction(raw);
MultiplyLong* mull = nullptr;
REQUIRE((mull = std::get_if<MultiplyLong>(&instruction.data)));
REQUIRE(instruction.condition == Condition::NE);
REQUIRE(mull->rm == 2);
REQUIRE(mull->rs == 6);
REQUIRE(mull->rdlo == 7);
REQUIRE(mull->rdhi == 14);
REQUIRE(mull->acc == false);
REQUIRE(mull->set == true);
REQUIRE(mull->uns == false);
REQUIRE(instruction.disassemble() == "SMULLNES R7,R14,R2,R6");
mull->acc = true;
REQUIRE(instruction.disassemble() == "SMLALNES R7,R14,R2,R6");
mull->uns = true;
mull->set = false;
REQUIRE(instruction.disassemble() == "UMLALNE R7,R14,R2,R6");
}
TEST_CASE("Undefined", TAG) {
// notice how this is the same as single data transfer except the shift
// is now a register based shift
uint32_t raw = 0b11100111101000101010111100010110;
Instruction instruction(raw);
REQUIRE(instruction.condition == Condition::AL);
REQUIRE(instruction.disassemble() == "UND");
}
TEST_CASE("Single Data Swap", TAG) {
uint32_t raw = 0b10100001000010010101000010010110;
Instruction instruction(raw);
SingleDataSwap* swp = nullptr;
REQUIRE((swp = std::get_if<SingleDataSwap>(&instruction.data)));
REQUIRE(instruction.condition == Condition::GE);
REQUIRE(swp->rm == 6);
REQUIRE(swp->rd == 5);
REQUIRE(swp->rn == 9);
REQUIRE(swp->byte == false);
REQUIRE(instruction.disassemble() == "SWPGE R5,R6,[R9]");
swp->byte = true;
REQUIRE(instruction.disassemble() == "SWPGEB R5,R6,[R9]");
}
TEST_CASE("Single Data Transfer", TAG) {
uint32_t raw = 0b11100111101000101010111100000110;
Instruction instruction(raw);
SingleDataTransfer* ldr = nullptr;
Shift* shift = nullptr;
REQUIRE((ldr = std::get_if<SingleDataTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::AL);
REQUIRE((shift = std::get_if<Shift>(&ldr->offset)));
REQUIRE(shift->rm == 6);
REQUIRE(shift->data.immediate == true);
REQUIRE(shift->data.type == ShiftType::LSL);
REQUIRE(shift->data.operand == 30);
REQUIRE(ldr->rd == 10);
REQUIRE(ldr->rn == 2);
REQUIRE(ldr->load == false);
REQUIRE(ldr->write == true);
REQUIRE(ldr->byte == false);
REQUIRE(ldr->up == true);
REQUIRE(ldr->pre == true);
ldr->load = true;
ldr->byte = true;
ldr->write = false;
shift->data.type = ShiftType::ROR;
REQUIRE(instruction.disassemble() == "LDRB R10,[R2,+R6,ROR #30]");
ldr->up = false;
ldr->pre = false;
REQUIRE(instruction.disassemble() == "LDRB R10,[R2],-R6,ROR #30");
ldr->offset = static_cast<uint16_t>(9023);
REQUIRE(instruction.disassemble() == "LDRB R10,[R2],-#9023");
ldr->pre = true;
REQUIRE(instruction.disassemble() == "LDRB R10,[R2,-#9023]");
}
TEST_CASE("Halfword Transfer", TAG) {
uint32_t raw = 0b00110001101011110010000010110110;
Instruction instruction(raw);
HalfwordTransfer* ldr = nullptr;
