8 Commits

Author SHA1 Message Date
0f09874929 cpu: get rid of the test workaround
now can we remove the pimpl?

Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-27 22:43:50 +05:30
03ebc6378a clang: make linter happy
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-27 17:36:25 +05:30
5ec5e6dddc thumb: add disassembler
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-27 17:31:00 +05:30
208527b7f8 thumb: initialise instruction formats
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-27 01:36:05 +05:30
6822e1255a meson: make disassembler feature true by default
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-27 01:33:51 +05:30
bd91112509 refactor: make disassembler optional
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-27 01:31:32 +05:30
1baebd72f6 refactor: make cpu-impl private when not testing
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-27 01:25:47 +05:30
b55f6ee16b refactor: replace fmt ostreams with stringify
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-27 01:24:32 +05:30
34 changed files with 2021 additions and 761 deletions

View File

@@ -26,7 +26,7 @@
".hh" ".hh"
".cc" ".cc"
".build" ".build"
"meson_options.txt" ".options"
]; ];
in in
rec { rec {

2
meson.options Normal file
View File

@@ -0,0 +1,2 @@
option('tests', type : 'boolean', value : true, description: 'enable tests')
option('disassembler', type: 'boolean', value: true, description: 'enable disassembler')

View File

@@ -1 +0,0 @@
option('tests', type : 'boolean', value : true, description: 'enable tests')

View File

@@ -48,24 +48,4 @@ eval_shift(ShiftType shift_type, uint32_t value, uint8_t amount, bool& carry) {
return eval; return eval;
} }
std::ostream&
operator<<(std::ostream& os, const ShiftType shift_type) {
#define CASE(type) \
case ShiftType::type: \
os << #type; \
break;
switch (shift_type) {
CASE(LSL)
CASE(LSR)
CASE(ASR)
CASE(ROR)
}
#undef CASE
return os;
}
} }

View File

@@ -10,6 +10,24 @@ enum class ShiftType {
ROR = 0b11 ROR = 0b11
}; };
constexpr auto
stringify(ShiftType shift_type) {
#define CASE(type) \
case ShiftType::type: \
return #type;
switch (shift_type) {
CASE(LSL)
CASE(LSR)
CASE(ASR)
CASE(ROR)
}
#undef CASE
return "";
}
struct ShiftData { struct ShiftData {
ShiftType type; ShiftType type;
bool immediate; bool immediate;
@@ -23,13 +41,4 @@ struct Shift {
uint32_t uint32_t
eval_shift(ShiftType shift_type, uint32_t value, uint8_t amount, bool& carry); eval_shift(ShiftType shift_type, uint32_t value, uint8_t amount, bool& carry);
// https://fmt.dev/dev/api.html#std-ostream-support
std::ostream&
operator<<(std::ostream& os, const ShiftType cond);
}
namespace fmt {
template<>
struct formatter<matar::ShiftType> : ostream_formatter {};
} }

233
src/cpu/arm/disassembler.cc Normal file
View File

@@ -0,0 +1,233 @@
#include "instruction.hh"
#include "util/bits.hh"
namespace matar::arm {
std::string
Instruction::disassemble() {
auto condition = stringify(this->condition);
return std::visit(
overloaded{
[condition](BranchAndExchange& data) {
return fmt::format("BX{} R{:d}", condition, data.rn);
},
[condition](Branch& data) {
return fmt::format(
"B{}{} 0x{:06X}", (data.link ? "L" : ""), condition, data.offset);
},
[condition](Multiply& data) {
if (data.acc) {
return fmt::format("MLA{}{} R{:d},R{:d},R{:d},R{:d}",
condition,
(data.set ? "S" : ""),
data.rd,
data.rm,
data.rs,
data.rn);
} else {
return fmt::format("MUL{}{} R{:d},R{:d},R{:d}",
condition,
(data.set ? "S" : ""),
data.rd,
data.rm,
data.rs);
}
},
[condition](MultiplyLong& data) {
return fmt::format("{}{}{}{} R{:d},R{:d},R{:d},R{:d}",
(data.uns ? 'U' : 'S'),
(data.acc ? "MLAL" : "MULL"),
condition,
(data.set ? "S" : ""),
data.rdlo,
data.rdhi,
data.rm,
data.rs);
},
[](Undefined) { return std::string("UND"); },
[condition](SingleDataSwap& data) {
return fmt::format("SWP{}{} R{:d},R{:d},[R{:d}]",
condition,
(data.byte ? "B" : ""),
data.rd,
data.rm,
data.rn);
},
[condition](SingleDataTransfer& data) {
std::string expression;
std::string address;
if (const uint16_t* offset = std::get_if<uint16_t>(&data.offset)) {
if (*offset == 0) {
expression = "";
} else {
expression =
fmt::format(",{}#{:d}", (data.up ? '+' : '-'), *offset);
}
} else if (const Shift* shift = std::get_if<Shift>(&data.offset)) {
// Shifts are always immediate in single data transfer
expression = fmt::format(",{}R{:d},{} #{:d}",
(data.up ? '+' : '-'),
shift->rm,
stringify(shift->data.type),
shift->data.operand);
}
return fmt::format(
"{}{}{}{} R{:d},[R{:d}{}]{}",
(data.load ? "LDR" : "STR"),
condition,
(data.byte ? "B" : ""),
(!data.pre && data.write ? "T" : ""),
data.rd,
data.rn,
(data.pre ? expression : ""),
(data.pre ? (data.write ? "!" : "") : expression));
},
[condition](HalfwordTransfer& data) {
std::string expression;
if (data.imm) {
if (data.offset == 0) {
expression = "";
} else {
expression = fmt::format(
",{}#{:d}", (data.up ? '+' : '-'), data.offset);
}
} else {
expression =
fmt::format(",{}R{:d}", (data.up ? '+' : '-'), data.offset);
}
return fmt::format(
"{}{}{}{} R{:d},[R{:d}{}]{}",
(data.load ? "LDR" : "STR"),
condition,
(data.sign ? "S" : ""),
(data.half ? 'H' : 'B'),
data.rd,
data.rn,
(data.pre ? expression : ""),
(data.pre ? (data.write ? "!" : "") : expression));
},
[condition](BlockDataTransfer& data) {
std::string regs;
for (uint8_t i = 0; i < 16; i++) {
if (get_bit(data.regs, i))
fmt::format_to(std::back_inserter(regs), "R{:d},", i);
};
regs.pop_back();
return fmt::format("{}{}{}{} R{:d}{},{{{}}}{}",
(data.load ? "LDM" : "STM"),
condition,
(data.up ? 'I' : 'D'),
(data.pre ? 'B' : 'A'),
data.rn,
(data.write ? "!" : ""),
regs,
(data.s ? "^" : ""));
},
[condition](PsrTransfer& data) {
if (data.type == PsrTransfer::Type::Mrs) {
return fmt::format("MRS{} R{:d},{}",
condition,
data.operand,
(data.spsr ? "SPSR_all" : "CPSR_all"));
} else {
return fmt::format(
"MSR{} {}_{},{}{}",
condition,
(data.spsr ? "SPSR" : "CPSR"),
(data.type == PsrTransfer::Type::Msr_flg ? "flg" : "all"),
(data.imm ? '#' : 'R'),
data.operand);
}
},
[condition](DataProcessing& data) {
using OpCode = DataProcessing::OpCode;
std::string op_2;
if (const uint32_t* operand =
std::get_if<uint32_t>(&data.operand)) {
op_2 = fmt::format("#{:d}", *operand);
} else if (const Shift* shift = std::get_if<Shift>(&data.operand)) {
op_2 = fmt::format("R{:d},{} {}{:d}",
shift->rm,
stringify(shift->data.type),
(shift->data.immediate ? '#' : 'R'),
shift->data.operand);
}
switch (data.opcode) {
case OpCode::MOV:
case OpCode::MVN:
return fmt::format("{}{}{} R{:d},{}",
stringify(data.opcode),
condition,
(data.set ? "S" : ""),
data.rd,
op_2);
case OpCode::TST:
case OpCode::TEQ:
case OpCode::CMP:
case OpCode::CMN:
return fmt::format("{}{} R{:d},{}",
stringify(data.opcode),
condition,
data.rn,
op_2);
default:
return fmt::format("{}{}{} R{:d},R{:d},{}",
stringify(data.opcode),
condition,
(data.set ? "S" : ""),
data.rd,
data.rn,
op_2);
}
},
[condition](SoftwareInterrupt) {
return fmt::format("SWI{}", condition);
},
[condition](CoprocessorDataTransfer& data) {
std::string expression = fmt::format(",#{:d}", data.offset);
return fmt::format(
"{}{}{} p{:d},c{:d},[R{:d}{}]{}",
(data.load ? "LDC" : "STC"),
condition,
(data.len ? "L" : ""),
data.cpn,
data.crd,
data.rn,
(data.pre ? expression : ""),
(data.pre ? (data.write ? "!" : "") : expression));
},
[condition](CoprocessorDataOperation& data) {
return fmt::format("CDP{} p{},{},c{},c{},c{},{}",
condition,
data.cpn,
data.cp_opc,
data.crd,
data.crn,
data.crm,
data.cp);
},
[condition](CoprocessorRegisterTransfer& data) {
return fmt::format("{}{} p{},{},R{},c{},c{},{}",
(data.load ? "MRC" : "MCR"),
condition,
data.cpn,
data.cp_opc,
data.rd,
data.crn,
data.crm,
data.cp);
},
[](auto) { return std::string("unknown instruction"); } },
data);
}
}

