7 Commits

Author SHA1 Message Date
b918b75f27 tests: add some exec tests
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-18 08:05:21 +05:30
dd9dd5f116 tests: complete disassembler tests
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-17 09:50:32 +05:30
be7deb349a tests: [WIP] add unit tests for some of the instructions
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-15 14:07:23 +05:30
aa96237c37 shifts are always immediate in single data transfer
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-15 10:24:23 +05:30
7fc6876264 [UNTESTED] complete initial disassembler structure for ARM
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-15 05:23:07 +05:30
169723275e replace symlinks
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-14 11:25:44 +05:30
81afd67e0b delete symlinks
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-14 11:14:36 +05:30
46 changed files with 2997 additions and 1156 deletions

View File

@@ -5,4 +5,5 @@ Checks: '
, -cppcoreguidelines-pro-bounds-constant-array-index , -cppcoreguidelines-pro-bounds-constant-array-index
, -cppcoreguidelines-macro-usage , -cppcoreguidelines-macro-usage
, -cppcoreguidelines-avoid-const-or-ref-data-members , -cppcoreguidelines-avoid-const-or-ref-data-members
, -cppcoreguidelines-non-private-member-variables-in-classes
' '

View File

@@ -15,14 +15,17 @@ jobs:
auto-optimise-store = true auto-optimise-store = true
experimental-features = nix-command flakes experimental-features = nix-command flakes
- name: meson build - name: setup
run: nix develop -c meson setup $BUILDDIR run: nix develop -c meson setup $BUILDDIR
- name: clang-format check - name: fmt
run: nix develop -c ninja clang-format-check -C $BUILDDIR run: nix develop -c ninja clang-format-check -C $BUILDDIR
- name: clang-tidy check - name: lint
run: nix develop -c ninja clang-tidy -C $BUILDDIR run: nix develop -c ninja clang-tidy -C $BUILDDIR
- name: ninja compile - name: tests
run: nix develop -c ninja test -C $BUILDDIR
- name: build
run: nix develop -c ninja -C $BUILDDIR run: nix develop -c ninja -C $BUILDDIR

1
README
View File

@@ -1 +0,0 @@
nothing to be seen here yet. LEAVE

22
README.md Normal file
View File

@@ -0,0 +1,22 @@
nothing to be seen here yet. LEAVE
But if you are curious (probably not), read ahead
# Dependencies
## Tested toolchains
- LLVM 16.0.6
- GCC 12.3.0
In theory, any toolchain supporting at least the C++20 standard should work.
I am using LLVM's clang and libcxx as the primary toolchain.
## Static libraries
| Name | Version | Required? |
|:------:|:----------|:---------:|
| fmt | >= 10.1.1 | yes |
| catch2 | >= 3.4 | for tests |
This goes without saying but using a different toolchain to compile these libraries before linking probably won't work.
I will add meson wrap support once LLVM 17 is out, since I want to get rid of fmt.

View File

@@ -6,6 +6,7 @@
#include <fstream> #include <fstream>
#include <iostream> #include <iostream>
#include <memory> #include <memory>
#include <ostream>
#include <unistd.h> #include <unistd.h>
#include <vector> #include <vector>
@@ -80,7 +81,10 @@ main(int argc, const char* argv[]) {
return 1; return 1;
} }
{ std::flush(std::cout);
std::flush(std::cout);
try {
Memory memory(std::move(bios), std::move(rom)); Memory memory(std::move(bios), std::move(rom));
Bus bus(memory); Bus bus(memory);
Cpu cpu(bus); Cpu cpu(bus);
@@ -88,7 +92,11 @@ main(int argc, const char* argv[]) {
cpu.step(); cpu.step();
sleep(1); sleep(1);
} }
} catch (const std::exception& e) {
std::cerr << "Exception: " << e.what() << std::endl;
return 1;
} }
return 0; return 0;
} }

8
flake.lock generated
View File

@@ -2,16 +2,16 @@
"nodes": { "nodes": {
"nixpkgs": { "nixpkgs": {
"locked": { "locked": {
"lastModified": 1692007866, "lastModified": 1694911158,
"narHash": "sha256-X8w0vPZjZxMm68VCwh/BHDoKRGp+BgzQ6w7Nkif6IVM=", "narHash": "sha256-5WENkcO8O5SuA5pozpVppLGByWfHVv/1wOWgB2+TfV4=",
"owner": "nixos", "owner": "nixos",
"repo": "nixpkgs", "repo": "nixpkgs",
"rev": "de2b8ddf94d6cc6161b7659649594c79bd66c13b", "rev": "46423a1a750594236673c1d741def4e93cf5a8f7",
"type": "github" "type": "github"
}, },
"original": { "original": {
"owner": "nixos", "owner": "nixos",
"ref": "nixpkgs-unstable", "ref": "master",
"repo": "nixpkgs", "repo": "nixpkgs",
"type": "github" "type": "github"
} }

View File

@@ -1,35 +1,52 @@
{ {
description = "matar"; description = "matar";
inputs = { inputs = {
nixpkgs.url = github:nixos/nixpkgs/nixpkgs-unstable; nixpkgs.url = github:nixos/nixpkgs/master;
}; };
outputs = { self, nixpkgs }: outputs = { self, nixpkgs }:
let let
systems = [ systems = [
"x86_64-linux" "x86_64-linux"
"aarch64-linux" "aarch64-linux"
# "i686-linux"
]; ];
eachSystem = with nixpkgs.lib; f: foldAttrs mergeAttrs { } eachSystem = with nixpkgs.lib; f: foldAttrs mergeAttrs { }
(map (s: mapAttrs (_: v: { ${s} = v; }) (f s)) systems); (map (s: mapAttrs (_: v: { ${s} = v; }) (f s)) systems);
in in
eachSystem (system: eachSystem (system:
let let
pkgs = import nixpkgs { inherit system; }; pkgs = import nixpkgs { inherit system; };
# aliases
llvm = pkgs.llvmPackages_16; llvm = pkgs.llvmPackages_16;
stdenv = llvm.libcxxStdenv; stdenv = llvm.libcxxStdenv;
nativeBuildInputs = with pkgs; [
# TODO: this is ugly
#dependencies
nativeBuildInputs = with pkgs;
[
meson meson
ninja ninja
# libraries # libraries
pkg-config pkg-config
fmt.dev cmake
((pkgs.fmt.override {
inherit stdenv;
enableShared = false;
}).overrideAttrs (oa: {
cmakeFlags = oa.cmakeFlags ++ [ "-DFMT_TEST=off" ];
})).dev
(catch2_3.override { inherit stdenv; }).out
]; ];
in in
rec { rec {
packages = rec { packages = rec {
inherit (llvm) libcxxabi;
matar = stdenv.mkDerivation rec { matar = stdenv.mkDerivation rec {
name = "matar"; name = "matar";
version = "0.1"; version = "0.1";
@@ -37,6 +54,7 @@
".hh" ".hh"
".cc" ".cc"
".build" ".build"
"meson_options.txt"
]; ];
outputs = [ "out" "dev" ]; outputs = [ "out" "dev" ];
@@ -51,7 +69,7 @@
matar = pkgs.mkShell.override { inherit stdenv; } { matar = pkgs.mkShell.override { inherit stdenv; } {
name = "matar"; name = "matar";
packages = nativeBuildInputs ++ (with pkgs; [ packages = nativeBuildInputs ++ (with pkgs; [
# dev tools # lsp
clang-tools_16 clang-tools_16
]); ]);
}; };