REQUIRE((ldr = std::get_if<HalfwordTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::CC);
// offset is not immediate
REQUIRE(ldr->imm == 0);
// hence this offset is a register number (rm)
REQUIRE(ldr->offset == 6);
REQUIRE(ldr->half == true);
REQUIRE(ldr->sign == false);
REQUIRE(ldr->rd == 2);
REQUIRE(ldr->rn == 15);
REQUIRE(ldr->load == false);
REQUIRE(ldr->write == true);
REQUIRE(ldr->up == true);
REQUIRE(ldr->pre == true);
REQUIRE(instruction.disassemble() == "STRCCH R2,[R15,+R6]!");
ldr->pre = false;
ldr->load = true;
ldr->sign = true;
ldr->up = false;
REQUIRE(instruction.disassemble() == "LDRCCSH R2,[R15],-R6");
ldr->half = false;
REQUIRE(instruction.disassemble() == "LDRCCSB R2,[R15],-R6");
ldr->load = false;
// not a register anymore
ldr->imm = 1;
ldr->offset = 90;
REQUIRE(instruction.disassemble() == "STRCCSB R2,[R15],-#90");
}
TEST_CASE("Block Data Transfer", TAG) {
uint32_t raw = 0b10011001010101110100000101101101;
Instruction instruction(raw);
BlockDataTransfer* ldm = nullptr;
REQUIRE((ldm = std::get_if<BlockDataTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::LS);
{
uint16_t regs = 0;
regs |= 1 << 0;
regs |= 1 << 2;
regs |= 1 << 3;
regs |= 1 << 5;
regs |= 1 << 6;
regs |= 1 << 8;
regs |= 1 << 14;
REQUIRE(ldm->regs == regs);
}
REQUIRE(ldm->rn == 7);
REQUIRE(ldm->load == true);
REQUIRE(ldm->write == false);
REQUIRE(ldm->s == true);
REQUIRE(ldm->up == false);
REQUIRE(ldm->pre == true);
REQUIRE(instruction.disassemble() == "LDMLSDB R7,{R0,R2,R3,R5,R6,R8,R14}^");
ldm->write = true;
ldm->s = false;
ldm->up = true;
REQUIRE(instruction.disassemble() == "LDMLSIB R7!,{R0,R2,R3,R5,R6,R8,R14}");
ldm->regs &= ~(1 << 6);
ldm->regs &= ~(1 << 3);
ldm->regs &= ~(1 << 8);
ldm->load = false;
ldm->pre = false;
REQUIRE(instruction.disassemble() == "STMLSIA R7!,{R0,R2,R5,R14}");
}
TEST_CASE("PSR Transfer", TAG) {
PsrTransfer* msr = nullptr;
SECTION("MRS") {
uint32_t raw = 0b01000001010011111010000000000000;
Instruction instruction(raw);
PsrTransfer* mrs = nullptr;
REQUIRE((mrs = std::get_if<PsrTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::MI);
REQUIRE(mrs->type == PsrTransfer::Type::Mrs);
// Operand is a register in the case of MRS (PSR -> Register)
REQUIRE(mrs->operand == 10);
REQUIRE(mrs->spsr == true);
REQUIRE(instruction.disassemble() == "MRSMI R10,SPSR_all");
}
SECTION("MSR") {
uint32_t raw = 0b11100001001010011111000000001000;
Instruction instruction(raw);
PsrTransfer* msr = nullptr;
REQUIRE((msr = std::get_if<PsrTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::AL);
REQUIRE(msr->type == PsrTransfer::Type::Msr);
// Operand is a register in the case of MSR (Register -> PSR)