View File

@@ -2,23 +2,20 @@
#include "util/bits.hh" #include "util/bits.hh"
#include "util/log.hh" #include "util/log.hh"
namespace matar { namespace matar::arm {
void void
CpuImpl::exec_arm(const arm::Instruction instruction) { Instruction::exec(CpuImpl& cpu) {
Condition cond = instruction.condition; if (!cpu.cpsr.condition(condition)) {
arm::InstructionData data = instruction.data;
if (!cpsr.condition(cond)) {
return; return;
} }
auto pc_error = [](uint8_t r) { auto pc_error = [cpu](uint8_t r) {
if (r == PC_INDEX) if (r == cpu.PC_INDEX)
glogger.error("Using PC (R15) as operand register"); glogger.error("Using PC (R15) as operand register");
}; };
auto pc_warn = [](uint8_t r) { auto pc_warn = [cpu](uint8_t r) {
if (r == PC_INDEX) if (r == cpu.PC_INDEX)
glogger.warn("Using PC (R15) as operand register"); glogger.warn("Using PC (R15) as operand register");
}; };
@@ -26,38 +23,39 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
std::visit( std::visit(
overloaded{ overloaded{
[this, pc_warn](BranchAndExchange& data) { [&cpu, pc_warn](BranchAndExchange& data) {
State state = static_cast<State>(data.rn & 1); State state = static_cast<State>(data.rn & 1);
pc_warn(data.rn); pc_warn(data.rn);
// set state // set state
cpsr.set_state(state); cpu.cpsr.set_state(state);
// copy to PC // copy to PC
pc = gpr[data.rn]; cpu.pc = cpu.gpr[data.rn];
// ignore [1:0] bits for arm and 0 bit for thumb // ignore [1:0] bits for arm and 0 bit for thumb
rst_bit(pc, 0); rst_bit(cpu.pc, 0);
if (state == State::Arm) if (state == State::Arm)
rst_bit(pc, 1); rst_bit(cpu.pc, 1);
// pc is affected so flush the pipeline // pc is affected so flush the pipeline
is_flushed = true; cpu.is_flushed = true;
}, },
[this](Branch& data) { [&cpu](Branch& data) {
if (data.link) if (data.link)
gpr[14] = pc - INSTRUCTION_SIZE; cpu.gpr[14] = cpu.pc - INSTRUCTION_SIZE;
// data.offset accounts for two instructions ahead when // data.offset accounts for two instructions ahead when
// disassembling, so need to adjust // disassembling, so need to adjust
pc = static_cast<int32_t>(pc) - 2 * INSTRUCTION_SIZE + data.offset; cpu.pc =
static_cast<int32_t>(cpu.pc) - 2 * INSTRUCTION_SIZE + data.offset;
// pc is affected so flush the pipeline // pc is affected so flush the pipeline
is_flushed = true; cpu.is_flushed = true;
}, },
[this, pc_error](Multiply& data) { [&cpu, pc_error](Multiply& data) {
if (data.rd == data.rm) if (data.rd == data.rm)
glogger.error("rd and rm are not distinct in {}", glogger.error("rd and rm are not distinct in {}",
typeid(data).name()); typeid(data).name());
@@ -66,16 +64,16 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
pc_error(data.rd); pc_error(data.rd);
pc_error(data.rd); pc_error(data.rd);
gpr[data.rd] = cpu.gpr[data.rd] = cpu.gpr[data.rm] * cpu.gpr[data.rs] +
gpr[data.rm] * gpr[data.rs] + (data.acc ? gpr[data.rn] : 0); (data.acc ? cpu.gpr[data.rn] : 0);
if (data.set) { if (data.set) {
cpsr.set_z(gpr[data.rd] == 0); cpu.cpsr.set_z(cpu.gpr[data.rd] == 0);
cpsr.set_n(get_bit(gpr[data.rd], 31)); cpu.cpsr.set_n(get_bit(cpu.gpr[data.rd], 31));
cpsr.set_c(0); cpu.cpsr.set_c(0);
} }
}, },
[this, pc_error](MultiplyLong& data) { [&cpu, pc_error](MultiplyLong& data) {
if (data.rdhi == data.rdlo || data.rdhi == data.rm || if (data.rdhi == data.rdlo || data.rdhi == data.rm ||
data.rdlo == data.rm) data.rdlo == data.rm)
glogger.error("rdhi, rdlo and rm are not distinct in {}", glogger.error("rdhi, rdlo and rm are not distinct in {}",
@@ -91,58 +89,60 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
return static_cast<uint64_t>(x); return static_cast<uint64_t>(x);
}; };
uint64_t eval = cast(gpr[data.rm]) * cast(gpr[data.rs]) + uint64_t eval =
(data.acc ? (cast(gpr[data.rdhi]) << 32) | cast(cpu.gpr[data.rm]) * cast(cpu.gpr[data.rs]) +
cast(gpr[data.rdlo]) (data.acc ? (cast(cpu.gpr[data.rdhi]) << 32) |
: 0); cast(cpu.gpr[data.rdlo])
: 0);
gpr[data.rdlo] = bit_range(eval, 0, 31); cpu.gpr[data.rdlo] = bit_range(eval, 0, 31);
gpr[data.rdhi] = bit_range(eval, 32, 63); cpu.gpr[data.rdhi] = bit_range(eval, 32, 63);
} else { } else {
auto cast = [](uint32_t x) -> int64_t { auto cast = [](uint32_t x) -> int64_t {
return static_cast<int64_t>(static_cast<int32_t>(x)); return static_cast<int64_t>(static_cast<int32_t>(x));
}; };
int64_t eval = cast(gpr[data.rm]) * cast(gpr[data.rs]) + int64_t eval = cast(cpu.gpr[data.rm]) * cast(cpu.gpr[data.rs]) +
(data.acc ? (cast(gpr[data.rdhi]) << 32) | (data.acc ? (cast(cpu.gpr[data.rdhi]) << 32) |
cast(gpr[data.rdlo]) cast(cpu.gpr[data.rdlo])
: 0); : 0);
gpr[data.rdlo] = bit_range(eval, 0, 31); cpu.gpr[data.rdlo] = bit_range(eval, 0, 31);
gpr[data.rdhi] = bit_range(eval, 32, 63); cpu.gpr[data.rdhi] = bit_range(eval, 32, 63);
} }
if (data.set) { if (data.set) {
cpsr.set_z(gpr[data.rdhi] == 0 && gpr[data.rdlo] == 0); cpu.cpsr.set_z(cpu.gpr[data.rdhi] == 0 &&
cpsr.set_n(get_bit(gpr[data.rdhi], 31)); cpu.gpr[data.rdlo] == 0);
cpsr.set_c(0); cpu.cpsr.set_n(get_bit(cpu.gpr[data.rdhi], 31));
cpsr.set_v(0); cpu.cpsr.set_c(0);
cpu.cpsr.set_v(0);
} }
}, },
[](Undefined) { glogger.warn("Undefined instruction"); }, [](Undefined) { glogger.warn("Undefined instruction"); },
[this, pc_error](SingleDataSwap& data) { [&cpu, pc_error](SingleDataSwap& data) {
pc_error(data.rm); pc_error(data.rm);
pc_error(data.rn); pc_error(data.rn);
pc_error(data.rd); pc_error(data.rd);
if (data.byte) { if (data.byte) {
gpr[data.rd] = bus->read_byte(gpr[data.rn]); cpu.gpr[data.rd] = cpu.bus->read_byte(cpu.gpr[data.rn]);
bus->write_byte(gpr[data.rn], gpr[data.rm] & 0xFF); cpu.bus->write_byte(cpu.gpr[data.rn], cpu.gpr[data.rm] & 0xFF);
} else { } else {
gpr[data.rd] = bus->read_word(gpr[data.rn]); cpu.gpr[data.rd] = cpu.bus->read_word(cpu.gpr[data.rn]);
bus->write_word(gpr[data.rn], gpr[data.rm]); cpu.bus->write_word(cpu.gpr[data.rn], cpu.gpr[data.rm]);
} }
}, },
[this, pc_warn, pc_error](SingleDataTransfer& data) { [&cpu, pc_warn, pc_error](SingleDataTransfer& data) {
uint32_t offset = 0; uint32_t offset = 0;
uint32_t address = gpr[data.rn]; uint32_t address = cpu.gpr[data.rn];
if (!data.pre && data.write) if (!data.pre && data.write)
glogger.warn("Write-back enabled with post-indexing in {}", glogger.warn("Write-back enabled with post-indexing in {}",
typeid(data).name()); typeid(data).name());
if (data.rn == PC_INDEX && data.write) if (data.rn == cpu.PC_INDEX && data.write)
glogger.warn("Write-back enabled with base register as PC {}", glogger.warn("Write-back enabled with base register as PC {}",
typeid(data).name()); typeid(data).name());
@@ -156,22 +156,22 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
} else if (const Shift* shift = std::get_if<Shift>(&data.offset)) { } else if (const Shift* shift = std::get_if<Shift>(&data.offset)) {
uint8_t amount = uint8_t amount =
(shift->data.immediate ? shift->data.operand (shift->data.immediate ? shift->data.operand
: gpr[shift->data.operand] & 0xFF); : cpu.gpr[shift->data.operand] & 0xFF);
bool carry = cpsr.c(); bool carry = cpu.cpsr.c();
if (!shift->data.immediate) if (!shift->data.immediate)
pc_error(shift->data.operand); pc_error(shift->data.operand);
pc_error(shift->rm); pc_error(shift->rm);
offset = offset = eval_shift(
eval_shift(shift->data.type, gpr[shift->rm], amount, carry); shift->data.type, cpu.gpr[shift->rm], amount, carry);
cpsr.set_c(carry); cpu.cpsr.set_c(carry);
} }
// PC is always two instructions ahead // PC is always two instructions ahead
if (data.rn == PC_INDEX) if (data.rn == cpu.PC_INDEX)
address -= 2 * INSTRUCTION_SIZE; address -= 2 * INSTRUCTION_SIZE;
if (data.pre) if (data.pre)
@@ -181,35 +181,35 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
if (data.load) { if (data.load) {
// byte // byte
if (data.byte) if (data.byte)
gpr[data.rd] = bus->read_byte(address); cpu.gpr[data.rd] = cpu.bus->read_byte(address);
// word // word
else else
gpr[data.rd] = bus->read_word(address); cpu.gpr[data.rd] = cpu.bus->read_word(address);
// store // store
} else { } else {
// take PC into consideration // take PC into consideration
if (data.rd == PC_INDEX) if (data.rd == cpu.PC_INDEX)
address += INSTRUCTION_SIZE; address += INSTRUCTION_SIZE;
// byte // byte
if (data.byte) if (data.byte)
bus->write_byte(address, gpr[data.rd] & 0xFF); cpu.bus->write_byte(address, cpu.gpr[data.rd] & 0xFF);
// word // word
else else
bus->write_word(address, gpr[data.rd]); cpu.bus->write_word(address, cpu.gpr[data.rd]);
} }
if (!data.pre) if (!data.pre)
address += (data.up ? offset : -offset); address += (data.up ? offset : -offset);
if (!data.pre || data.write) if (!data.pre || data.write)
gpr[data.rn] = address; cpu.gpr[data.rn] = address;
if (data.rd == PC_INDEX && data.load) if (data.rd == cpu.PC_INDEX && data.load)
is_flushed = true; cpu.is_flushed = true;
}, },
[this, pc_warn, pc_error](HalfwordTransfer& data) { [&cpu, pc_warn, pc_error](HalfwordTransfer& data) {
uint32_t address = gpr[data.rn]; uint32_t address = cpu.gpr[data.rn];
uint32_t offset = 0; uint32_t offset = 0;
if (!data.pre && data.write) if (!data.pre && data.write)
@@ -225,13 +225,13 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
// offset is register number (4 bits) when not an immediate // offset is register number (4 bits) when not an immediate
if (!data.imm) { if (!data.imm) {
pc_error(data.offset); pc_error(data.offset);
offset = gpr[data.offset]; offset = cpu.gpr[data.offset];
} else { } else {
offset = data.offset; offset = data.offset;
} }
// PC is always two instructions ahead // PC is always two instructions ahead
if (data.rn == PC_INDEX) if (data.rn == cpu.PC_INDEX)
address -= 2 * INSTRUCTION_SIZE; address -= 2 * INSTRUCTION_SIZE;
if (data.pre) if (data.pre)
@@ -243,62 +243,62 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
if (data.sign) { if (data.sign) {
// halfword // halfword
if (data.half) { if (data.half) {
gpr[data.rd] = bus->read_halfword(address); cpu.gpr[data.rd] = cpu.bus->read_halfword(address);
// sign extend the halfword // sign extend the halfword
gpr[data.rd] = cpu.gpr[data.rd] =
(static_cast<int32_t>(gpr[data.rd]) << 16) >> 16; (static_cast<int32_t>(cpu.gpr[data.rd]) << 16) >> 16;
// byte // byte
} else { } else {
gpr[data.rd] = bus->read_byte(address); cpu.gpr[data.rd] = cpu.bus->read_byte(address);
// sign extend the byte // sign extend the byte
gpr[data.rd] = cpu.gpr[data.rd] =
(static_cast<int32_t>(gpr[data.rd]) << 24) >> 24; (static_cast<int32_t>(cpu.gpr[data.rd]) << 24) >> 24;
} }
// unsigned halfword // unsigned halfword
} else if (data.half) { } else if (data.half) {
gpr[data.rd] = bus->read_halfword(address); cpu.gpr[data.rd] = cpu.bus->read_halfword(address);
} }
// store // store
} else { } else {
// take PC into consideration // take PC into consideration
if (data.rd == PC_INDEX) if (data.rd == cpu.PC_INDEX)
address += INSTRUCTION_SIZE; address += INSTRUCTION_SIZE;
// halfword // halfword
if (data.half) if (data.half)
bus->write_halfword(address, gpr[data.rd]); cpu.bus->write_halfword(address, cpu.gpr[data.rd]);
} }
if (!data.pre) if (!data.pre)
address += (data.up ? offset : -offset); address += (data.up ? offset : -offset);
if (!data.pre || data.write) if (!data.pre || data.write)
gpr[data.rn] = address; cpu.gpr[data.rn] = address;
if (data.rd == PC_INDEX && data.load) if (data.rd == cpu.PC_INDEX && data.load)
is_flushed = true; cpu.is_flushed = true;
}, },
[this, pc_error](BlockDataTransfer& data) { [&cpu, pc_error](BlockDataTransfer& data) {
uint32_t address = gpr[data.rn]; uint32_t address = cpu.gpr[data.rn];
Mode mode = cpsr.mode(); Mode mode = cpu.cpsr.mode();
uint8_t alignment = 4; // word uint8_t alignment = 4; // word
uint8_t i = 0; uint8_t i = 0;
uint8_t n_regs = std::popcount(data.regs); uint8_t n_regs = std::popcount(data.regs);
pc_error(data.rn); pc_error(data.rn);
if (cpsr.mode() == Mode::User && data.s) { if (cpu.cpsr.mode() == Mode::User && data.s) {
glogger.error("Bit S is set outside priviliged modes in {}", glogger.error("Bit S is set outside priviliged modes in {}",
typeid(data).name()); typeid(data).name());
} }
// we just change modes to load user registers // we just change modes to load user registers
if ((!get_bit(data.regs, PC_INDEX) && data.s) || if ((!get_bit(data.regs, cpu.PC_INDEX) && data.s) ||
(!data.load && data.s)) { (!data.load && data.s)) {
chg_mode(Mode::User); cpu.chg_mode(Mode::User);
if (data.write) { if (data.write) {
glogger.error( glogger.error(
@@ -315,22 +315,22 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
address += (data.up ? alignment : -alignment); address += (data.up ? alignment : -alignment);
if (data.load) { if (data.load) {
if (get_bit(data.regs, PC_INDEX) && data.s && data.load) { if (get_bit(data.regs, cpu.PC_INDEX) && data.s && data.load) {
// current mode's spsr is already loaded when it was // current mode's cpu.spsr is already loaded when it was
// switched // switched
spsr = cpsr; cpu.spsr = cpu.cpsr;
} }
for (i = 0; i < GPR_COUNT; i++) { for (i = 0; i < cpu.GPR_COUNT; i++) {
if (get_bit(data.regs, i)) { if (get_bit(data.regs, i)) {
gpr[i] = bus->read_word(address); cpu.gpr[i] = cpu.bus->read_word(address);
address += alignment; address += alignment;
} }
} }
} else { } else {
for (i = 0; i < GPR_COUNT; i++) { for (i = 0; i < cpu.GPR_COUNT; i++) {
if (get_bit(data.regs, i)) { if (get_bit(data.regs, i)) {
bus->write_word(address, gpr[i]); cpu.bus->write_word(address, cpu.gpr[i]);
address += alignment; address += alignment;
} }
} }
@@ -346,37 +346,37 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
address -= alignment; address -= alignment;
if (!data.pre || data.write) if (!data.pre || data.write)
gpr[data.rn] = address; cpu.gpr[data.rn] = address;
if (data.load && get_bit(data.regs, PC_INDEX)) if (data.load && get_bit(data.regs, cpu.PC_INDEX))
is_flushed = true; cpu.is_flushed = true;
// load back the original mode registers // load back the original mode registers
chg_mode(mode); cpu.chg_mode(mode);
}, },
[this, pc_error](PsrTransfer& data) { [&cpu, pc_error](PsrTransfer& data) {
if (data.spsr && cpsr.mode() == Mode::User) { if (data.spsr && cpu.cpsr.mode() == Mode::User) {
glogger.error("Accessing SPSR in User mode in {}", glogger.error("Accessing CPU.SPSR in User mode in {}",
typeid(data).name()); typeid(data).name());
} }
Psr& psr = data.spsr ? spsr : cpsr; Psr& psr = data.spsr ? cpu.spsr : cpu.cpsr;
switch (data.type) { switch (data.type) {
case PsrTransfer::Type::Mrs: case PsrTransfer::Type::Mrs:
pc_error(data.operand); pc_error(data.operand);
gpr[data.operand] = psr.raw(); cpu.gpr[data.operand] = psr.raw();
break; break;
case PsrTransfer::Type::Msr: case PsrTransfer::Type::Msr:
pc_error(data.operand); pc_error(data.operand);
if (cpsr.mode() != Mode::User) { if (cpu.cpsr.mode() != Mode::User) {
psr.set_all(gpr[data.operand]); psr.set_all(cpu.gpr[data.operand]);
} }
break; break;
case PsrTransfer::Type::Msr_flg: case PsrTransfer::Type::Msr_flg:
uint32_t operand = uint32_t operand =
(data.imm ? data.operand : gpr[data.operand]); (data.imm ? data.operand : cpu.gpr[data.operand]);
psr.set_n(get_bit(operand, 31)); psr.set_n(get_bit(operand, 31));
psr.set_z(get_bit(operand, 30)); psr.set_z(get_bit(operand, 30));
psr.set_c(get_bit(operand, 29)); psr.set_c(get_bit(operand, 29));
@@ -384,10 +384,10 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
break; break;
} }
}, },
[this, pc_error](DataProcessing& data) { [&cpu, pc_error](DataProcessing& data) {
using OpCode = DataProcessing::OpCode; using OpCode = DataProcessing::OpCode;
uint32_t op_1 = gpr[data.rn]; uint32_t op_1 = cpu.gpr[data.rn];
uint32_t op_2 = 0; uint32_t op_2 = 0;
uint32_t result = 0; uint32_t result = 0;
@@ -398,26 +398,26 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
} else if (const Shift* shift = std::get_if<Shift>(&data.operand)) { } else if (const Shift* shift = std::get_if<Shift>(&data.operand)) {
uint8_t amount = uint8_t amount =
(shift->data.immediate ? shift->data.operand (shift->data.immediate ? shift->data.operand
: gpr[shift->data.operand] & 0xFF); : cpu.gpr[shift->data.operand] & 0xFF);
bool carry = cpsr.c(); bool carry = cpu.cpsr.c();
if (!shift->data.immediate) if (!shift->data.immediate)
pc_error(shift->data.operand); pc_error(shift->data.operand);
pc_error(shift->rm); pc_error(shift->rm);
op_2 = op_2 = eval_shift(
eval_shift(shift->data.type, gpr[shift->rm], amount, carry); shift->data.type, cpu.gpr[shift->rm], amount, carry);
cpsr.set_c(carry); cpu.cpsr.set_c(carry);
// PC is 12 bytes ahead when shifting // PC is 12 bytes ahead when shifting
if (data.rn == PC_INDEX) if (data.rn == cpu.PC_INDEX)
op_1 += INSTRUCTION_SIZE; op_1 += INSTRUCTION_SIZE;
} }
bool overflow = cpsr.v(); bool overflow = cpu.cpsr.v();
bool carry = cpsr.c(); bool carry = cpu.cpsr.c();
auto sub = [&carry, &overflow](uint32_t a, uint32_t b) -> uint32_t { auto sub = [&carry, &overflow](uint32_t a, uint32_t b) -> uint32_t {
bool s1 = get_bit(a, 31); bool s1 = get_bit(a, 31);
@@ -501,19 +501,19 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
break; break;
} }
auto set_conditions = [this, carry, overflow, result]() { auto set_conditions = [&cpu, carry, overflow, result]() {
cpsr.set_c(carry); cpu.cpsr.set_c(carry);
cpsr.set_v(overflow); cpu.cpsr.set_v(overflow);
cpsr.set_n(get_bit(result, 31)); cpu.cpsr.set_n(get_bit(result, 31));
cpsr.set_z(result == 0); cpu.cpsr.set_z(result == 0);
}; };
if (data.set) { if (data.set) {
if (data.rd == PC_INDEX) { if (data.rd == cpu.PC_INDEX) {
if (cpsr.mode() == Mode::User) if (cpu.cpsr.mode() == Mode::User)
glogger.error("Running {} in User mode", glogger.error("Running {} in User mode",
typeid(data).name()); typeid(data).name());
spsr = cpsr; cpu.spsr = cpu.cpsr;
} else { } else {
set_conditions(); set_conditions();
} }
@@ -523,15 +523,15 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
data.opcode == OpCode::CMP || data.opcode == OpCode::CMN) { data.opcode == OpCode::CMP || data.opcode == OpCode::CMN) {
set_conditions(); set_conditions();
} else { } else {
gpr[data.rd] = result; cpu.gpr[data.rd] = result;
if (data.rd == PC_INDEX || data.opcode == OpCode::MVN) if (data.rd == cpu.PC_INDEX || data.opcode == OpCode::MVN)
is_flushed = true; cpu.is_flushed = true;
} }
}, },
[this](SoftwareInterrupt) { [&cpu](SoftwareInterrupt) {
chg_mode(Mode::Supervisor); cpu.chg_mode(Mode::Supervisor);
pc = 0x08; cpu.pc = 0x08;
spsr = cpsr; cpu.spsr = cpu.cpsr;
}, },
[](auto& data) { [](auto& data) {
glogger.error("Unimplemented {} instruction", typeid(data).name()); glogger.error("Unimplemented {} instruction", typeid(data).name());