View File

@@ -1 +0,0 @@
../src/bus.hh

21
include/bus.hh Normal file
View File

@@ -0,0 +1,21 @@
#pragma once
#include "memory.hh"
#include <memory>
class Bus {
public:
Bus(const Memory& memory);
uint8_t read_byte(size_t address);
void write_byte(size_t address, uint8_t byte);
uint16_t read_halfword(size_t address);
void write_halfword(size_t address, uint16_t halfword);
uint32_t read_word(size_t address);
void write_word(size_t address, uint32_t word);
private:
std::shared_ptr<Memory> memory;
};

View File

@@ -0,0 +1,165 @@
#include "cpu/utility.hh"
#include <cstdint>
#include <variant>
template<class... Ts>
struct overloaded : Ts... {
using Ts::operator()...;
};
template<class... Ts>
overloaded(Ts...) -> overloaded<Ts...>;
namespace arm {
struct BranchAndExchange {
uint8_t rn;
};
struct Branch {
bool link;
uint32_t offset;
};
struct Multiply {
uint8_t rm;
uint8_t rs;
uint8_t rn;
uint8_t rd;
bool set;
bool acc;
};
struct MultiplyLong {
uint8_t rm;
uint8_t rs;
uint8_t rdlo;
uint8_t rdhi;
bool set;
bool acc;
bool uns;
};
struct SingleDataSwap {
uint8_t rm;
uint8_t rd;
uint8_t rn;
bool byte;
};
struct SingleDataTransfer {
std::variant<uint16_t, Shift> offset;
uint8_t rd;
uint8_t rn;
bool load;
bool write;
bool byte;
bool up;
bool pre;
};
struct HalfwordTransfer {
uint8_t offset;
bool half;
bool sign;
uint8_t rd;
uint8_t rn;
bool load;
bool write;
bool imm;
bool up;
bool pre;
};
struct BlockDataTransfer {
uint16_t regs;
uint8_t rn;
bool load;
bool write;
bool s;
bool up;
bool pre;
};
struct DataProcessing {
std::variant<Shift, uint32_t> operand;
uint8_t rd;
uint8_t rn;
bool set;
OpCode opcode;
};
struct PsrTransfer {
enum class Type {
Mrs,
Msr,
Msr_flg
};
uint32_t operand;
bool spsr;
Type type;
// ignored outside MSR_flg
bool imm;
};
struct CoprocessorDataTransfer {
uint8_t offset;
uint8_t cpn;
uint8_t crd;
uint8_t rn;
bool load;
bool write;
bool len;
bool up;
bool pre;
};
struct CoprocessorDataOperation {
uint8_t crm;
uint8_t cp;
uint8_t cpn;
uint8_t crd;
uint8_t crn;
uint8_t cp_opc;
};
struct CoprocessorRegisterTransfer {
uint8_t crm;
uint8_t cp;
uint8_t cpn;
uint8_t rd;
uint8_t crn;
bool load;
uint8_t cp_opc;
};
struct Undefined {};
struct SoftwareInterrupt {};
using InstructionData = std::variant<BranchAndExchange,
Branch,
Multiply,
MultiplyLong,
SingleDataSwap,
SingleDataTransfer,
HalfwordTransfer,
BlockDataTransfer,
DataProcessing,
PsrTransfer,
CoprocessorDataTransfer,
CoprocessorDataOperation,
CoprocessorRegisterTransfer,
Undefined,
SoftwareInterrupt>;
struct Instruction {
Condition condition;
InstructionData data;
Instruction(uint32_t insn);
Instruction(Condition condition, InstructionData data) noexcept
: condition(condition)
, data(data){};
std::string disassemble();
};
}

View File

@@ -0,0 +1,3 @@
headers += files(
'instruction.hh',
)

View File

@@ -1 +0,0 @@
../../src/cpu/cpu.hh

60
include/cpu/cpu.hh Normal file
View File

@@ -0,0 +1,60 @@
#pragma once
#include "arm/instruction.hh"
#include "bus.hh"
#include "psr.hh"
#include <cstdint>
using std::size_t;
class Cpu {
public:
Cpu(const Bus& bus);
void step();
private:
static constexpr uint8_t GPR_COUNT = 16;
static constexpr uint8_t GPR_FIQ_FIRST = 8;
static constexpr uint8_t GPR_SVC_FIRST = 13;
static constexpr uint8_t GPR_ABT_FIRST = 13;
static constexpr uint8_t GPR_IRQ_FIRST = 13;
static constexpr uint8_t GPR_UND_FIRST = 13;
static constexpr uint8_t GPR_SYS_USR_FIRST = 8;
std::shared_ptr<Bus> bus;
std::array<uint32_t, GPR_COUNT> gpr; // general purpose registers
Psr cpsr; // current program status register
Psr spsr; // status program status register
static constexpr uint8_t PC_INDEX = 15;
static_assert(PC_INDEX < GPR_COUNT);
uint32_t& pc = gpr[PC_INDEX];
bool is_flushed;
void chg_mode(const Mode to);
void exec_arm(const arm::Instruction instruction);
struct {
std::array<uint32_t, GPR_COUNT - GPR_FIQ_FIRST - 1> fiq;
std::array<uint32_t, GPR_COUNT - GPR_SVC_FIRST - 1> svc;
std::array<uint32_t, GPR_COUNT - GPR_ABT_FIRST - 1> abt;
std::array<uint32_t, GPR_COUNT - GPR_IRQ_FIRST - 1> irq;
std::array<uint32_t, GPR_COUNT - GPR_UND_FIRST - 1> und;
// visible registers before the mode switch
std::array<uint32_t, GPR_COUNT - GPR_SYS_USR_FIRST> old;
} gpr_banked; // banked general purpose registers
struct {
Psr fiq;
Psr svc;
Psr abt;
Psr irq;
Psr und;
} spsr_banked; // banked saved program status registers
};

View File

@@ -1 +0,0 @@
../../src/cpu/instruction.hh

View File

@@ -1,6 +1,7 @@
headers += files( headers += files(
'cpu.hh', 'cpu.hh',
'instruction.hh',
'psr.hh', 'psr.hh',
'utility.hh' 'utility.hh'
) )
subdir('arm')

View File

@@ -1 +0,0 @@
../../src/cpu/psr.hh

55
include/cpu/psr.hh Normal file
View File

@@ -0,0 +1,55 @@
#pragma once
#include "utility.hh"
#include <cstdint>
class Psr {
public:
// clear the reserved bits i.e, [8:27]
Psr(uint32_t raw);
uint32_t raw() const;
void set_all(uint32_t raw);
// Mode : [4:0]
Mode mode() const;
void set_mode(Mode mode);
// State : [5]
State state() const;
void set_state(State state);
#define GET_SET_NTH_BIT_FUNCTIONS(name) \
bool name() const; \
void set_##name(bool val);
// FIQ disable : [6]
GET_SET_NTH_BIT_FUNCTIONS(fiq_disabled)
// IRQ disable : [7]
GET_SET_NTH_BIT_FUNCTIONS(irq_disabled)
// Reserved bits : [27:8]
// Overflow flag : [28]
GET_SET_NTH_BIT_FUNCTIONS(v)
// Carry flag : [29]
GET_SET_NTH_BIT_FUNCTIONS(c)
// Zero flag : [30]
GET_SET_NTH_BIT_FUNCTIONS(z)
// Negative flag : [30]
GET_SET_NTH_BIT_FUNCTIONS(n)
#undef GET_SET_NTH_BIT_FUNCTIONS
bool condition(Condition cond) const;
private:
static constexpr uint32_t PSR_CLEAR_RESERVED = 0xF00000FF;
static constexpr uint32_t PSR_CLEAR_MODE = 0xFFFFFFE0;
uint32_t psr;
};