REQUIRE(msr->operand == 8);
REQUIRE(msr->spsr == false);
REQUIRE(instruction.disassemble() == "MSR CPSR_all,R8");
}
SECTION("MSR_flg with register operand") {
uint32_t raw = 0b01100001001010001111000000001000;
Instruction instruction(raw);
REQUIRE((msr = std::get_if<PsrTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::VS);
REQUIRE(msr->type == PsrTransfer::Type::Msr_flg);
REQUIRE(msr->imm == 0);
REQUIRE(msr->operand == 8);
REQUIRE(msr->spsr == false);
REQUIRE(instruction.disassemble() == "MSRVS CPSR_flg,R8");
}
SECTION("MSR_flg with immediate operand") {
uint32_t raw = 0b11100011011010001111011101101000;
Instruction instruction(raw);
REQUIRE((msr = std::get_if<PsrTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::AL);
REQUIRE(msr->type == PsrTransfer::Type::Msr_flg);
REQUIRE(msr->imm == 1);
// 104 (32 bits) rotated by 2 * 7
REQUIRE(msr->operand == 27262976);
REQUIRE(msr->spsr == true);
REQUIRE(instruction.disassemble() == "MSR SPSR_flg,#27262976");
}
}
TEST_CASE("Data Processing", TAG) {
uint32_t raw = 0b11100010000111100111101101100001;
Instruction instruction(raw);
DataProcessing* alu = nullptr;
Shift* shift = nullptr;
REQUIRE((alu = std::get_if<DataProcessing>(&instruction.data)));
REQUIRE(instruction.condition == Condition::AL);
// operand 2 is a shifted register
REQUIRE((shift = std::get_if<Shift>(&alu->operand)));
REQUIRE(shift->rm == 1);
REQUIRE(shift->data.immediate == true);
REQUIRE(shift->data.type == ShiftType::ROR);
REQUIRE(shift->data.operand == 22);
REQUIRE(alu->rd == 7);
REQUIRE(alu->rn == 14);
REQUIRE(alu->set == true);
REQUIRE(alu->opcode == OpCode::AND);
REQUIRE(instruction.disassemble() == "ANDS R7,R14,R1,ROR #22");
shift->data.immediate = false;
shift->data.operand = 2;
alu->set = false;
REQUIRE(instruction.disassemble() == "AND R7,R14,R1,ROR R2");
alu->operand = static_cast<uint32_t>(3300012);
REQUIRE(instruction.disassemble() == "AND R7,R14,#3300012");
SECTION("set-only operations") {
alu->set = true;
alu->opcode = OpCode::TST;
REQUIRE(instruction.disassemble() == "TST R14,#3300012");
alu->opcode = OpCode::TEQ;
REQUIRE(instruction.disassemble() == "TEQ R14,#3300012");
alu->opcode = OpCode::CMP;
REQUIRE(instruction.disassemble() == "CMP R14,#3300012");
alu->opcode = OpCode::CMN;
REQUIRE(instruction.disassemble() == "CMN R14,#3300012");
}
SECTION("destination operations") {
alu->opcode = OpCode::EOR;
REQUIRE(instruction.disassemble() == "EOR R7,R14,#3300012");
alu->opcode = OpCode::SUB;
REQUIRE(instruction.disassemble() == "SUB R7,R14,#3300012");
alu->opcode = OpCode::RSB;
REQUIRE(instruction.disassemble() == "RSB R7,R14,#3300012");
alu->opcode = OpCode::SUB;