View File

@@ -2,9 +2,7 @@
#include "util/bits.hh" #include "util/bits.hh"
#include <iterator> #include <iterator>
namespace matar { namespace matar::arm {
namespace arm {
Instruction::Instruction(uint32_t insn) Instruction::Instruction(uint32_t insn)
: condition(static_cast<Condition>(bit_range(insn, 28, 31))) { : condition(static_cast<Condition>(bit_range(insn, 28, 31))) {
// Branch and exhcange // Branch and exhcange
@@ -275,261 +273,4 @@ Instruction::Instruction(uint32_t insn)
data = Undefined{}; data = Undefined{};
} }
} }
std::string
Instruction::disassemble() {
// goddamn this is gore
// TODO: make this less ugly
return std::visit(
overloaded{
[this](BranchAndExchange& data) {
return fmt::format("BX{} R{:d}", condition, data.rn);
},
[this](Branch& data) {
return fmt::format(
"B{}{} 0x{:06X}", (data.link ? "L" : ""), condition, data.offset);
},
[this](Multiply& data) {
if (data.acc) {
return fmt::format("MLA{}{} R{:d},R{:d},R{:d},R{:d}",
condition,
(data.set ? "S" : ""),
data.rd,
data.rm,
data.rs,
data.rn);
} else {
return fmt::format("MUL{}{} R{:d},R{:d},R{:d}",
condition,
(data.set ? "S" : ""),
data.rd,
data.rm,
data.rs);
}
},
[this](MultiplyLong& data) {
return fmt::format("{}{}{}{} R{:d},R{:d},R{:d},R{:d}",
(data.uns ? 'U' : 'S'),
(data.acc ? "MLAL" : "MULL"),
condition,
(data.set ? "S" : ""),
data.rdlo,
data.rdhi,
data.rm,
data.rs);
},
[](Undefined) { return std::string("UND"); },
[this](SingleDataSwap& data) {
return fmt::format("SWP{}{} R{:d},R{:d},[R{:d}]",
condition,
(data.byte ? "B" : ""),
data.rd,
data.rm,
data.rn);
},
[this](SingleDataTransfer& data) {
std::string expression;
std::string address;
if (const uint16_t* offset = std::get_if<uint16_t>(&data.offset)) {
if (*offset == 0) {
expression = "";
} else {
expression =
fmt::format(",{}#{:d}", (data.up ? '+' : '-'), *offset);
}
} else if (const Shift* shift = std::get_if<Shift>(&data.offset)) {
// Shifts are always immediate in single data transfer
expression = fmt::format(",{}R{:d},{} #{:d}",
(data.up ? '+' : '-'),
shift->rm,
shift->data.type,
shift->data.operand);
}
return fmt::format(
"{}{}{}{} R{:d},[R{:d}{}]{}",
(data.load ? "LDR" : "STR"),
condition,
(data.byte ? "B" : ""),
(!data.pre && data.write ? "T" : ""),
data.rd,
data.rn,
(data.pre ? expression : ""),
(data.pre ? (data.write ? "!" : "") : expression));
},
[this](HalfwordTransfer& data) {
std::string expression;
if (data.imm) {
if (data.offset == 0) {
expression = "";
} else {
expression = fmt::format(
",{}#{:d}", (data.up ? '+' : '-'), data.offset);
}
} else {
expression =
fmt::format(",{}R{:d}", (data.up ? '+' : '-'), data.offset);
}
return fmt::format(
"{}{}{}{} R{:d},[R{:d}{}]{}",
(data.load ? "LDR" : "STR"),
condition,
(data.sign ? "S" : ""),
(data.half ? 'H' : 'B'),
data.rd,
data.rn,
(data.pre ? expression : ""),
(data.pre ? (data.write ? "!" : "") : expression));
},
[this](BlockDataTransfer& data) {
std::string regs;
for (uint8_t i = 0; i < 16; i++) {
if (get_bit(data.regs, i))
fmt::format_to(std::back_inserter(regs), "R{:d},", i);
};
regs.pop_back();
return fmt::format("{}{}{}{} R{:d}{},{{{}}}{}",
(data.load ? "LDM" : "STM"),
condition,
(data.up ? 'I' : 'D'),
(data.pre ? 'B' : 'A'),
data.rn,
(data.write ? "!" : ""),
regs,
(data.s ? "^" : ""));
},
[this](PsrTransfer& data) {
if (data.type == PsrTransfer::Type::Mrs) {
return fmt::format("MRS{} R{:d},{}",
condition,
data.operand,
(data.spsr ? "SPSR_all" : "CPSR_all"));
} else {
return fmt::format(
"MSR{} {}_{},{}{}",
condition,
(data.spsr ? "SPSR" : "CPSR"),
(data.type == PsrTransfer::Type::Msr_flg ? "flg" : "all"),
(data.imm ? '#' : 'R'),
data.operand);
}
},
[this](DataProcessing& data) {
using OpCode = DataProcessing::OpCode;
std::string op_2;
if (const uint32_t* operand =
std::get_if<uint32_t>(&data.operand)) {
op_2 = fmt::format("#{:d}", *operand);
} else if (const Shift* shift = std::get_if<Shift>(&data.operand)) {
op_2 = fmt::format("R{:d},{} {}{:d}",
shift->rm,
shift->data.type,
(shift->data.immediate ? '#' : 'R'),
shift->data.operand);
}
switch (data.opcode) {
case OpCode::MOV:
case OpCode::MVN:
return fmt::format("{}{}{} R{:d},{}",
data.opcode,
condition,
(data.set ? "S" : ""),
data.rd,
op_2);
case OpCode::TST:
case OpCode::TEQ:
case OpCode::CMP:
case OpCode::CMN:
return fmt::format(
"{}{} R{:d},{}", data.opcode, condition, data.rn, op_2);
default:
return fmt::format("{}{}{} R{:d},R{:d},{}",
data.opcode,
condition,
(data.set ? "S" : ""),
data.rd,
data.rn,
op_2);
}
},
[this](SoftwareInterrupt) { return fmt::format("SWI{}", condition); },
[this](CoprocessorDataTransfer& data) {
std::string expression = fmt::format(",#{:d}", data.offset);
return fmt::format(
"{}{}{} p{:d},c{:d},[R{:d}{}]{}",
(data.load ? "LDC" : "STC"),
condition,
(data.len ? "L" : ""),
data.cpn,
data.crd,
data.rn,
(data.pre ? expression : ""),
(data.pre ? (data.write ? "!" : "") : expression));
},
[this](CoprocessorDataOperation& data) {
return fmt::format("CDP{} p{},{},c{},c{},c{},{}",
condition,
data.cpn,
data.cp_opc,
data.crd,
data.crn,
data.crm,
data.cp);
},
[this](CoprocessorRegisterTransfer& data) {
return fmt::format("{}{} p{},{},R{},c{},c{},{}",
(data.load ? "MRC" : "MCR"),
condition,
data.cpn,
data.cp_opc,
data.rd,
data.crn,
data.crm,
data.cp);
},
[](auto) { return std::string("unknown instruction"); } },
data);
}
std::ostream&
operator<<(std::ostream& os, const DataProcessing::OpCode opcode) {
#define CASE(opcode) \
case DataProcessing::OpCode::opcode: \
os << #opcode; \
break;
switch (opcode) {
CASE(AND)
CASE(EOR)
CASE(SUB)
CASE(RSB)
CASE(ADD)
CASE(ADC)
CASE(SBC)
CASE(RSC)
CASE(TST)
CASE(TEQ)
CASE(CMP)
CASE(CMN)
CASE(ORR)
CASE(MOV)
CASE(BIC)
CASE(MVN)
}
#undef CASE
return os;
}
}
} }