View File

@@ -1 +0,0 @@
../../src/cpu/utility.hh

99
include/cpu/utility.hh Normal file
View File

@@ -0,0 +1,99 @@
#pragma once
#include <fmt/ostream.h>
#include <ostream>
static constexpr size_t ARM_INSTRUCTION_SIZE = 4;
static constexpr size_t THUMB_INSTRUCTION_SIZE = 2;
enum class Mode {
/* M[4:0] in PSR */
User = 0b10000,
Fiq = 0b10001,
Irq = 0b10010,
Supervisor = 0b10011,
Abort = 0b10111,
Undefined = 0b11011,
System = 0b11111,
};
enum class State {
Arm = 0,
Thumb = 1
};
enum class Condition {
EQ = 0b0000,
NE = 0b0001,
CS = 0b0010,
CC = 0b0011,
MI = 0b0100,
PL = 0b0101,
VS = 0b0110,
VC = 0b0111,
HI = 0b1000,
LS = 0b1001,
GE = 0b1010,
LT = 0b1011,
GT = 0b1100,
LE = 0b1101,
AL = 0b1110
};
// https://fmt.dev/dev/api.html#std-ostream-support
std::ostream&
operator<<(std::ostream& os, const Condition cond);
template<>
struct fmt::formatter<Condition> : ostream_formatter {};
enum class OpCode {
AND = 0b0000,
EOR = 0b0001,
SUB = 0b0010,
RSB = 0b0011,
ADD = 0b0100,
ADC = 0b0101,
SBC = 0b0110,
RSC = 0b0111,
TST = 0b1000,
TEQ = 0b1001,
CMP = 0b1010,
CMN = 0b1011,
ORR = 0b1100,
MOV = 0b1101,
BIC = 0b1110,
MVN = 0b1111
};
// https://fmt.dev/dev/api.html#std-ostream-support
std::ostream&
operator<<(std::ostream& os, const OpCode cond);
template<>
struct fmt::formatter<OpCode> : ostream_formatter {};
enum class ShiftType {
LSL = 0b00,
LSR = 0b01,
ASR = 0b10,
ROR = 0b11
};
struct ShiftData {
ShiftType type;
bool immediate;
uint8_t operand;
};
struct Shift {
uint8_t rm;
ShiftData data;
};
uint32_t
eval_shift(ShiftType shift_type, uint32_t value, uint8_t amount, bool& carry);
// https://fmt.dev/dev/api.html#std-ostream-support
std::ostream&
operator<<(std::ostream& os, const ShiftType cond);
template<>
struct fmt::formatter<ShiftType> : ostream_formatter {};

View File

@@ -1 +0,0 @@
../src/header.hh

44
include/header.hh Normal file
View File

@@ -0,0 +1,44 @@
#pragma once
#include <cstdint>
#include <string>
struct Header {
enum class UniqueCode {
Old, // old games
New, // new games
Newer, // unused (newer games)
Famicom, // NES
YoshiKoro, // acceleration sensor
Ereader, // dot code scanner
Warioware, // rumble and z-axis gyro
Boktai, // RTC and solar sensor
DrillDozer, // rumble
};
enum class I18n {
Japan,
Europe,
French,
Spanish,
Usa,
German,
Italian
};
enum class BootMode {
Joybus,
Normal,
Multiplay
};
uint32_t entrypoint;
std::string title;
std::string title_code;
UniqueCode unique_code;
I18n i18n;
uint8_t version;
BootMode multiboot;
uint32_t multiboot_entrypoint;
uint8_t slave_id;
};

View File

@@ -1 +0,0 @@
../src/memory.hh

63
include/memory.hh Normal file
View File

@@ -0,0 +1,63 @@
#pragma once
#include "header.hh"
#include <array>
#include <cstddef>
#include <cstdint>
#include <vector>
class Memory {
public:
static constexpr size_t BIOS_SIZE = 1024 * 16;
Memory(std::array<uint8_t, BIOS_SIZE>&& bios, std::vector<uint8_t>&& rom);
uint8_t read(size_t address) const;
void write(size_t address, uint8_t byte);
uint16_t read_halfword(size_t address) const;
void write_halfword(size_t address, uint16_t halfword);
uint32_t read_word(size_t address) const;
void write_word(size_t address, uint32_t word);
private:
#define MEMORY_REGION(name, start, end) \
static constexpr size_t name##_START = start; \
static constexpr size_t name##_END = end;
#define DECL_MEMORY(name, ident, start, end) \
MEMORY_REGION(name, start, end) \
std::array<uint8_t, name##_END - name##_START + 1> ident;
MEMORY_REGION(BIOS, 0x00000000, 0x00003FFF)
std::array<uint8_t, BIOS_SIZE> bios;
static_assert(BIOS_END - BIOS_START + 1 == BIOS_SIZE);
// board working RAM
DECL_MEMORY(BOARD_WRAM, board_wram, 0x02000000, 0x0203FFFF)
// chip working RAM
DECL_MEMORY(CHIP_WRAM, chip_wram, 0x03000000, 0x03007FFF)
// palette RAM
DECL_MEMORY(PALETTE_RAM, palette_ram, 0x05000000, 0x050003FF)
// video RAM
DECL_MEMORY(VRAM, vram, 0x06000000, 0x06017FFF)
// OAM OBJ attributes
DECL_MEMORY(OAM_OBJ_ATTR, oam_obj_attr, 0x07000000, 0x070003FF)
#undef DECL_MEMORY
MEMORY_REGION(ROM_0, 0x08000000, 0x09FFFFFF)
MEMORY_REGION(ROM_1, 0x0A000000, 0x0BFFFFFF)
MEMORY_REGION(ROM_2, 0x0C000000, 0x0DFFFFFF)
#undef MEMORY_REGION
std::vector<uint8_t> rom;
Header header;
void parse_header();
};

View File

@@ -6,7 +6,36 @@ project('matar', 'cpp',
'optimization=3', 'optimization=3',
'cpp_std=c++20']) 'cpp_std=c++20'])
compiler = meson.get_compiler('cpp')
'''
TODO: use <print> and <format> instead of libfmt once LLVM 17 is out
if compiler.has_argument('-std=c++2c')
add_global_arguments('-std=c++2c', language: 'cpp')
elif compiler.has_argument('-std=c++23')
add_global_arguments('-std=c++23', language: 'cpp')
elif compiler.has_argument('-std=c++2b')
add_global_arguments('-std=c++2b', language: 'cpp')
elif compiler.has_argument('-std=c++20')
add_global_arguments('-std=c++20', language: 'cpp')
else
error(compiler.get_id() + ' ' + compiler.version() + 'does not meet the compiler requirements')
endif
if compiler.has_argument('-fexperimental-library')
add_global_arguments('-fexperimental-library', language: 'cpp')
else
error(compiler.get_id() + ' ' + compiler.version() + 'does not support -fexperimental-library')
endif
'''
inc = include_directories('include') inc = include_directories('include')
subdir('include') subdir('include')
subdir('src') subdir('src')
subdir('apps') subdir('apps')
if get_option('tests')
subdir('tests')
endif