REQUIRE(instruction.disassemble() == "SUB R7,R14,#3300012");
alu->opcode = OpCode::ADC;
REQUIRE(instruction.disassemble() == "ADC R7,R14,#3300012");
alu->opcode = OpCode::SBC;
REQUIRE(instruction.disassemble() == "SBC R7,R14,#3300012");
alu->opcode = OpCode::RSC;
REQUIRE(instruction.disassemble() == "RSC R7,R14,#3300012");
alu->opcode = OpCode::ORR;
REQUIRE(instruction.disassemble() == "ORR R7,R14,#3300012");
alu->opcode = OpCode::MOV;
REQUIRE(instruction.disassemble() == "MOV R7,#3300012");
alu->opcode = OpCode::BIC;
REQUIRE(instruction.disassemble() == "BIC R7,R14,#3300012");
alu->opcode = OpCode::MVN;
REQUIRE(instruction.disassemble() == "MVN R7,#3300012");
}
}
TEST_CASE("Coprocessor Data Transfer", TAG) {
uint32_t raw = 0b10101101101001011111000101000110;
Instruction instruction(raw);
CoprocessorDataTransfer* ldc = nullptr;
REQUIRE((ldc = std::get_if<CoprocessorDataTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::GE);
REQUIRE(ldc->offset == 70);
REQUIRE(ldc->cpn == 1);
REQUIRE(ldc->crd == 15);
REQUIRE(ldc->rn == 5);
REQUIRE(ldc->load == false);
REQUIRE(ldc->write == true);
REQUIRE(ldc->len == false);
REQUIRE(ldc->up == true);
REQUIRE(ldc->pre == true);
REQUIRE(instruction.disassemble() == "STCGE p1,c15,[R5,#70]!");
ldc->load = true;
ldc->pre = false;
ldc->write = false;
ldc->len = true;
REQUIRE(instruction.disassemble() == "LDCGEL p1,c15,[R5],#70");
}
TEST_CASE("Coprocessor Operand Operation", TAG) {
uint32_t raw = 0b11101110101001011111000101000110;
Instruction instruction(raw);
CoprocessorDataOperation* cdp = nullptr;
REQUIRE((cdp = std::get_if<CoprocessorDataOperation>(&instruction.data)));
REQUIRE(instruction.condition == Condition::AL);
REQUIRE(cdp->crm == 6);
REQUIRE(cdp->cp == 2);
REQUIRE(cdp->cpn == 1);
REQUIRE(cdp->crd == 15);
REQUIRE(cdp->crn == 5);
REQUIRE(cdp->cp_opc == 10);
REQUIRE(instruction.disassemble() == "CDP p1,10,c15,c5,c6,2");
}
TEST_CASE("Coprocessor Register Transfer", TAG) {
uint32_t raw = 0b11101110101001011111000101010110;
Instruction instruction(raw);
CoprocessorRegisterTransfer* mrc = nullptr;
REQUIRE(
(mrc = std::get_if<CoprocessorRegisterTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::AL);
REQUIRE(mrc->crm == 6);
REQUIRE(mrc->cp == 2);
REQUIRE(mrc->cpn == 1);
REQUIRE(mrc->rd == 15);
REQUIRE(mrc->crn == 5);
REQUIRE(mrc->load == false);
REQUIRE(mrc->cp_opc == 5);
REQUIRE(instruction.disassemble() == "MCR p1,5,R15,c5,c6,2");
}
TEST_CASE("Software Interrupt", TAG) {
uint32_t raw = 0b00001111101010101010101010101010;
Instruction instruction(raw);
REQUIRE(instruction.condition == Condition::EQ);
REQUIRE(instruction.disassemble() == "SWIEQ");
}