View File

@@ -6,8 +6,11 @@
#include <variant> #include <variant>
namespace matar { namespace matar {
class CpuImpl;
namespace arm { namespace arm {
// https://en.cppreference.com/w/cpp/utility/variant/visit
template<class... Ts> template<class... Ts>
struct overloaded : Ts... { struct overloaded : Ts... {
using Ts::operator()...; using Ts::operator()...;
@@ -113,6 +116,37 @@ struct DataProcessing {
OpCode opcode; OpCode opcode;
}; };
constexpr auto
stringify(DataProcessing::OpCode opcode) {
#define CASE(opcode) \
case DataProcessing::OpCode::opcode: \
return #opcode;
switch (opcode) {
CASE(AND)
CASE(EOR)
CASE(SUB)
CASE(RSB)
CASE(ADD)
CASE(ADC)
CASE(SBC)
CASE(RSC)
CASE(TST)
CASE(TEQ)
CASE(CMP)
CASE(CMN)
CASE(ORR)
CASE(MOV)
CASE(BIC)
CASE(MVN)
}
#undef CASE
return "";
}
struct PsrTransfer { struct PsrTransfer {
enum class Type { enum class Type {
Mrs, Mrs,
@@ -185,16 +219,11 @@ struct Instruction {
Instruction(Condition condition, InstructionData data) noexcept Instruction(Condition condition, InstructionData data) noexcept
: condition(condition) : condition(condition)
, data(data){}; , data(data){};
void exec(CpuImpl& cpu);
#ifdef DISASSEMBLER
std::string disassemble(); std::string disassemble();
#endif
}; };
std::ostream&
operator<<(std::ostream& os, const DataProcessing::OpCode cond);
} }
} }
namespace fmt {
template<>
struct formatter<matar::arm::DataProcessing::OpCode> : ostream_formatter {};
}

View File

@@ -1,4 +1,8 @@
lib_sources += files( lib_sources += files(
'instruction.cc', 'instruction.cc',
'exec.cc' 'exec.cc'
) )
if get_option('disassembler')
lib_sources += files('disassembler.cc')
endif

View File

@@ -3,6 +3,7 @@
#include "util/log.hh" #include "util/log.hh"
#include <algorithm> #include <algorithm>
#include <cstdio> #include <cstdio>
#include <type_traits>
namespace matar { namespace matar {
CpuImpl::CpuImpl(const Bus& bus) noexcept CpuImpl::CpuImpl(const Bus& bus) noexcept
@@ -121,11 +122,13 @@ CpuImpl::step() {
if (cpsr.state() == State::Arm) { if (cpsr.state() == State::Arm) {
uint32_t x = bus->read_word(cur_pc); uint32_t x = bus->read_word(cur_pc);
arm::Instruction instruction(x); arm::Instruction instruction(x);
instruction.exec(*this);
#ifdef DISASSEMBLER
glogger.info("{:#034b}", x); glogger.info("{:#034b}", x);
exec_arm(instruction);
glogger.info("0x{:08X} : {}", cur_pc, instruction.disassemble()); glogger.info("0x{:08X} : {}", cur_pc, instruction.disassemble());
#endif
if (is_flushed) { if (is_flushed) {
// if flushed, do not increment the PC, instead set it to two // if flushed, do not increment the PC, instead set it to two

View File

@@ -13,7 +13,9 @@ class CpuImpl {
void step(); void step();
void chg_mode(const Mode to); void chg_mode(const Mode to);
void exec_arm(const arm::Instruction instruction);
private:
friend void arm::Instruction::exec(CpuImpl& cpu);
static constexpr uint8_t GPR_COUNT = 16; static constexpr uint8_t GPR_COUNT = 16;

View File

@@ -5,4 +5,5 @@ lib_sources += files(
'alu.cc' 'alu.cc'
) )
subdir('arm') subdir('arm')
subdir('thumb')

View File

@@ -13,7 +13,7 @@ Psr::raw() const {
void void
Psr::set_all(uint32_t raw) { Psr::set_all(uint32_t raw) {
psr = raw & ~PSR_CLEAR_RESERVED; psr = raw;
} }
Mode Mode
@@ -91,42 +91,9 @@ Psr::condition(Condition cond) const {
case Condition::LE: case Condition::LE:
return z() || (n() != v()); return z() || (n() != v());
case Condition::AL: case Condition::AL:
return true && state() == State::Arm; return true;
} }
return false; return false;
} }
std::ostream&
operator<<(std::ostream& os, const Condition cond) {
#define CASE(cond) \
case Condition::cond: \
os << #cond; \
break;
switch (cond) {
CASE(EQ)
CASE(NE)
CASE(CS)
CASE(CC)
CASE(MI)
CASE(PL)
CASE(VS)
CASE(VC)
CASE(HI)
CASE(LS)
CASE(GE)
CASE(LT)
CASE(GT)
CASE(LE)
case Condition::AL: {
// empty
}
}
#undef CASE
return os;
}
} }

View File

@@ -38,6 +38,38 @@ enum class Condition {
AL = 0b1110 AL = 0b1110
}; };
constexpr auto
stringify(Condition cond) {
#define CASE(cond) \
case Condition::cond: \
return #cond;
switch (cond) {
CASE(EQ)
CASE(NE)
CASE(CS)
CASE(CC)
CASE(MI)
CASE(PL)
CASE(VS)
CASE(VC)
CASE(HI)
CASE(LS)
CASE(GE)
CASE(LT)
CASE(GT)
CASE(LE)
case Condition::AL: {
return "";
}
}
#undef CASE
return "";
}
class Psr { class Psr {
public: public:
// clear the reserved bits i.e, [8:27] // clear the reserved bits i.e, [8:27]
@@ -88,13 +120,4 @@ class Psr {
uint32_t psr; uint32_t psr;
}; };
// https://fmt.dev/dev/api.html#std-ostream-support
std::ostream&
operator<<(std::ostream& os, const Condition cond);
}
namespace fmt {
template<>
struct formatter<matar::Condition> : ostream_formatter {};
} }

View File

@@ -0,0 +1,149 @@
#include "instruction.hh"
#include "util/bits.hh"
namespace matar::thumb {
std::string
Instruction::disassemble() {
return std::visit(
overloaded{
[](MoveShiftedRegister& data) {
return fmt::format("{} R{:d},R{:d},#{:d}",
stringify(data.opcode),
data.rd,
data.rs,
data.offset);
},
[](AddSubtract& data) {
return fmt::format("{} R{:d},R{:d},{}{:d}",
stringify(data.opcode),
data.rd,
data.rs,
(data.imm ? '#' : 'R'),
data.offset);
},
[](MovCmpAddSubImmediate& data) {
return fmt::format(
"{} R{:d},#{:d}", stringify(data.opcode), data.rd, data.offset);
},
[](AluOperations& data) {
return fmt::format(
"{} R{:d},R{:d}", stringify(data.opcode), data.rd, data.rs);
},
[](HiRegisterOperations& data) {
if (data.opcode == HiRegisterOperations::OpCode::BX) {
return fmt::format("{} R{:d}", stringify(data.opcode), data.rs);
}
return fmt::format(
"{} R{:d},R{:d}", stringify(data.opcode), data.rd, data.rs);
},
[](PcRelativeLoad& data) {
return fmt::format("LDR R{:d},[PC,#{:d}]", data.rd, data.word);
},
[](LoadStoreRegisterOffset& data) {
return fmt::format("{}{} R{:d},[R{:d},R{:d}]",
(data.load ? "LDR" : "STR"),
(data.byte ? "B" : ""),
data.rd,
data.rb,
data.ro);
},
[](LoadStoreSignExtendedHalfword& data) {
if (!data.s && !data.h) {
return fmt::format(
"STRH R{:d},[R{:d},R{:d}]", data.rd, data.rb, data.ro);
}
return fmt::format("{}{} R{:d},[R{:d},R{:d}]",
(data.s ? "LDS" : "LDR"),
(data.h ? 'H' : 'B'),
data.rd,
data.rb,
data.ro);
},
[](LoadStoreImmediateOffset& data) {
return fmt::format("{}{} R{:d},[R{:d},#{:d}]",
(data.load ? "LDR" : "STR"),
(data.byte ? "B" : ""),
data.rd,
data.rb,
data.offset);
},
[](LoadStoreHalfword& data) {
return fmt::format("{} R{:d},[R{:d},#{:d}]",
(data.load ? "LDRH" : "STRH"),
data.rd,
data.rb,
data.offset);
},
[](SpRelativeLoad& data) {
return fmt::format("{} R{:d},[SP,#{:d}]",
(data.load ? "LDR" : "STR"),
data.rd,
data.word);
},
[](LoadAddress& data) {
return fmt::format("ADD R{:d},{},#{:d}",
data.rd,
(data.sp ? "SP" : "PC"),
data.word);
},
[](AddOffsetStackPointer& data) {
return fmt::format(
"ADD SP,#{}{:d}", (data.sign ? '-' : '+'), data.word);
},
[](PushPopRegister& data) {
std::string regs;
for (uint8_t i = 0; i < 16; i++) {
if (get_bit(data.regs, i))
fmt::format_to(std::back_inserter(regs), "R{:d},", i);
};
if (data.load) {
if (data.pclr)
regs += "PC";
else
regs.pop_back();
return fmt::format("POP {{{}}}", regs);
} else {
if (data.pclr)
regs += "LR";
else
regs.pop_back();
return fmt::format("PUSH {{{}}}", regs);
}
},
[](MultipleLoad& data) {
std::string regs;
for (uint8_t i = 0; i < 16; i++) {
if (get_bit(data.regs, i))
fmt::format_to(std::back_inserter(regs), "R{:d},", i);
};
regs.pop_back();
return fmt::format(
"{} R{}!,{{{}}}", (data.load ? "LDMIA" : "STMIA"), data.rb, regs);
},
[](SoftwareInterrupt) { return std::string("SWI"); },
[](ConditionalBranch& data) {
return fmt::format(
"B{} {:d}", stringify(data.condition), data.offset);
},
[](UnconditionalBranch& data) {
return fmt::format("B {:d}", data.offset);
},
[](LongBranchWithLink& data) {
// duh this manual be empty for H = 0
return fmt::format(
"BL{} {:d}", (data.high ? "H" : ""), data.offset);
},
[](auto) { return std::string("unknown instruction"); } },
data);
}
}