1
meson_options.txt Normal file
View File

@@ -0,0 +1 @@
option('tests', type : 'boolean', value : true, description: 'enable tests')

View File

@@ -1,7 +1,7 @@
#include "bus.hh" #include "bus.hh"
#include <memory> #include <memory>
Bus::Bus(Memory& memory) Bus::Bus(const Memory& memory)
: memory(std::make_shared<Memory>(memory)) {} : memory(std::make_shared<Memory>(memory)) {}
uint8_t uint8_t
@@ -31,5 +31,5 @@ Bus::read_word(size_t address) {
void void
Bus::write_word(size_t address, uint32_t word) { Bus::write_word(size_t address, uint32_t word) {
memory->write_halfword(address, word); memory->write_word(address, word);
} }

View File

@@ -1,21 +0,0 @@
#pragma once
#include "memory.hh"
#include <memory>
class Bus {
public:
Bus(Memory& memory);
uint8_t read_byte(size_t address);
void write_byte(size_t address, uint8_t byte);
uint16_t read_halfword(size_t address);
void write_halfword(size_t address, uint16_t halfword);
uint32_t read_word(size_t address);
void write_word(size_t address, uint32_t word);
private:
std::shared_ptr<Memory> memory;
};

576
src/cpu/arm/exec.cc Normal file
View File

@@ -0,0 +1,576 @@
#include "cpu/cpu.hh"
#include "util/bits.hh"
#include "util/log.hh"
using namespace logger;
void
Cpu::exec_arm(const arm::Instruction instruction) {
auto cond = instruction.condition;
auto data = instruction.data;
if (!cpsr.condition(cond)) {
return;
}
auto pc_error = [](uint8_t r) {
if (r == PC_INDEX)
log_error("Using PC (R15) as operand register");
};
auto pc_warn = [](uint8_t r) {
if (r == PC_INDEX)
log_warn("Using PC (R15) as operand register");
};
using namespace arm;
std::visit(
overloaded{
[this, pc_warn](BranchAndExchange& data) {
State state = static_cast<State>(data.rn & 1);
pc_warn(data.rn);
// set state
cpsr.set_state(state);
// copy to PC
pc = gpr[data.rn];
// ignore [1:0] bits for arm and 0 bit for thumb
rst_bit(pc, 0);
if (state == State::Arm)
rst_bit(pc, 1);
// pc is affected so flush the pipeline
is_flushed = true;
},
[this](Branch& data) {
if (data.link)
gpr[14] = pc - ARM_INSTRUCTION_SIZE;
// data.offset accounts for two instructions ahead when
// disassembling, so need to adjust
pc =
static_cast<int32_t>(pc) - 2 * ARM_INSTRUCTION_SIZE + data.offset;
// pc is affected so flush the pipeline
is_flushed = true;
},
[this, pc_error](Multiply& data) {
if (data.rd == data.rm)
log_error("rd and rm are not distinct in {}",
typeid(data).name());
pc_error(data.rd);
pc_error(data.rd);
pc_error(data.rd);
gpr[data.rd] =
gpr[data.rm] * gpr[data.rs] + (data.acc ? gpr[data.rn] : 0);
if (data.set) {
cpsr.set_z(gpr[data.rd] == 0);
cpsr.set_n(get_bit(gpr[data.rd], 31));
cpsr.set_c(0);
}
},
[this, pc_error](MultiplyLong& data) {
if (data.rdhi == data.rdlo || data.rdhi == data.rm ||
data.rdlo == data.rm)
log_error("rdhi, rdlo and rm are not distinct in {}",
typeid(data).name());
pc_error(data.rdhi);
pc_error(data.rdlo);
pc_error(data.rm);
pc_error(data.rs);
if (data.uns) {
uint64_t eval =
static_cast<uint64_t>(gpr[data.rm]) *
static_cast<uint64_t>(gpr[data.rs]) +
(data.acc ? (static_cast<uint64_t>(gpr[data.rdhi]) << 32) |
static_cast<uint64_t>(gpr[data.rdlo])
: 0);
gpr[data.rdlo] = bit_range(eval, 0, 31);
gpr[data.rdhi] = bit_range(eval, 32, 63);
} else {
int64_t eval =
static_cast<int64_t>(gpr[data.rm]) *
static_cast<int64_t>(gpr[data.rs]) +
(data.acc ? static_cast<int64_t>(gpr[data.rdhi]) << 32 |
static_cast<int64_t>(gpr[data.rdlo])
: 0);
gpr[data.rdlo] = bit_range(eval, 0, 31);
gpr[data.rdhi] = bit_range(eval, 32, 63);
}
if (data.set) {
cpsr.set_z(gpr[data.rdhi] == 0 && gpr[data.rdlo] == 0);
cpsr.set_n(get_bit(gpr[data.rdhi], 31));
cpsr.set_c(0);
cpsr.set_v(0);
}
},
[](Undefined) { log_warn("Undefined instruction"); },
[this, pc_error](SingleDataSwap& data) {
pc_error(data.rm);
pc_error(data.rn);
pc_error(data.rd);
if (data.byte) {
gpr[data.rd] = bus->read_byte(gpr[data.rn]);
bus->write_byte(gpr[data.rn], gpr[data.rm] & 0xFF);
} else {
gpr[data.rd] = bus->read_word(gpr[data.rn]);
bus->write_word(gpr[data.rn], gpr[data.rm]);
}
},
[this, pc_warn, pc_error](SingleDataTransfer& data) {
uint32_t offset = 0;
uint32_t address = gpr[data.rn];
if (!data.pre && data.write)
log_warn("Write-back enabled with post-indexing in {}",
typeid(data).name());
if (data.rn == PC_INDEX && data.write)
log_warn("Write-back enabled with base register as PC {}",
typeid(data).name());
if (data.write)
pc_warn(data.rn);
// evaluate the offset
if (const uint16_t* immediate =
std::get_if<uint16_t>(&data.offset)) {
offset = *immediate;
} else if (const Shift* shift = std::get_if<Shift>(&data.offset)) {
uint8_t amount =
(shift->data.immediate ? shift->data.operand
: gpr[shift->data.operand] & 0xFF);
bool carry = cpsr.c();
if (!shift->data.immediate)
pc_error(shift->data.operand);
pc_error(shift->rm);
offset =
eval_shift(shift->data.type, gpr[shift->rm], amount, carry);
cpsr.set_c(carry);
}
// PC is always two instructions ahead
if (data.rn == PC_INDEX)
address -= 2 * ARM_INSTRUCTION_SIZE;
if (data.pre)
address += (data.up ? offset : -offset);
debug(address);
// load
if (data.load) {
// byte
if (data.byte)
gpr[data.rd] = bus->read_byte(address);
// word
else
gpr[data.rd] = bus->read_word(address);
// store
} else {
// take PC into consideration
if (data.rd == PC_INDEX)
address += ARM_INSTRUCTION_SIZE;
// byte
if (data.byte)
bus->write_byte(address, gpr[data.rd] & 0xFF);
// word
else
bus->write_word(address, gpr[data.rd]);
}
if (!data.pre)
address += (data.up ? offset : -offset);
if (!data.pre || data.write)
gpr[data.rn] = address;
if (data.rd == PC_INDEX && data.load)
is_flushed = true;
},
[this, pc_warn, pc_error](HalfwordTransfer& data) {
uint32_t address = gpr[data.rn];
if (!data.pre && data.write)
log_error("Write-back enabled with post-indexing in {}",
typeid(data).name());
if (data.sign && !data.load)
log_error("Signed data found in {}", typeid(data).name());
if (data.write)
pc_warn(data.rn);
// offset is register number (4 bits) when not an immediate
if (!data.imm)
pc_error(data.offset);
if (data.pre)
address += (data.up ? data.offset : -data.offset);
// load
if (data.load) {
// signed
if (data.sign) {
// halfword
if (data.half) {
gpr[data.rd] = bus->read_halfword(address);
// sign extend the halfword
gpr[data.rd] =
(static_cast<int32_t>(gpr[data.rd]) << 16) >> 16;
// byte
} else {
gpr[data.rd] = bus->read_byte(address);
// sign extend the byte
gpr[data.rd] =
(static_cast<int32_t>(gpr[data.rd]) << 24) >> 24;
}
// unsigned halfword
} else if (data.half) {
gpr[data.rd] = bus->read_halfword(address);
}
// store
} else {
// take PC into consideration