View File

@@ -1,8 +0,0 @@
#include "util/loglevel.hh"
#include <catch2/catch_session.hpp>
int
main(int argc, char* argv[]) {
matar::set_log_level(matar::LogLevel::Off);
return Catch::Session().run(argc, argv);
}

View File

@@ -1,121 +0,0 @@
#include "memory.hh"
#include <catch2/catch_test_macros.hpp>
static constexpr auto TAG = "[memory]";
using namespace matar;
class MemFixture {
public:
MemFixture()
: memory(std::array<uint8_t, Memory::BIOS_SIZE>(),
std::vector<uint8_t>(Header::HEADER_SIZE)) {}
protected:
Memory memory;
};
TEST_CASE_METHOD(MemFixture, "bios", TAG) {
memory.write(0, 0xAC);
CHECK(memory.read(0) == 0xAC);
memory.write(0x3FFF, 0x48);
CHECK(memory.read(0x3FFF) == 0x48);
memory.write(0x2A56, 0x10);
CHECK(memory.read(0x2A56) == 0x10);
}
TEST_CASE_METHOD(MemFixture, "board wram", TAG) {
memory.write(0x2000000, 0xAC);
CHECK(memory.read(0x2000000) == 0xAC);
memory.write(0x203FFFF, 0x48);
CHECK(memory.read(0x203FFFF) == 0x48);
memory.write(0x2022A56, 0x10);
CHECK(memory.read(0x2022A56) == 0x10);
}
TEST_CASE_METHOD(MemFixture, "chip wram", TAG) {
memory.write(0x3000000, 0xAC);
CHECK(memory.read(0x3000000) == 0xAC);
memory.write(0x3007FFF, 0x48);
CHECK(memory.read(0x3007FFF) == 0x48);
memory.write(0x3002A56, 0x10);
CHECK(memory.read(0x3002A56) == 0x10);
}
TEST_CASE_METHOD(MemFixture, "palette ram", TAG) {
memory.write(0x5000000, 0xAC);
CHECK(memory.read(0x5000000) == 0xAC);
memory.write(0x50003FF, 0x48);
CHECK(memory.read(0x50003FF) == 0x48);
memory.write(0x5000156, 0x10);
CHECK(memory.read(0x5000156) == 0x10);
}
TEST_CASE_METHOD(MemFixture, "video ram", TAG) {
memory.write(0x6000000, 0xAC);
CHECK(memory.read(0x6000000) == 0xAC);
memory.write(0x6017FFF, 0x48);
CHECK(memory.read(0x6017FFF) == 0x48);
memory.write(0x6012A56, 0x10);
CHECK(memory.read(0x6012A56) == 0x10);
}
TEST_CASE_METHOD(MemFixture, "oam obj ram", TAG) {
memory.write(0x7000000, 0xAC);
CHECK(memory.read(0x7000000) == 0xAC);
memory.write(0x70003FF, 0x48);
CHECK(memory.read(0x70003FF) == 0x48);
memory.write(0x7000156, 0x10);
CHECK(memory.read(0x7000156) == 0x10);
}
TEST_CASE("rom", TAG) {
// 32 megabyte ROM
Memory memory(std::array<uint8_t, Memory::BIOS_SIZE>(),
std::vector<uint8_t>(32 * 1024 * 1024));
SECTION("ROM1") {
memory.write(0x8000000, 0xAC);
CHECK(memory.read(0x8000000) == 0xAC);
memory.write(0x9FFFFFF, 0x48);
CHECK(memory.read(0x9FFFFFF) == 0x48);
memory.write(0x8ef0256, 0x10);
CHECK(memory.read(0x8ef0256) == 0x10);
}
SECTION("ROM2") {
memory.write(0xA000000, 0xAC);
CHECK(memory.read(0xA000000) == 0xAC);
memory.write(0xBFFFFFF, 0x48);
CHECK(memory.read(0xBFFFFFF) == 0x48);
memory.write(0xAEF0256, 0x10);
CHECK(memory.read(0xAEF0256) == 0x10);
}
SECTION("ROM3") {
memory.write(0xC000000, 0xAC);
CHECK(memory.read(0xC000000) == 0xAC);
memory.write(0xDFFFFFF, 0x48);
CHECK(memory.read(0xDFFFFFF) == 0x48);
memory.write(0xCEF0256, 0x10);
CHECK(memory.read(0xCEF0256) == 0x10);
}
}

View File

@@ -2,25 +2,18 @@ tests_deps = [
lib lib
] ]
src = include_directories('../src') tests_sources = files()
tests_sources = files(
'main.cc',
'bus.cc',
'memory.cc'
)
subdir('cpu') subdir('cpu')
subdir('util')
catch2 = dependency('catch2', version: '>=3.4.0', static: true) catch2 = dependency('catch2-with-main', version: '>=3.4.0', static: true)
catch2_tests = executable( catch2_tests = executable(
'matar_tests', meson.project_name() + '_tests',
tests_sources, tests_sources,
dependencies: catch2, dependencies: catch2,
link_with: tests_deps, link_with: tests_deps,
include_directories: [inc, src], include_directories: inc,
build_by_default: false, build_by_default: false
) )
test('catch2 tests', catch2_tests) test('catch2 tests', catch2_tests)