View File

@@ -0,0 +1,191 @@
#include "instruction.hh"
#include "util/bits.hh"
namespace matar::thumb {
Instruction::Instruction(uint16_t insn) {
// Format 2: Add/Subtract
if ((insn & 0xF800) == 0x1800) {
uint8_t rd = bit_range(insn, 0, 2);
uint8_t rs = bit_range(insn, 3, 5);
uint8_t offset = bit_range(insn, 6, 8);
AddSubtract::OpCode opcode =
static_cast<AddSubtract::OpCode>(get_bit(insn, 9));
bool imm = get_bit(insn, 10);
data = AddSubtract{
.rd = rd, .rs = rs, .offset = offset, .opcode = opcode, .imm = imm
};
// Format 1: Move Shifted Register
} else if ((insn & 0xE000) == 0x0000) {
uint8_t rd = bit_range(insn, 0, 2);
uint8_t rs = bit_range(insn, 3, 5);
uint8_t offset = bit_range(insn, 6, 10);
ShiftType opcode = static_cast<ShiftType>(bit_range(insn, 11, 12));
data = MoveShiftedRegister{
.rd = rd, .rs = rs, .offset = offset, .opcode = opcode
};
// Format 3: Move/compare/add/subtract immediate
} else if ((insn & 0xE000) == 0x2000) {
uint8_t offset = bit_range(insn, 0, 7);
uint8_t rd = bit_range(insn, 8, 10);
MovCmpAddSubImmediate::OpCode opcode =
static_cast<MovCmpAddSubImmediate::OpCode>(bit_range(insn, 11, 12));
data =
MovCmpAddSubImmediate{ .offset = offset, .rd = rd, .opcode = opcode };
// Format 4: ALU operations
} else if ((insn & 0xFC00) == 0x4000) {
uint8_t rd = bit_range(insn, 0, 2);
uint8_t rs = bit_range(insn, 3, 5);
AluOperations::OpCode opcode =
static_cast<AluOperations::OpCode>(bit_range(insn, 6, 9));
data = AluOperations{ .rd = rd, .rs = rs, .opcode = opcode };
// Format 5: Hi register operations/branch exchange
} else if ((insn & 0xFC00) == 0x4400) {
uint8_t rd = bit_range(insn, 0, 2);
uint8_t rs = bit_range(insn, 3, 5);
bool hi_2 = get_bit(insn, 6);
bool hi_1 = get_bit(insn, 7);
HiRegisterOperations::OpCode opcode =
static_cast<HiRegisterOperations::OpCode>(bit_range(insn, 8, 9));
rd += (hi_1 ? LO_GPR_COUNT : 0);
rs += (hi_2 ? LO_GPR_COUNT : 0);
data = HiRegisterOperations{ .rd = rd, .rs = rs, .opcode = opcode };
// Format 6: PC-relative load
} else if ((insn & 0xF800) == 0x4800) {
uint8_t word = bit_range(insn, 0, 7);
uint8_t rd = bit_range(insn, 8, 10);
data = PcRelativeLoad{ .word = word, .rd = rd };
// Format 7: Load/store with register offset
} else if ((insn & 0xF200) == 0x5000) {
uint8_t rd = bit_range(insn, 0, 2);
uint8_t rb = bit_range(insn, 3, 5);
uint8_t ro = bit_range(insn, 6, 8);
bool byte = get_bit(insn, 10);
bool load = get_bit(insn, 11);
data = LoadStoreRegisterOffset{
.rd = rd, .rb = rb, .ro = ro, .byte = byte, .load = load
};
// Format 8: Load/store sign-extended byte/halfword
} else if ((insn & 0xF200) == 0x5200) {
uint8_t rd = bit_range(insn, 0, 2);
uint8_t rb = bit_range(insn, 3, 5);
uint8_t ro = bit_range(insn, 6, 8);
bool s = get_bit(insn, 10);
bool h = get_bit(insn, 11);
data = LoadStoreSignExtendedHalfword{
.rd = rd, .rb = rb, .ro = ro, .s = s, .h = h
};
// Format 9: Load/store with immediate offset
} else if ((insn & 0xF000) == 0x6000) {
uint8_t rd = bit_range(insn, 0, 2);
uint8_t rb = bit_range(insn, 3, 5);
uint8_t offset = bit_range(insn, 6, 10);
bool load = get_bit(insn, 11);
bool byte = get_bit(insn, 12);
data = LoadStoreImmediateOffset{
.rd = rd, .rb = rb, .offset = offset, .load = load, .byte = byte
};
// Format 10: Load/store halfword
} else if ((insn & 0xF000) == 0x8000) {
uint8_t rd = bit_range(insn, 0, 2);
uint8_t rb = bit_range(insn, 3, 5);
uint8_t offset = bit_range(insn, 6, 10);
bool load = get_bit(insn, 11);
data = LoadStoreHalfword{
.rd = rd, .rb = rb, .offset = offset, .load = load
};
// Format 11: SP-relative load/store
} else if ((insn & 0xF000) == 0x9000) {
uint8_t word = bit_range(insn, 0, 7);
uint8_t rd = bit_range(insn, 8, 10);
bool load = get_bit(insn, 11);
data = SpRelativeLoad{ .word = word, .rd = rd, .load = load };
// Format 12: Load address
} else if ((insn & 0xF000) == 0xA000) {
uint8_t word = bit_range(insn, 0, 7);
uint8_t rd = bit_range(insn, 8, 10);
bool sp = get_bit(insn, 11);
data = LoadAddress{ .word = word, .rd = rd, .sp = sp };
// Format 12: Load address
} else if ((insn & 0xF000) == 0xA000) {
uint8_t word = bit_range(insn, 0, 7);
uint8_t rd = bit_range(insn, 8, 10);
bool sp = get_bit(insn, 11);
data = LoadAddress{ .word = word, .rd = rd, .sp = sp };
// Format 13: Add offset to stack pointer
} else if ((insn & 0xFF00) == 0xB000) {
uint8_t word = bit_range(insn, 0, 6);
bool sign = get_bit(insn, 7);
data = AddOffsetStackPointer{ .word = word, .sign = sign };
// Format 14: Push/pop registers
} else if ((insn & 0xF600) == 0xB400) {
uint8_t regs = bit_range(insn, 0, 7);
bool pclr = get_bit(insn, 8);
bool load = get_bit(insn, 11);
data = PushPopRegister{ .regs = regs, .pclr = pclr, .load = load };
// Format 15: Multiple load/store
} else if ((insn & 0xF000) == 0xC000) {
uint8_t regs = bit_range(insn, 0, 7);
uint8_t rb = bit_range(insn, 8, 10);
bool load = get_bit(insn, 11);
data = MultipleLoad{ .regs = regs, .rb = rb, .load = load };
// Format 17: Software interrupt
} else if ((insn & 0xFF00) == 0xDF00) {
data = SoftwareInterrupt{};
// Format 16: Conditional branch
} else if ((insn & 0xF000) == 0xD000) {
uint16_t offset = bit_range(insn, 0, 7);
Condition condition = static_cast<Condition>(bit_range(insn, 8, 11));
data = ConditionalBranch{ .offset = static_cast<uint16_t>(offset << 1),
.condition = condition };
// Format 18: Unconditional branch
} else if ((insn & 0xF800) == 0xE000) {
uint16_t offset = bit_range(insn, 0, 10);
data =
UnconditionalBranch{ .offset = static_cast<uint16_t>(offset << 1) };
// Format 19: Long branch with link
} else if ((insn & 0xF000) == 0xF000) {
uint16_t offset = bit_range(insn, 0, 10);
bool high = get_bit(insn, 11);
data = LongBranchWithLink{ .offset = static_cast<uint16_t>(offset << 1),
.high = high };
}
}
}

View File

@@ -0,0 +1,282 @@
#pragma once
#include "cpu/alu.hh"
#include "cpu/psr.hh"
#include <cstdint>
#include <fmt/ostream.h>
#include <variant>
namespace matar::thumb {
// https://en.cppreference.com/w/cpp/utility/variant/visit
template<class... Ts>
struct overloaded : Ts... {
using Ts::operator()...;
};
template<class... Ts>
overloaded(Ts...) -> overloaded<Ts...>;
static constexpr size_t INSTRUCTION_SIZE = 2;
static constexpr uint8_t LO_GPR_COUNT = 8;
struct MoveShiftedRegister {
uint8_t rd;
uint8_t rs;
uint8_t offset;
ShiftType opcode;
};
struct AddSubtract {
enum class OpCode {
ADD = 0,
SUB = 1
};
uint8_t rd;
uint8_t rs;
uint8_t offset;
OpCode opcode;
bool imm;
};
constexpr auto
stringify(AddSubtract::OpCode opcode) {
#define CASE(opcode) \
case AddSubtract::OpCode::opcode: \
return #opcode;
switch (opcode) {
CASE(ADD)
CASE(SUB)
}
#undef CASE
return "";
}
struct MovCmpAddSubImmediate {
enum class OpCode {
MOV = 0b00,
CMP = 0b01,
ADD = 0b10,
SUB = 0b11
};
uint8_t offset;
uint8_t rd;
OpCode opcode;
};
constexpr auto
stringify(MovCmpAddSubImmediate::OpCode opcode) {
#define CASE(opcode) \
case MovCmpAddSubImmediate::OpCode::opcode: \
return #opcode;
switch (opcode) {
CASE(MOV)
CASE(CMP)
CASE(ADD)
CASE(SUB)
}
#undef CASE
return "";
}
struct AluOperations {
enum class OpCode {
AND = 0b0000,
EOR = 0b0001,
LSL = 0b0010,
LSR = 0b0011,
ASR = 0b0100,
ADC = 0b0101,
SBC = 0b0110,
ROR = 0b0111,
TST = 0b1000,
NEG = 0b1001,
CMP = 0b1010,
CMN = 0b1011,
ORR = 0b1100,
MUL = 0b1101,
BIC = 0b1110,
MVN = 0b1111
};
uint8_t rd;
uint8_t rs;
OpCode opcode;
};
constexpr auto
stringify(AluOperations::OpCode opcode) {
#define CASE(opcode) \
case AluOperations::OpCode::opcode: \
return #opcode;
switch (opcode) {
CASE(AND)
CASE(EOR)
CASE(LSL)
CASE(LSR)
CASE(ASR)
CASE(ADC)
CASE(SBC)
CASE(ROR)
CASE(TST)
CASE(NEG)
CASE(CMP)
CASE(CMN)
CASE(ORR)
CASE(MUL)
CASE(BIC)
CASE(MVN)
}
#undef CASE
return "";
}
struct HiRegisterOperations {
enum class OpCode {
ADD = 0b00,
CMP = 0b01,
MOV = 0b10,
BX = 0b11
};
uint8_t rd;
uint8_t rs;
OpCode opcode;
};
constexpr auto
stringify(HiRegisterOperations::OpCode opcode) {
#define CASE(opcode) \
case HiRegisterOperations::OpCode::opcode: \
return #opcode;
switch (opcode) {
CASE(ADD)
CASE(CMP)
CASE(MOV)
CASE(BX)
}
#undef CASE
return "";
}
struct PcRelativeLoad {
uint8_t word;
uint8_t rd;
};
struct LoadStoreRegisterOffset {
uint8_t rd;
uint8_t rb;
uint8_t ro;
bool byte;
bool load;
};
struct LoadStoreSignExtendedHalfword {
uint8_t rd;
uint8_t rb;
uint8_t ro;
bool s;
bool h;
};
struct LoadStoreImmediateOffset {
uint8_t rd;
uint8_t rb;
uint8_t offset;
bool load;
bool byte;
};
struct LoadStoreHalfword {
uint8_t rd;
uint8_t rb;
uint8_t offset;
bool load;
};
struct SpRelativeLoad {
uint8_t word;
uint8_t rd;
bool load;
};
struct LoadAddress {
uint8_t word;
uint8_t rd;
bool sp;
};
struct AddOffsetStackPointer {
uint8_t word;
bool sign;
};
struct PushPopRegister {
uint8_t regs;
bool pclr;
bool load;
};
struct MultipleLoad {
uint8_t regs;
uint8_t rb;
bool load;
};
struct ConditionalBranch {
uint16_t offset;
Condition condition;
};
struct SoftwareInterrupt {};
struct UnconditionalBranch {
uint16_t offset;
};
struct LongBranchWithLink {
uint16_t offset;
bool high;
};
using InstructionData = std::variant<MoveShiftedRegister,
AddSubtract,
MovCmpAddSubImmediate,
AluOperations,
HiRegisterOperations,
PcRelativeLoad,
LoadStoreRegisterOffset,
LoadStoreSignExtendedHalfword,
LoadStoreImmediateOffset,
LoadStoreHalfword,
SpRelativeLoad,
LoadAddress,
AddOffsetStackPointer,
PushPopRegister,
MultipleLoad,
ConditionalBranch,
SoftwareInterrupt,
UnconditionalBranch,
LongBranchWithLink>;
struct Instruction {
InstructionData data;
Instruction(uint16_t insn);
#ifdef DISASSEMBLER
std::string disassemble();
#endif
};
}