if (data.rd == PC_INDEX)
address += ARM_INSTRUCTION_SIZE;
// halfword
if (data.half)
bus->write_halfword(address, gpr[data.rd]);
}
if (!data.pre)
address += (data.up ? data.offset : -data.offset);
if (!data.pre || data.write)
gpr[data.rn] = address;
if (data.rd == PC_INDEX && data.load)
is_flushed = true;
},
[this, pc_error](BlockDataTransfer& data) {
uint32_t address = gpr[data.rn];
Mode mode = cpsr.mode();
uint8_t alignment = 4; // word
uint8_t i = 0;
uint8_t n_regs = std::popcount(data.regs);
pc_error(data.rn);
if (cpsr.mode() == Mode::User && data.s) {
log_error("Bit S is set outside priviliged modes in {}",
typeid(data).name());
}
// we just change modes to load user registers
if ((!get_bit(data.regs, PC_INDEX) && data.s) ||
(!data.load && data.s)) {
chg_mode(Mode::User);
if (data.write) {
log_error("Write-back enable for user bank registers in {}",
typeid(data).name());
}
}
// account for decrement
if (!data.up)
address -= (n_regs - 1) * alignment;
if (data.pre)
address += (data.up ? alignment : -alignment);
if (data.load) {
if (get_bit(data.regs, PC_INDEX) && data.s && data.load) {
// current mode's spsr is already loaded when it was
// switched
spsr = cpsr;
}
for (i = 0; i < GPR_COUNT; i++) {
if (get_bit(data.regs, i)) {
gpr[i] = bus->read_word(address);
address += alignment;
}
}
} else {
for (i = 0; i < GPR_COUNT; i++) {
if (get_bit(data.regs, i)) {
bus->write_word(address, gpr[i]);
address += alignment;
}
}
}
if (!data.pre)
address += (data.up ? alignment : -alignment);
// reset back to original address + offset if incremented earlier
if (data.up)
address -= n_regs * alignment;
if (!data.pre || data.write)
gpr[data.rn] = address;
if (data.load && get_bit(data.regs, PC_INDEX))
is_flushed = true;
// load back the original mode registers
chg_mode(mode);
},
[this, pc_error](PsrTransfer& data) {
if (data.spsr && cpsr.mode() == Mode::User) {
log_error("Accessing SPSR in User mode in {}",
typeid(data).name());
}
Psr& psr = data.spsr ? spsr : cpsr;
switch (data.type) {
case PsrTransfer::Type::Mrs:
pc_error(data.operand);
gpr[data.operand] = psr.raw();
break;
case PsrTransfer::Type::Msr:
pc_error(data.operand);
if (cpsr.mode() != Mode::User) {
psr.set_all(gpr[data.operand]);
}
break;
case PsrTransfer::Type::Msr_flg:
psr.set_n(get_bit(data.operand, 31));
psr.set_z(get_bit(data.operand, 30));
psr.set_c(get_bit(data.operand, 29));
psr.set_v(get_bit(data.operand, 28));
break;
}
},
[this, pc_error](DataProcessing& data) {
uint32_t op_1 = gpr[data.rn];
uint32_t op_2 = 0;
uint32_t result = 0;
bool overflow = cpsr.v();
bool carry = cpsr.c();
bool negative = cpsr.n();
bool zero = cpsr.z();
if (const uint32_t* immediate =
std::get_if<uint32_t>(&data.operand)) {
op_2 = *immediate;
} else if (const Shift* shift = std::get_if<Shift>(&data.operand)) {
uint8_t amount =
(shift->data.immediate ? shift->data.operand
: gpr[shift->data.operand] & 0xFF);
bool carry = cpsr.c();
if (!shift->data.immediate)
pc_error(shift->data.operand);
pc_error(shift->rm);
op_2 =
eval_shift(shift->data.type, gpr[shift->rm], amount, carry);
cpsr.set_c(carry);
// PC is 12 bytes ahead when shifting
if (data.rn == PC_INDEX)
op_1 += ARM_INSTRUCTION_SIZE;
}
switch (data.opcode) {
case OpCode::AND: {
result = op_1 & op_2;
negative = get_bit(result, 31);
} break;
case OpCode::EOR: {
result = op_1 ^ op_2;
negative = get_bit(result, 31);
} break;
case OpCode::SUB: {
bool s1 = get_bit(op_1, 31);
bool s2 = get_bit(op_2, 31);
result = op_1 - op_2;
negative = get_bit(result, 31);
carry = op_1 < op_2;
overflow = s1 != s2 && s2 == negative;
} break;
case OpCode::RSB: {
bool s1 = get_bit(op_1, 31);
bool s2 = get_bit(op_2, 31);
result = op_2 - op_1;
negative = get_bit(result, 31);
carry = op_2 < op_1;
overflow = s1 != s2 && s1 == negative;
} break;
case OpCode::ADD: {
bool s1 = get_bit(op_1, 31);
bool s2 = get_bit(op_2, 31);
// result_ is 33 bits
uint64_t result_ = op_2 + op_1;
result = result_ & 0xFFFFFFFF;
negative = get_bit(result, 31);
carry = get_bit(result_, 32);
overflow = s1 == s2 && s1 != negative;
} break;
case OpCode::ADC: {
bool s1 = get_bit(op_1, 31);
bool s2 = get_bit(op_2, 31);
uint64_t result_ = op_2 + op_1 + carry;
result = result_ & 0xFFFFFFFF;
negative = get_bit(result, 31);
carry = get_bit(result_, 32);
overflow = s1 == s2 && s1 != negative;
} break;
case OpCode::SBC: {
bool s1 = get_bit(op_1, 31);
bool s2 = get_bit(op_2, 31);
uint64_t result_ = op_1 - op_2 + carry - 1;
result = result_ & 0xFFFFFFFF;
negative = get_bit(result, 31);
carry = get_bit(result_, 32);
overflow = s1 != s2 && s2 == negative;
} break;
case OpCode::RSC: {
bool s1 = get_bit(op_1, 31);
bool s2 = get_bit(op_2, 31);
uint64_t result_ = op_1 - op_2 + carry - 1;
result = result_ & 0xFFFFFFFF;
negative = get_bit(result, 31);
carry = get_bit(result_, 32);
overflow = s1 != s2 && s1 == negative;
} break;
case OpCode::TST: {
result = op_1 & op_2;
negative = get_bit(result, 31);
} break;
case OpCode::TEQ: {
result = op_1 ^ op_2;
negative = get_bit(result, 31);
} break;
case OpCode::CMP: {
bool s1 = get_bit(op_1, 31);
bool s2 = get_bit(op_2, 31);
result = op_1 - op_2;
negative = get_bit(result, 31);
carry = op_1 < op_2;
overflow = s1 != s2 && s2 == negative;
} break;
case OpCode::CMN: {
bool s1 = get_bit(op_1, 31);
bool s2 = get_bit(op_2, 31);
uint64_t result_ = op_2 + op_1;
result = result_ & 0xFFFFFFFF;
negative = get_bit(result, 31);
carry = get_bit(result_, 32);
overflow = s1 == s2 && s1 != negative;
} break;
case OpCode::ORR: {
result = op_1 | op_2;
negative = get_bit(result, 31);
} break;
case OpCode::MOV: {
result = op_2;
negative = get_bit(result, 31);
} break;
case OpCode::BIC: {
result = op_1 & ~op_2;
negative = get_bit(result, 31);
} break;
case OpCode::MVN: {
result = ~op_2;
negative = get_bit(result, 31);
} break;
}
zero = result == 0;
debug(carry);
debug(overflow);
debug(zero);
debug(negative);
auto set_conditions = [this, carry, overflow, negative, zero]() {
cpsr.set_c(carry);
cpsr.set_v(overflow);
cpsr.set_n(negative);
cpsr.set_z(zero);
};
if (data.set) {
if (data.rd == 15) {
if (cpsr.mode() == Mode::User)
log_error("Running {} in User mode",
typeid(data).name());
} else {
set_conditions();
}
}
if (data.opcode == OpCode::TST || data.opcode == OpCode::TEQ ||
data.opcode == OpCode::CMP || data.opcode == OpCode::CMN) {
set_conditions();
} else {
gpr[data.rd] = result;
if (data.rd == 15 || data.opcode == OpCode::MVN)
is_flushed = true;
}
},
[this](SoftwareInterrupt) {
chg_mode(Mode::Supervisor);
pc = 0x08;
spsr = cpsr;
},
[](auto& data) {
log_error("Unimplemented {} instruction", typeid(data).name());
} },
data);
}