View File

@@ -1,106 +0,0 @@
#include "util/bits.hh"
#include <catch2/catch_test_macros.hpp>
static constexpr auto TAG = "[util][bits]";
TEST_CASE("8 bits", TAG) {
uint8_t num = 45;
CHECK(get_bit(num, 0));
CHECK(!get_bit(num, 1));
CHECK(get_bit(num, 5));
CHECK(!get_bit(num, 6));
CHECK(!get_bit(num, 7));
set_bit(num, 6);
CHECK(get_bit(num, 6));
rst_bit(num, 6);
CHECK(!get_bit(num, 6));
chg_bit(num, 5, false);
CHECK(!get_bit(num, 5));
chg_bit(num, 5, true);
CHECK(get_bit(num, 5));
// 0b0110
CHECK(bit_range(num, 1, 4) == 6);
}
TEST_CASE("16 bits", TAG) {
uint16_t num = 34587;
CHECK(get_bit(num, 0));
CHECK(get_bit(num, 1));
CHECK(!get_bit(num, 5));
CHECK(!get_bit(num, 14));
CHECK(get_bit(num, 15));
set_bit(num, 14);
CHECK(get_bit(num, 14));
rst_bit(num, 14);
CHECK(!get_bit(num, 14));
chg_bit(num, 5, true);
CHECK(get_bit(num, 5));
// num = 45
chg_bit(num, 5, false);
CHECK(!get_bit(num, 5));
// 0b1000110
CHECK(bit_range(num, 2, 8) == 70);
}
TEST_CASE("32 bits", TAG) {
uint32_t num = 3194142523;
CHECK(get_bit(num, 0));
CHECK(get_bit(num, 1));
CHECK(get_bit(num, 12));
CHECK(get_bit(num, 29));
CHECK(!get_bit(num, 30));
CHECK(get_bit(num, 31));
set_bit(num, 30);
CHECK(get_bit(num, 30));
rst_bit(num, 30);
CHECK(!get_bit(num, 30));
chg_bit(num, 12, false);
CHECK(!get_bit(num, 12));
chg_bit(num, 12, true);
CHECK(get_bit(num, 12));
// 0b10011000101011111100111
CHECK(bit_range(num, 3, 25) == 5003239);
}
TEST_CASE("64 bits", TAG) {
uint64_t num = 58943208889991935;
CHECK(get_bit(num, 0));
CHECK(get_bit(num, 1));
CHECK(!get_bit(num, 10));
CHECK(get_bit(num, 55));
CHECK(!get_bit(num, 60));
set_bit(num, 63);
CHECK(get_bit(num, 63));
rst_bit(num, 63);
CHECK(!get_bit(num, 63));
chg_bit(num, 10, true);
CHECK(get_bit(num, 10));
chg_bit(num, 10, false);
CHECK(!get_bit(num, 10));
// 0b011010001
CHECK(bit_range(num, 39, 47) == 209);
}

View File

@@ -1,21 +0,0 @@
#include "util/crypto.hh"
#include <catch2/catch_test_macros.hpp>
static constexpr auto TAG = "[util][crypto]";
TEST_CASE("sha256 matar", TAG) {
std::array<uint8_t, 5> data = { 'm', 'a', 't', 'a', 'r' };
CHECK(crypto::sha256(data) ==
"3b02a908fd5743c0e868675bb6ae77d2a62b3b5f7637413238e2a1e0e94b6a53");
}
TEST_CASE("sha256 forgis", TAG) {
std::array<uint8_t, 32> data = { 'i', ' ', 'p', 'u', 't', ' ', 't', 'h',
'e', ' ', 'n', 'e', 'w', ' ', 'f', 'o',
'r', 'g', 'i', 's', ' ', 'o', 'n', ' ',
't', 'h', 'e', ' ', 'j', 'e', 'e', 'p' };
CHECK(crypto::sha256(data) ==
"cfddca2ce2673f355518cbe2df2a8522693c54723a469e8b36a4f68b90d2b759");
}

View File

@@ -1,4 +0,0 @@
tests_sources += files(
'bits.cc',
'crypto.cc'
)