View File

@@ -0,0 +1,7 @@
lib_sources += files(
'instruction.cc'
)
if get_option('disassembler')
lib_sources += files('disassembler.cc')
endif

View File

@@ -6,12 +6,16 @@ lib_sources = files(
subdir('util') subdir('util')
subdir('cpu') subdir('cpu')
lib_cpp_args = [ ] lib_cpp_args = []
fmt = dependency('fmt', version : '>=10.1.0', static: true) fmt = dependency('fmt', version : '>=10.1.0', static: true)
if not fmt.found() if not fmt.found()
fmt = dependency('fmt', version : '>=10.1.0', static: false) fmt = dependency('fmt', version : '>=10.1.0', static: false)
lib_cpp_args += 'DFMT_HEADER_ONLY' lib_cpp_args += '-DFMT_HEADER_ONLY'
endif
if get_option('disassembler')
lib_cpp_args += '-DDISASSEMBLER'
endif endif
lib = library( lib = library(

View File

@@ -80,4 +80,4 @@ class Logger {
extern logging::Logger glogger; extern logging::Logger glogger;
#define debug(x) glogger.debug("{} = {}", #x, x); #define dbg(x) glogger.debug("{} = {}", #x, x);

View File

@@ -1,7 +1,7 @@
#include "bus.hh" #include "bus.hh"
#include <catch2/catch_test_macros.hpp> #include <catch2/catch_test_macros.hpp>
static constexpr auto TAG = "[bus]"; #define TAG "[bus]"
using namespace matar; using namespace matar;
@@ -41,3 +41,5 @@ TEST_CASE_METHOD(BusFixture, "Word", TAG) {
CHECK(bus.read_halfword(100724276) == 0x491D); CHECK(bus.read_halfword(100724276) == 0x491D);
CHECK(bus.read_byte(100724276) == 0x1D); CHECK(bus.read_byte(100724276) == 0x1D);
} }
#undef TAG

File diff suppressed because it is too large Load Diff

96
tests/cpu/arm/fixture.cc Normal file
View File

@@ -0,0 +1,96 @@
#include "fixture.hh"
Psr
CpuFixture::psr(bool spsr) {
Psr psr(0);
CpuImpl tmp = cpu;
arm::Instruction instruction(
Condition::AL,
arm::PsrTransfer{ .operand = 0,
.spsr = spsr,
.type = arm::PsrTransfer::Type::Mrs,
.imm = false });
instruction.exec(tmp);
psr.set_all(getr_(0, tmp));
return psr;
}
void
CpuFixture::set_psr(Psr psr, bool spsr) {
// R0
uint32_t old = getr(0);
setr(0, psr.raw());
arm::Instruction instruction(
Condition::AL,
arm::PsrTransfer{ .operand = 0,
.spsr = spsr,
.type = arm::PsrTransfer::Type::Msr,
.imm = false });
instruction.exec(cpu);
setr(0, old);
}
// We need these workarounds to just use the public API and not private
// fields. Assuming that these work correctly is necessary. Besides, all it
// matters is that the public API is correct.
uint32_t
CpuFixture::getr_(uint8_t r, CpuImpl& cpu) {
size_t addr = 13000;
size_t offset = r == 15 ? 4 : 0;
uint32_t word = bus.read_word(addr + offset);
CpuImpl tmp = cpu;
uint32_t ret = 0xFFFFFFFF;
uint8_t base = r ? 0 : 1;
// set R0/R1 = 0
arm::Instruction zero(
Condition::AL,
arm::DataProcessing{ .operand = 0u,
.rd = base,
.rn = 0,
.set = false,
.opcode = arm::DataProcessing::OpCode::MOV });
// get register
arm::Instruction get(
Condition::AL,
arm::SingleDataTransfer{ .offset = static_cast<uint16_t>(addr),
.rd = r,
.rn = base,
.load = false,
.write = false,
.byte = false,
.up = true,
.pre = true });
zero.exec(tmp);
get.exec(tmp);
addr += offset;
ret = bus.read_word(addr);
bus.write_word(addr, word);
return ret;
}
void
CpuFixture::setr_(uint8_t r, uint32_t value, CpuImpl& cpu) {
// set register
arm::Instruction set(
Condition::AL,
arm::DataProcessing{ .operand = value,
.rd = r,
.rn = 0,
.set = false,
.opcode = arm::DataProcessing::OpCode::MOV });
set.exec(cpu);
}

37
tests/cpu/arm/fixture.hh Normal file
View File

@@ -0,0 +1,37 @@
#include "cpu/cpu-impl.hh"
using namespace matar;
class CpuFixture {
public:
CpuFixture()
: bus(Memory(std::array<uint8_t, Memory::BIOS_SIZE>(),
std::vector<uint8_t>(Header::HEADER_SIZE)))
, cpu(bus) {}
protected:
void exec(arm::InstructionData data, Condition condition = Condition::AL) {
arm::Instruction instruction(condition, data);
instruction.exec(cpu);
}
void reset(uint32_t value = 0) { setr(15, value + 8); }
uint32_t getr(uint8_t r) { return getr_(r, cpu); }
void setr(uint8_t r, uint32_t value) { setr_(r, value, cpu); }
Psr psr(bool spsr = false);
void set_psr(Psr psr, bool spsr = false);
Bus bus;
CpuImpl cpu;
private:
// hack to get a register
uint32_t getr_(uint8_t r, CpuImpl& cpu);
// hack to set a register
void setr_(uint8_t r, uint32_t value, CpuImpl& cpu);
};