497
src/cpu/arm/instruction.cc Normal file
View File

@@ -0,0 +1,497 @@
#include "cpu/arm/instruction.hh"
#include "cpu/utility.hh"
#include "util/bits.hh"
#include <iterator>
using namespace arm;
Instruction::Instruction(uint32_t insn)
: condition(static_cast<Condition>(bit_range(insn, 28, 31))) {
// Branch and exhcange
if ((insn & 0x0FFFFFF0) == 0x012FFF10) {
uint8_t rn = insn & 0b1111;
data = BranchAndExchange{ rn };
// Branch
} else if ((insn & 0x0E000000) == 0x0A000000) {
bool link = get_bit(insn, 24);
uint32_t offset = bit_range(insn, 0, 23);
// lsh 2 and sign extend the 26 bit offset to 32 bits
offset = (static_cast<int32_t>(offset) << 8) >> 6;
offset += 2 * ARM_INSTRUCTION_SIZE;
data = Branch{ .link = link, .offset = offset };
// Multiply
} else if ((insn & 0x0FC000F0) == 0x00000090) {
uint8_t rm = bit_range(insn, 0, 3);
uint8_t rs = bit_range(insn, 8, 11);
uint8_t rn = bit_range(insn, 12, 15);
uint8_t rd = bit_range(insn, 16, 19);
bool set = get_bit(insn, 20);
bool acc = get_bit(insn, 21);
data = Multiply{
.rm = rm, .rs = rs, .rn = rn, .rd = rd, .set = set, .acc = acc
};
// Multiply long
} else if ((insn & 0x0F8000F0) == 0x00800090) {
uint8_t rm = bit_range(insn, 0, 3);
uint8_t rs = bit_range(insn, 8, 11);
uint8_t rdlo = bit_range(insn, 12, 15);
uint8_t rdhi = bit_range(insn, 16, 19);
bool set = get_bit(insn, 20);
bool acc = get_bit(insn, 21);
bool uns = !get_bit(insn, 22);
data = MultiplyLong{ .rm = rm,
.rs = rs,
.rdlo = rdlo,
.rdhi = rdhi,
.set = set,
.acc = acc,
.uns = uns };
// Undefined
} else if ((insn & 0x0E000010) == 0x06000010) {
data = Undefined{};
// Single data swap
} else if ((insn & 0x0FB00FF0) == 0x01000090) {
uint8_t rm = bit_range(insn, 0, 3);
uint8_t rd = bit_range(insn, 12, 15);
uint8_t rn = bit_range(insn, 16, 19);
bool byte = get_bit(insn, 22);
data = SingleDataSwap{ .rm = rm, .rd = rd, .rn = rn, .byte = byte };
// Single data transfer
} else if ((insn & 0x0C000000) == 0x04000000) {
std::variant<uint16_t, Shift> offset;
uint8_t rd = bit_range(insn, 12, 15);
uint8_t rn = bit_range(insn, 16, 19);
bool load = get_bit(insn, 20);
bool write = get_bit(insn, 21);
bool byte = get_bit(insn, 22);
bool up = get_bit(insn, 23);
bool pre = get_bit(insn, 24);
bool imm = get_bit(insn, 25);
if (imm) {
// register specified shift amounts not available in single data
// transfer (see Undefined)
uint8_t rm = bit_range(insn, 0, 3);
ShiftType shift_type =
static_cast<ShiftType>(bit_range(insn, 5, 6));
uint8_t operand = bit_range(insn, 7, 11);
offset = Shift{ .rm = rm,
.data = ShiftData{ .type = shift_type,
.immediate = true,
.operand = operand } };
} else {
offset = static_cast<uint16_t>(bit_range(insn, 0, 11));
}
data = SingleDataTransfer{ .offset = offset,
.rd = rd,
.rn = rn,
.load = load,
.write = write,
.byte = byte,
.up = up,
.pre = pre };
// Halfword transfer
} else if ((insn & 0x0E000090) == 0x00000090) {
uint8_t offset = bit_range(insn, 0, 3);
bool half = get_bit(insn, 5);
bool sign = get_bit(insn, 6);
uint8_t rd = bit_range(insn, 12, 15);
uint8_t rn = bit_range(insn, 16, 19);
bool load = get_bit(insn, 20);
bool write = get_bit(insn, 21);
bool imm = get_bit(insn, 22);
bool up = get_bit(insn, 23);
bool pre = get_bit(insn, 24);
offset |= (imm ? bit_range(insn, 8, 11) << 2 : 0);
data = HalfwordTransfer{ .offset = offset,
.half = half,
.sign = sign,
.rd = rd,
.rn = rn,
.load = load,
.write = write,
.imm = imm,
.up = up,
.pre = pre };
// Block data transfer
} else if ((insn & 0x0E000000) == 0x08000000) {
uint16_t regs = bit_range(insn, 0, 15);
uint8_t rn = bit_range(insn, 16, 19);
bool load = get_bit(insn, 20);
bool write = get_bit(insn, 21);
bool s = get_bit(insn, 22);
bool up = get_bit(insn, 23);
bool pre = get_bit(insn, 24);
data = BlockDataTransfer{ .regs = regs,
.rn = rn,
.load = load,
.write = write,
.s = s,
.up = up,
.pre = pre };
// Data Processing
} else if ((insn & 0x0C000000) == 0x00000000) {
uint8_t rd = bit_range(insn, 12, 15);
uint8_t rn = bit_range(insn, 16, 19);
bool set = get_bit(insn, 20);
OpCode opcode = static_cast<OpCode>(bit_range(insn, 21, 24));
bool imm = get_bit(insn, 25);
if ((opcode == OpCode::TST || opcode == OpCode::CMP) && !set) {
data = PsrTransfer{ .operand = rd,
.spsr = get_bit(insn, 22),
.type = PsrTransfer::Type::Mrs,
.imm = 0 };
} else if ((opcode == OpCode::TEQ || opcode == OpCode::CMN) && !set) {
uint32_t operand = 0;
if (imm) {
uint32_t immediate = bit_range(insn, 0, 7);
uint8_t rotate = bit_range(insn, 8, 11);
operand = std::rotr(immediate, rotate * 2);
} else {
operand = bit_range(insn, 0, 3);
}
data = PsrTransfer{ .operand = operand,
.spsr = get_bit(insn, 22),
.type = (get_bit(insn, 16)
? PsrTransfer::Type::Msr
: PsrTransfer::Type::Msr_flg),
.imm = imm };
} else {
std::variant<Shift, uint32_t> operand;
if (imm) {
uint32_t immediate = bit_range(insn, 0, 7);
uint8_t rotate = bit_range(insn, 8, 11);
operand = std::rotr(immediate, rotate * 2);
} else {
uint8_t rm = bit_range(insn, 0, 3);
bool reg = get_bit(insn, 4);
ShiftType shift_type =
static_cast<ShiftType>(bit_range(insn, 5, 6));
uint8_t sh_operand = bit_range(insn, (reg ? 8 : 7), 11);
operand = Shift{ .rm = rm,
.data = ShiftData{ .type = shift_type,
.immediate = !reg,
.operand = sh_operand } };
}
data = DataProcessing{ .operand = operand,
.rd = rd,
.rn = rn,
.set = set,
.opcode = opcode };
}
// Software interrupt
} else if ((insn & 0x0F000000) == 0x0F000000) {
data = SoftwareInterrupt{};
// Coprocessor data transfer
} else if ((insn & 0x0E000000) == 0x0C000000) {
uint8_t offset = bit_range(insn, 0, 7);
uint8_t cpn = bit_range(insn, 8, 11);
uint8_t crd = bit_range(insn, 12, 15);
uint8_t rn = bit_range(insn, 16, 19);
bool load = get_bit(insn, 20);
bool write = get_bit(insn, 21);
bool len = get_bit(insn, 22);
bool up = get_bit(insn, 23);
bool pre = get_bit(insn, 24);