View File

@@ -1,7 +1,7 @@
#include "cpu/arm/instruction.hh" #include "cpu/arm/instruction.hh"
#include <catch2/catch_test_macros.hpp> #include <catch2/catch_test_macros.hpp>
static constexpr auto TAG = "[arm][disassembly]"; #define TAG "[arm][disassembly]"
using namespace matar; using namespace matar;
using namespace arm; using namespace arm;
@@ -16,7 +16,9 @@ TEST_CASE("Branch and Exchange", TAG) {
CHECK(bx->rn == 10); CHECK(bx->rn == 10);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "BXGT R10"); CHECK(instruction.disassemble() == "BXGT R10");
#endif
} }
TEST_CASE("Branch", TAG) { TEST_CASE("Branch", TAG) {
@@ -33,10 +35,12 @@ TEST_CASE("Branch", TAG) {
CHECK(b->offset == 0xFE15FF14); CHECK(b->offset == 0xFE15FF14);
CHECK(b->link == true); CHECK(b->link == true);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "BL 0xFE15FF14"); CHECK(instruction.disassemble() == "BL 0xFE15FF14");
b->link = false; b->link = false;
CHECK(instruction.disassemble() == "B 0xFE15FF14"); CHECK(instruction.disassemble() == "B 0xFE15FF14");
#endif
} }
TEST_CASE("Multiply", TAG) { TEST_CASE("Multiply", TAG) {
@@ -54,11 +58,13 @@ TEST_CASE("Multiply", TAG) {
CHECK(mul->acc == true); CHECK(mul->acc == true);
CHECK(mul->set == true); CHECK(mul->set == true);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "MLAEQS R10,R0,R15,R14"); CHECK(instruction.disassemble() == "MLAEQS R10,R0,R15,R14");
mul->acc = false; mul->acc = false;
mul->set = false; mul->set = false;
CHECK(instruction.disassemble() == "MULEQ R10,R0,R15"); CHECK(instruction.disassemble() == "MULEQ R10,R0,R15");
#endif
} }
TEST_CASE("Multiply Long", TAG) { TEST_CASE("Multiply Long", TAG) {
@@ -77,6 +83,7 @@ TEST_CASE("Multiply Long", TAG) {
CHECK(mull->set == true); CHECK(mull->set == true);
CHECK(mull->uns == true); CHECK(mull->uns == true);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "UMULLNES R7,R14,R2,R6"); CHECK(instruction.disassemble() == "UMULLNES R7,R14,R2,R6");
mull->acc = true; mull->acc = true;
@@ -85,6 +92,7 @@ TEST_CASE("Multiply Long", TAG) {
mull->uns = false; mull->uns = false;
mull->set = false; mull->set = false;
CHECK(instruction.disassemble() == "SMLALNE R7,R14,R2,R6"); CHECK(instruction.disassemble() == "SMLALNE R7,R14,R2,R6");
#endif
} }
TEST_CASE("Undefined", TAG) { TEST_CASE("Undefined", TAG) {
@@ -94,7 +102,10 @@ TEST_CASE("Undefined", TAG) {
Instruction instruction(raw); Instruction instruction(raw);
CHECK(instruction.condition == Condition::AL); CHECK(instruction.condition == Condition::AL);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "UND"); CHECK(instruction.disassemble() == "UND");
#endif
} }
TEST_CASE("Single Data Swap", TAG) { TEST_CASE("Single Data Swap", TAG) {
@@ -110,10 +121,12 @@ TEST_CASE("Single Data Swap", TAG) {
CHECK(swp->rn == 9); CHECK(swp->rn == 9);
CHECK(swp->byte == false); CHECK(swp->byte == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "SWPGE R5,R6,[R9]"); CHECK(instruction.disassemble() == "SWPGE R5,R6,[R9]");
swp->byte = true; swp->byte = true;
CHECK(instruction.disassemble() == "SWPGEB R5,R6,[R9]"); CHECK(instruction.disassemble() == "SWPGEB R5,R6,[R9]");
#endif
} }
TEST_CASE("Single Data Transfer", TAG) { TEST_CASE("Single Data Transfer", TAG) {
@@ -138,6 +151,7 @@ TEST_CASE("Single Data Transfer", TAG) {
CHECK(ldr->up == true); CHECK(ldr->up == true);
CHECK(ldr->pre == true); CHECK(ldr->pre == true);
#ifdef DISASSEMBLER
ldr->load = true; ldr->load = true;
ldr->byte = true; ldr->byte = true;
ldr->write = false; ldr->write = false;
@@ -153,6 +167,7 @@ TEST_CASE("Single Data Transfer", TAG) {
ldr->pre = true; ldr->pre = true;
CHECK(instruction.disassemble() == "LDRB R10,[R2,-#9023]"); CHECK(instruction.disassemble() == "LDRB R10,[R2,-#9023]");
#endif
} }
TEST_CASE("Halfword Transfer", TAG) { TEST_CASE("Halfword Transfer", TAG) {
@@ -176,6 +191,7 @@ TEST_CASE("Halfword Transfer", TAG) {
CHECK(ldr->up == true); CHECK(ldr->up == true);
CHECK(ldr->pre == true); CHECK(ldr->pre == true);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "STRCCH R2,[R15,+R6]!"); CHECK(instruction.disassemble() == "STRCCH R2,[R15,+R6]!");
ldr->pre = false; ldr->pre = false;
@@ -193,6 +209,7 @@ TEST_CASE("Halfword Transfer", TAG) {
ldr->imm = 1; ldr->imm = 1;
ldr->offset = 90; ldr->offset = 90;
CHECK(instruction.disassemble() == "STRCCSB R2,[R15],-#90"); CHECK(instruction.disassemble() == "STRCCSB R2,[R15],-#90");
#endif
} }
TEST_CASE("Block Data Transfer", TAG) { TEST_CASE("Block Data Transfer", TAG) {
@@ -223,6 +240,7 @@ TEST_CASE("Block Data Transfer", TAG) {
CHECK(ldm->up == false); CHECK(ldm->up == false);
CHECK(ldm->pre == true); CHECK(ldm->pre == true);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "LDMLSDB R7,{R0,R2,R3,R5,R6,R8,R14}^"); CHECK(instruction.disassemble() == "LDMLSDB R7,{R0,R2,R3,R5,R6,R8,R14}^");
ldm->write = true; ldm->write = true;
@@ -238,6 +256,7 @@ TEST_CASE("Block Data Transfer", TAG) {
ldm->pre = false; ldm->pre = false;
CHECK(instruction.disassemble() == "STMLSIA R7!,{R0,R2,R5,R14}"); CHECK(instruction.disassemble() == "STMLSIA R7!,{R0,R2,R5,R14}");
#endif
} }
TEST_CASE("PSR Transfer", TAG) { TEST_CASE("PSR Transfer", TAG) {
@@ -256,7 +275,9 @@ TEST_CASE("PSR Transfer", TAG) {
CHECK(mrs->operand == 10); CHECK(mrs->operand == 10);
CHECK(mrs->spsr == true); CHECK(mrs->spsr == true);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "MRSMI R10,SPSR_all"); CHECK(instruction.disassemble() == "MRSMI R10,SPSR_all");
#endif
} }
SECTION("MSR") { SECTION("MSR") {
@@ -272,7 +293,9 @@ TEST_CASE("PSR Transfer", TAG) {
CHECK(msr->operand == 8); CHECK(msr->operand == 8);
CHECK(msr->spsr == false); CHECK(msr->spsr == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "MSR CPSR_all,R8"); CHECK(instruction.disassemble() == "MSR CPSR_all,R8");
#endif
} }
SECTION("MSR_flg with register operand") { SECTION("MSR_flg with register operand") {
@@ -287,7 +310,9 @@ TEST_CASE("PSR Transfer", TAG) {
CHECK(msr->operand == 8); CHECK(msr->operand == 8);
CHECK(msr->spsr == false); CHECK(msr->spsr == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "MSRVS CPSR_flg,R8"); CHECK(instruction.disassemble() == "MSRVS CPSR_flg,R8");
#endif
} }
SECTION("MSR_flg with immediate operand") { SECTION("MSR_flg with immediate operand") {
@@ -304,7 +329,9 @@ TEST_CASE("PSR Transfer", TAG) {
CHECK(msr->operand == 27262976); CHECK(msr->operand == 27262976);
CHECK(msr->spsr == true); CHECK(msr->spsr == true);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "MSR SPSR_flg,#27262976"); CHECK(instruction.disassemble() == "MSR SPSR_flg,#27262976");
#endif
} }
} }
@@ -331,6 +358,7 @@ TEST_CASE("Data Processing", TAG) {
CHECK(alu->set == true); CHECK(alu->set == true);
CHECK(alu->opcode == OpCode::AND); CHECK(alu->opcode == OpCode::AND);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "ANDS R7,R14,R1,ROR #22"); CHECK(instruction.disassemble() == "ANDS R7,R14,R1,ROR #22");
shift->data.immediate = false; shift->data.immediate = false;
@@ -392,6 +420,7 @@ TEST_CASE("Data Processing", TAG) {
alu->opcode = OpCode::MVN; alu->opcode = OpCode::MVN;
CHECK(instruction.disassemble() == "MVN R7,#3300012"); CHECK(instruction.disassemble() == "MVN R7,#3300012");
} }
#endif
} }
TEST_CASE("Coprocessor Data Transfer", TAG) { TEST_CASE("Coprocessor Data Transfer", TAG) {
@@ -412,6 +441,7 @@ TEST_CASE("Coprocessor Data Transfer", TAG) {
CHECK(ldc->up == true); CHECK(ldc->up == true);
CHECK(ldc->pre == true); CHECK(ldc->pre == true);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "STCGE p1,c15,[R5,#70]!"); CHECK(instruction.disassemble() == "STCGE p1,c15,[R5,#70]!");
ldc->load = true; ldc->load = true;
@@ -420,6 +450,7 @@ TEST_CASE("Coprocessor Data Transfer", TAG) {
ldc->len = true; ldc->len = true;
CHECK(instruction.disassemble() == "LDCGEL p1,c15,[R5],#70"); CHECK(instruction.disassemble() == "LDCGEL p1,c15,[R5],#70");
#endif
} }
TEST_CASE("Coprocessor Operand Operation", TAG) { TEST_CASE("Coprocessor Operand Operation", TAG) {
@@ -437,7 +468,9 @@ TEST_CASE("Coprocessor Operand Operation", TAG) {
CHECK(cdp->crn == 5); CHECK(cdp->crn == 5);
CHECK(cdp->cp_opc == 10); CHECK(cdp->cp_opc == 10);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "CDP p1,10,c15,c5,c6,2"); CHECK(instruction.disassemble() == "CDP p1,10,c15,c5,c6,2");
#endif
} }
TEST_CASE("Coprocessor Register Transfer", TAG) { TEST_CASE("Coprocessor Register Transfer", TAG) {
@@ -457,7 +490,9 @@ TEST_CASE("Coprocessor Register Transfer", TAG) {
CHECK(mrc->load == false); CHECK(mrc->load == false);
CHECK(mrc->cp_opc == 5); CHECK(mrc->cp_opc == 5);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "MCR p1,5,R15,c5,c6,2"); CHECK(instruction.disassemble() == "MCR p1,5,R15,c5,c6,2");
#endif
} }
TEST_CASE("Software Interrupt", TAG) { TEST_CASE("Software Interrupt", TAG) {
@@ -465,5 +500,10 @@ TEST_CASE("Software Interrupt", TAG) {
Instruction instruction(raw); Instruction instruction(raw);
CHECK(instruction.condition == Condition::EQ); CHECK(instruction.condition == Condition::EQ);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "SWIEQ"); CHECK(instruction.disassemble() == "SWIEQ");
#endif
} }
#undef TAG

View File

@@ -1,4 +1,5 @@
tests_sources += files( tests_sources += files(
'fixture.cc',
'instruction.cc', 'instruction.cc',
'exec.cc' 'exec.cc'
) )

View File

@@ -1 +1,2 @@
subdir('arm') subdir('arm')
subdir('thumb')