data = CoprocessorDataTransfer{ .offset = offset,
.cpn = cpn,
.crd = crd,
.rn = rn,
.load = load,
.write = write,
.len = len,
.up = up,
.pre = pre };
// Coprocessor data operation
} else if ((insn & 0x0F000010) == 0x0E000000) {
uint8_t crm = bit_range(insn, 0, 3);
uint8_t cp = bit_range(insn, 5, 7);
uint8_t cpn = bit_range(insn, 8, 11);
uint8_t crd = bit_range(insn, 12, 15);
uint8_t crn = bit_range(insn, 16, 19);
uint8_t cp_opc = bit_range(insn, 20, 23);
data = CoprocessorDataOperation{ .crm = crm,
.cp = cp,
.cpn = cpn,
.crd = crd,
.crn = crn,
.cp_opc = cp_opc };
// Coprocessor register transfer
} else if ((insn & 0x0F000010) == 0x0E000010) {
uint8_t crm = bit_range(insn, 0, 3);
uint8_t cp = bit_range(insn, 5, 7);
uint8_t cpn = bit_range(insn, 8, 11);
uint8_t rd = bit_range(insn, 12, 15);
uint8_t crn = bit_range(insn, 16, 19);
bool load = get_bit(insn, 20);
uint8_t cp_opc = bit_range(insn, 21, 23);
data = CoprocessorRegisterTransfer{ .crm = crm,
.cp = cp,
.cpn = cpn,
.rd = rd,
.crn = crn,
.load = load,
.cp_opc = cp_opc };
} else {
data = Undefined{};
}
}
std::string
Instruction::disassemble() {
// goddamn this is gore
// TODO: make this less ugly
return std::visit(
overloaded{
[this](BranchAndExchange& data) {
return fmt::format("BX{} R{:d}", condition, data.rn);
},
[this](Branch& data) {
return fmt::format(
"B{}{} 0x{:06X}", (data.link ? "L" : ""), condition, data.offset);
},
[this](Multiply& data) {
if (data.acc) {
return fmt::format("MLA{}{} R{:d},R{:d},R{:d},R{:d}",
condition,
(data.set ? "S" : ""),
data.rd,
data.rm,
data.rs,
data.rn);
} else {
return fmt::format("MUL{}{} R{:d},R{:d},R{:d}",
condition,
(data.set ? "S" : ""),
data.rd,
data.rm,
data.rs);
}
},
[this](MultiplyLong& data) {
return fmt::format("{}{}{}{} R{:d},R{:d},R{:d},R{:d}",
(data.uns ? 'U' : 'S'),
(data.acc ? "MLAL" : "MULL"),
condition,
(data.set ? "S" : ""),
data.rdlo,
data.rdhi,
data.rm,
data.rs);
},
[](Undefined) { return std::string("UND"); },
[this](SingleDataSwap& data) {
return fmt::format("SWP{}{} R{:d},R{:d},[R{:d}]",
condition,
(data.byte ? "B" : ""),
data.rd,
data.rm,
data.rn);
},
[this](SingleDataTransfer& data) {
std::string expression;
std::string address;
if (const uint16_t* offset = std::get_if<uint16_t>(&data.offset)) {
if (*offset == 0) {
expression = "";
} else {
expression =
fmt::format(",{}#{:d}", (data.up ? '+' : '-'), *offset);
}
} else if (const Shift* shift = std::get_if<Shift>(&data.offset)) {
// Shifts are always immediate in single data transfer
expression = fmt::format(",{}R{:d},{} #{:d}",
(data.up ? '+' : '-'),
shift->rm,
shift->data.type,
shift->data.operand);
}
return fmt::format(
"{}{}{}{} R{:d},[R{:d}{}]{}",
(data.load ? "LDR" : "STR"),
condition,
(data.byte ? "B" : ""),
(!data.pre && data.write ? "T" : ""),
data.rd,
data.rn,
(data.pre ? expression : ""),
(data.pre ? (data.write ? "!" : "") : expression));
},
[this](HalfwordTransfer& data) {
std::string expression;
if (data.imm) {
if (data.offset == 0) {
expression = "";
} else {
expression = fmt::format(
",{}#{:d}", (data.up ? '+' : '-'), data.offset);
}
} else {
expression =
fmt::format(",{}R{:d}", (data.up ? '+' : '-'), data.offset);
}
return fmt::format(
"{}{}{}{} R{:d},[R{:d}{}]{}",
(data.load ? "LDR" : "STR"),
condition,
(data.sign ? "S" : ""),
(data.half ? 'H' : 'B'),
data.rd,
data.rn,
(data.pre ? expression : ""),
(data.pre ? (data.write ? "!" : "") : expression));
},
[this](BlockDataTransfer& data) {
std::string regs;
for (uint8_t i = 0; i < 16; i++) {
if (get_bit(data.regs, i))
fmt::format_to(std::back_inserter(regs), "R{:d},", i);
};
regs.pop_back();
return fmt::format("{}{}{}{} R{:d}{},{{{}}}{}",
(data.load ? "LDM" : "STM"),
condition,
(data.up ? 'I' : 'D'),
(data.pre ? 'B' : 'A'),
data.rn,
(data.write ? "!" : ""),
regs,
(data.s ? "^" : ""));
},
[this](PsrTransfer& data) {
if (data.type == PsrTransfer::Type::Mrs) {
return fmt::format("MRS{} R{:d},{}",
condition,
data.operand,
(data.spsr ? "SPSR_all" : "CPSR_all"));
} else {
return fmt::format(
"MSR{} {}_{},{}{}",
condition,
(data.spsr ? "SPSR" : "CPSR"),
(data.type == PsrTransfer::Type::Msr_flg ? "flg" : "all"),
(data.imm ? '#' : 'R'),
data.operand);
}
},
[this](DataProcessing& data) {
std::string op_2;
if (const uint32_t* operand =
std::get_if<uint32_t>(&data.operand)) {
op_2 = fmt::format("#{:d}", *operand);
} else if (const Shift* shift = std::get_if<Shift>(&data.operand)) {
op_2 = fmt::format("R{:d},{} {}{:d}",
shift->rm,
shift->data.type,
(shift->data.immediate ? '#' : 'R'),
shift->data.operand);
}
switch (data.opcode) {
case OpCode::MOV:
case OpCode::MVN:
return fmt::format("{}{}{} R{:d},{}",
data.opcode,
condition,
(data.set ? "S" : ""),
data.rd,
op_2);
case OpCode::TST:
case OpCode::TEQ:
case OpCode::CMP:
case OpCode::CMN:
return fmt::format(
"{}{} R{:d},{}", data.opcode, condition, data.rn, op_2);
default:
return fmt::format("{}{}{} R{:d},R{:d},{}",
data.opcode,
condition,
(data.set ? "S" : ""),
data.rd,
data.rn,
op_2);
}
},
[this](SoftwareInterrupt) { return fmt::format("SWI{}", condition); },
[this](CoprocessorDataTransfer& data) {
std::string expression = fmt::format(",#{:d}", data.offset);
return fmt::format(
"{}{}{} p{:d},c{:d},[R{:d}{}]{}",
(data.load ? "LDC" : "STC"),
condition,
(data.len ? "L" : ""),
data.cpn,
data.crd,
data.rn,
(data.pre ? expression : ""),
(data.pre ? (data.write ? "!" : "") : expression));
},
[this](CoprocessorDataOperation& data) {
return fmt::format("CDP{} p{},{},c{},c{},c{},{}",
condition,
data.cpn,
data.cp_opc,
data.crd,
data.crn,
data.crm,
data.cp);
},
[this](CoprocessorRegisterTransfer& data) {
return fmt::format("{}{} p{},{},R{},c{},c{},{}",
(data.load ? "MRC" : "MCR"),
condition,
data.cpn,
data.cp_opc,
data.rd,
data.crn,
data.crm,
data.cp);
},
[](auto) { return std::string("unknown instruction"); } },
data);
}