View File

@@ -0,0 +1,441 @@
#include "cpu/thumb/instruction.hh"
#include <catch2/catch_test_macros.hpp>
#define TAG "[thumb][disassembly]"
using namespace matar;
using namespace thumb;
TEST_CASE("Move Shifted Register", TAG) {
uint16_t raw = 0b0001001101100011;
Instruction instruction(raw);
MoveShiftedRegister* lsl = nullptr;
REQUIRE((lsl = std::get_if<MoveShiftedRegister>(&instruction.data)));
CHECK(lsl->rd == 3);
CHECK(lsl->rs == 4);
CHECK(lsl->offset == 13);
CHECK(lsl->opcode == ShiftType::ASR);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "ASR R3,R4,#13");
lsl->opcode = ShiftType::LSR;
CHECK(instruction.disassemble() == "LSR R3,R4,#13");
lsl->opcode = ShiftType::LSL;
CHECK(instruction.disassemble() == "LSL R3,R4,#13");
#endif
}
TEST_CASE("Add/Subtract", TAG) {
uint16_t raw = 0b0001111101001111;
Instruction instruction(raw);
AddSubtract* add = nullptr;
REQUIRE((add = std::get_if<AddSubtract>(&instruction.data)));
CHECK(add->rd == 7);
CHECK(add->rs == 1);
CHECK(add->offset == 5);
CHECK(add->opcode == AddSubtract::OpCode::SUB);
CHECK(add->imm == true);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "SUB R7,R1,#5");
add->imm = false;
CHECK(instruction.disassemble() == "SUB R7,R1,R5");
add->opcode = AddSubtract::OpCode::ADD;
CHECK(instruction.disassemble() == "ADD R7,R1,R5");
#endif
}
TEST_CASE("Move/Compare/Add/Subtract Immediate", TAG) {
uint16_t raw = 0b0010111001011011;
Instruction instruction(raw);
MovCmpAddSubImmediate* mov = nullptr;
REQUIRE((mov = std::get_if<MovCmpAddSubImmediate>(&instruction.data)));
CHECK(mov->offset == 91);
CHECK(mov->rd == 6);
CHECK(mov->opcode == MovCmpAddSubImmediate::OpCode::CMP);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "CMP R6,#91");
mov->opcode = MovCmpAddSubImmediate::OpCode::ADD;
CHECK(instruction.disassemble() == "ADD R6,#91");
mov->opcode = MovCmpAddSubImmediate::OpCode::SUB;
CHECK(instruction.disassemble() == "SUB R6,#91");
mov->opcode = MovCmpAddSubImmediate::OpCode::MOV;
CHECK(instruction.disassemble() == "MOV R6,#91");
#endif
}
TEST_CASE("ALU Operations", TAG) {
uint16_t raw = 0b0100000110011111;
Instruction instruction(raw);
AluOperations* alu = nullptr;
REQUIRE((alu = std::get_if<AluOperations>(&instruction.data)));
CHECK(alu->rd == 7);
CHECK(alu->rs == 3);
CHECK(alu->opcode == AluOperations::OpCode::SBC);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "SBC R7,R3");
#define OPCODE(op) \
alu->opcode = AluOperations::OpCode::op; \
CHECK(instruction.disassemble() == #op " R7,R3");
OPCODE(AND)
OPCODE(EOR)
OPCODE(LSL)
OPCODE(LSR)
OPCODE(ASR)
OPCODE(ADC)
OPCODE(SBC)
OPCODE(ROR)
OPCODE(TST)
OPCODE(NEG)
OPCODE(CMP)
OPCODE(CMN)
OPCODE(ORR)
OPCODE(MUL)
OPCODE(BIC)
OPCODE(MVN)
#undef OPCODE
#endif
}
TEST_CASE("Hi Register Operations/Branch Exchange", TAG) {
HiRegisterOperations* hi = nullptr;
uint16_t raw = 0b0100011000011010;
SECTION("both lo") {
Instruction instruction(raw);
REQUIRE((hi = std::get_if<HiRegisterOperations>(&instruction.data)));
CHECK(hi->rd == 2);
CHECK(hi->rs == 3);
}
SECTION("hi rd") {
raw |= 1 << 7;
Instruction instruction(raw);
REQUIRE((hi = std::get_if<HiRegisterOperations>(&instruction.data)));
CHECK(hi->rd == 10);
CHECK(hi->rs == 3);
}
SECTION("hi rs") {
raw |= 1 << 6;
Instruction instruction(raw);
REQUIRE((hi = std::get_if<HiRegisterOperations>(&instruction.data)));
CHECK(hi->rd == 2);
CHECK(hi->rs == 11);
}
if (hi)
CHECK(hi->opcode == HiRegisterOperations::OpCode::MOV);
SECTION("both hi") {
raw |= 1 << 6;
raw |= 1 << 7;
Instruction instruction(raw);
REQUIRE((hi = std::get_if<HiRegisterOperations>(&instruction.data)));
CHECK(hi->rd == 10);
CHECK(hi->rs == 11);
CHECK(hi->opcode == HiRegisterOperations::OpCode::MOV);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "MOV R10,R11");
hi->opcode = HiRegisterOperations::OpCode::ADD;
CHECK(instruction.disassemble() == "ADD R10,R11");
hi->opcode = HiRegisterOperations::OpCode::CMP;
CHECK(instruction.disassemble() == "CMP R10,R11");
hi->opcode = HiRegisterOperations::OpCode::BX;
CHECK(instruction.disassemble() == "BX R11");
#endif
}
}
TEST_CASE("PC Relative Load", TAG) {
uint16_t raw = 0b0100101011100110;
Instruction instruction(raw);
PcRelativeLoad* ldr = nullptr;
REQUIRE((ldr = std::get_if<PcRelativeLoad>(&instruction.data)));
CHECK(ldr->word == 230);
CHECK(ldr->rd == 2);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "LDR R2,[PC,#230]");
#endif
}
TEST_CASE("Load/Store with Register Offset", TAG) {
uint16_t raw = 0b0101000110011101;
Instruction instruction(raw);
LoadStoreRegisterOffset* ldr = nullptr;
REQUIRE((ldr = std::get_if<LoadStoreRegisterOffset>(&instruction.data)));
CHECK(ldr->rd == 5);
CHECK(ldr->rb == 3);
CHECK(ldr->ro == 6);
CHECK(ldr->byte == false);
CHECK(ldr->load == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "STR R5,[R3,R6]");
ldr->byte = true;
CHECK(instruction.disassemble() == "STRB R5,[R3,R6]");
ldr->load = true;
CHECK(instruction.disassemble() == "LDRB R5,[R3,R6]");
ldr->byte = false;
CHECK(instruction.disassemble() == "LDR R5,[R3,R6]");
#endif
}
TEST_CASE("Load/Store Sign-Extended Byte/Halfword", TAG) {
uint16_t raw = 0b0101001110011101;
Instruction instruction(raw);
LoadStoreSignExtendedHalfword* ldr = nullptr;
REQUIRE(
(ldr = std::get_if<LoadStoreSignExtendedHalfword>(&instruction.data)));
CHECK(ldr->rd == 5);
CHECK(ldr->rb == 3);
CHECK(ldr->ro == 6);
CHECK(ldr->s == false);
CHECK(ldr->h == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "STRH R5,[R3,R6]");
ldr->h = true;
CHECK(instruction.disassemble() == "LDRH R5,[R3,R6]");
ldr->s = true;
CHECK(instruction.disassemble() == "LDSH R5,[R3,R6]");
ldr->h = false;
CHECK(instruction.disassemble() == "LDSB R5,[R3,R6]");
#endif
}
TEST_CASE("Load/Store with Immediate Offset", TAG) {
uint16_t raw = 0b0110010110011101;
Instruction instruction(raw);
LoadStoreImmediateOffset* ldr = nullptr;
REQUIRE((ldr = std::get_if<LoadStoreImmediateOffset>(&instruction.data)));
CHECK(ldr->rd == 5);
CHECK(ldr->rb == 3);
CHECK(ldr->offset == 22);
CHECK(ldr->byte == false);
CHECK(ldr->load == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "STR R5,[R3,#22]");
ldr->byte = true;
CHECK(instruction.disassemble() == "STRB R5,[R3,#22]");
ldr->load = true;
CHECK(instruction.disassemble() == "LDRB R5,[R3,#22]");
ldr->byte = false;
CHECK(instruction.disassemble() == "LDR R5,[R3,#22]");
#endif
}
TEST_CASE("Load/Store Halfword", TAG) {
uint16_t raw = 0b1000011010011101;
Instruction instruction(raw);
LoadStoreHalfword* ldr = nullptr;
REQUIRE((ldr = std::get_if<LoadStoreHalfword>(&instruction.data)));
CHECK(ldr->rd == 5);
CHECK(ldr->rb == 3);
CHECK(ldr->offset == 26);
CHECK(ldr->load == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "STRH R5,[R3,#26]");
ldr->load = true;
CHECK(instruction.disassemble() == "LDRH R5,[R3,#26]");
#endif
}
TEST_CASE("SP-Relative Load/Store", TAG) {
uint16_t raw = 0b1001010010011101;
Instruction instruction(raw);
SpRelativeLoad* ldr = nullptr;
REQUIRE((ldr = std::get_if<SpRelativeLoad>(&instruction.data)));
CHECK(ldr->rd == 4);
CHECK(ldr->word == 157);
CHECK(ldr->load == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "STR R4,[SP,#157]");
ldr->load = true;
CHECK(instruction.disassemble() == "LDR R4,[SP,#157]");
#endif
}
TEST_CASE("Load Adress", TAG) {
uint16_t raw = 0b1010000110001111;
Instruction instruction(raw);
LoadAddress* add = nullptr;
REQUIRE((add = std::get_if<LoadAddress>(&instruction.data)));
CHECK(add->word == 143);
CHECK(add->rd == 1);
CHECK(add->sp == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "ADD R1,PC,#143");
add->sp = true;
CHECK(instruction.disassemble() == "ADD R1,SP,#143");
#endif
}
TEST_CASE("Add Offset to Stack Pointer", TAG) {
uint16_t raw = 0b1011000000100101;
Instruction instruction(raw);
AddOffsetStackPointer* add = nullptr;
REQUIRE((add = std::get_if<AddOffsetStackPointer>(&instruction.data)));
CHECK(add->word == 37);
CHECK(add->sign == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "ADD SP,#+37");
add->sign = true;
CHECK(instruction.disassemble() == "ADD SP,#-37");
#endif
}
TEST_CASE("Push/Pop Registers", TAG) {
uint16_t raw = 0b1011010000110101;
Instruction instruction(raw);
PushPopRegister* push = nullptr;
REQUIRE((push = std::get_if<PushPopRegister>(&instruction.data)));
CHECK(push->regs == 53);
CHECK(push->pclr == false);
CHECK(push->load == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "PUSH {R0,R2,R4,R5}");
push->pclr = true;
CHECK(instruction.disassemble() == "PUSH {R0,R2,R4,R5,LR}");
push->load = true;
CHECK(instruction.disassemble() == "POP {R0,R2,R4,R5,PC}");
push->pclr = false;
CHECK(instruction.disassemble() == "POP {R0,R2,R4,R5}");
#endif
}
TEST_CASE("Multiple Load/Store", TAG) {
uint16_t raw = 0b1100011001100101;
Instruction instruction(raw);
MultipleLoad* ldm = nullptr;
REQUIRE((ldm = std::get_if<MultipleLoad>(&instruction.data)));
CHECK(ldm->regs == 101);
CHECK(ldm->rb == 6);
CHECK(ldm->load == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "STMIA R6!,{R0,R2,R5,R6}");
ldm->load = true;
CHECK(instruction.disassemble() == "LDMIA R6!,{R0,R2,R5,R6}");
#endif
}
TEST_CASE("Conditional Branch", TAG) {
uint16_t raw = 0b1101100101110100;
Instruction instruction(raw);
ConditionalBranch* b = nullptr;
REQUIRE((b = std::get_if<ConditionalBranch>(&instruction.data)));
// 116 << 2
CHECK(b->offset == 232);
CHECK(b->condition == Condition::LS);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "BLS 232");
#endif
}
TEST_CASE("SoftwareInterrupt") {
uint16_t raw = 0b1101111100110011;
Instruction instruction(raw);
SoftwareInterrupt* swi = nullptr;
REQUIRE((swi = std::get_if<SoftwareInterrupt>(&instruction.data)));
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "SWI");
#endif
}
TEST_CASE("Unconditional Branch") {
uint16_t raw = 0b1110011100110011;
Instruction instruction(raw);
UnconditionalBranch* b = nullptr;
REQUIRE((b = std::get_if<UnconditionalBranch>(&instruction.data)));
// 1843 << 2
REQUIRE(b->offset == 3686);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "B 3686");
#endif
}
TEST_CASE("Long Branch with link") {
uint16_t raw = 0b1111010011101100;
Instruction instruction(raw);
LongBranchWithLink* bl = nullptr;
REQUIRE((bl = std::get_if<LongBranchWithLink>(&instruction.data)));
// 1260 << 1
CHECK(bl->offset == 2520);
CHECK(bl->high == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "BL 2520");
bl->high = true;
CHECK(instruction.disassemble() == "BLH 2520");
#endif
}
#undef TAG

View File

@@ -0,0 +1,3 @@
tests_sources += files(
'instruction.cc'
)

View File

@@ -1,7 +1,7 @@
#include "memory.hh" #include "memory.hh"
#include <catch2/catch_test_macros.hpp> #include <catch2/catch_test_macros.hpp>
static constexpr auto TAG = "[memory]"; #define TAG "[memory]"
using namespace matar; using namespace matar;
@@ -119,3 +119,5 @@ TEST_CASE("rom", TAG) {
CHECK(memory.read(0xCEF0256) == 0x10); CHECK(memory.read(0xCEF0256) == 0x10);
} }
} }
#undef TAG

View File

@@ -13,6 +13,12 @@ tests_sources = files(
subdir('cpu') subdir('cpu')
subdir('util') subdir('util')
tests_cpp_args = []
if get_option('disassembler')
tests_cpp_args += '-DDISASSEMBLER'
endif
catch2 = dependency('catch2', version: '>=3.4.0', static: true) catch2 = dependency('catch2', version: '>=3.4.0', static: true)
catch2_tests = executable( catch2_tests = executable(
'matar_tests', 'matar_tests',
@@ -21,6 +27,7 @@ catch2_tests = executable(
link_with: tests_deps, link_with: tests_deps,
include_directories: [inc, src], include_directories: [inc, src],
build_by_default: false, build_by_default: false,
cpp_args: tests_cpp_args
) )
test('catch2 tests', catch2_tests) test('catch2 tests', catch2_tests)

View File

@@ -1,7 +1,7 @@
#include "util/bits.hh" #include "util/bits.hh"
#include <catch2/catch_test_macros.hpp> #include <catch2/catch_test_macros.hpp>
static constexpr auto TAG = "[util][bits]"; #define TAG "[util][bits]"
TEST_CASE("8 bits", TAG) { TEST_CASE("8 bits", TAG) {
uint8_t num = 45; uint8_t num = 45;
@@ -104,3 +104,5 @@ TEST_CASE("64 bits", TAG) {
// 0b011010001 // 0b011010001
CHECK(bit_range(num, 39, 47) == 209); CHECK(bit_range(num, 39, 47) == 209);
} }
#undef TAG

View File

@@ -1,7 +1,7 @@
#include "util/crypto.hh" #include "util/crypto.hh"
#include <catch2/catch_test_macros.hpp> #include <catch2/catch_test_macros.hpp>
static constexpr auto TAG = "[util][crypto]"; #define TAG "[util][crypto]"
TEST_CASE("sha256 matar", TAG) { TEST_CASE("sha256 matar", TAG) {
std::array<uint8_t, 5> data = { 'm', 'a', 't', 'a', 'r' }; std::array<uint8_t, 5> data = { 'm', 'a', 't', 'a', 'r' };
@@ -19,3 +19,5 @@ TEST_CASE("sha256 forgis", TAG) {
CHECK(crypto::sha256(data) == CHECK(crypto::sha256(data) ==
"cfddca2ce2673f355518cbe2df2a8522693c54723a469e8b36a4f68b90d2b759"); "cfddca2ce2673f355518cbe2df2a8522693c54723a469e8b36a4f68b90d2b759");
} }
#undef TAG