4
src/cpu/arm/meson.build Normal file
View File

@@ -0,0 +1,4 @@
lib_sources += files(
'instruction.cc',
'exec.cc'
)

View File

@@ -1,26 +1,28 @@
#include "cpu.hh" #include "cpu/cpu.hh"
#include "cpu/utility.hh"
#include "util/bits.hh" #include "util/bits.hh"
#include "util/log.hh" #include "util/log.hh"
#include "utility.hh"
#include <algorithm> #include <algorithm>
#include <cstdio> #include <cstdio>
using namespace logger; using namespace logger;
Cpu::Cpu(Bus& bus) Cpu::Cpu(const Bus& bus)
: bus(std::make_shared<Bus>(bus)) : bus(std::make_shared<Bus>(bus))
, gpr({ 0 }) , gpr({ 0 })
, cpsr(0) , cpsr(0)
, spsr(0) , spsr(0)
, is_flushed(false)
, gpr_banked({ { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 } }) , gpr_banked({ { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 } })
, spsr_banked({ 0, 0, 0, 0, 0 }) { , spsr_banked({ 0, 0, 0, 0, 0 }) {
cpsr.set_mode(Mode::System); cpsr.set_mode(Mode::Supervisor);
cpsr.set_irq_disabled(true); cpsr.set_irq_disabled(true);
cpsr.set_fiq_disabled(true); cpsr.set_fiq_disabled(true);
cpsr.set_state(State::Arm); cpsr.set_state(State::Arm);
log_info("CPU successfully initialised"); log_info("CPU successfully initialised");
// PC is always two instructions ahead in the pipeline // PC always points to two instructions ahead
// PC - 2 is the instruction being executed
pc += 2 * ARM_INSTRUCTION_SIZE; pc += 2 * ARM_INSTRUCTION_SIZE;
} }
@@ -36,7 +38,7 @@ Cpu::chg_mode(const Mode to) {
* concatenate views */ * concatenate views */
#define STORE_BANKED(mode, MODE) \ #define STORE_BANKED(mode, MODE) \
std::copy(gpr.begin() + GPR_##MODE##_FIRST, \ std::copy(gpr.begin() + GPR_##MODE##_FIRST, \
gpr.begin() + GPR_COUNT - 1, \ gpr.begin() + gpr.size() - 1, \
gpr_banked.mode.begin()) gpr_banked.mode.begin())
switch (from) { switch (from) {
@@ -113,277 +115,30 @@ Cpu::chg_mode(const Mode to) {
cpsr.set_mode(to); cpsr.set_mode(to);
} }
void
Cpu::exec_arm(const ArmInstruction instruction) {
auto cond = instruction.get_condition();
auto data = instruction.get_data();
if (!cpsr.condition(cond)) {
return;
}
auto pc_error = [](uint8_t r) {
if (r == 15)
log_error("Using PC (R15) as operand register");
};
auto pc_warn = [](uint8_t r) {
if (r == 15)
log_warn("Using PC (R15) as operand register");
};
std::visit(
overloaded{
[this, pc_warn](ArmInstruction::BranchAndExchange& data) {
State state = static_cast<State>(data.rn & 1);
pc_warn(data.rn);
// set state
cpsr.set_state(state);
// copy to PC
pc = gpr[data.rn];
// ignore [1:0] bits for arm and 0 bit for thumb
rst_nth_bit(pc, 0);
if (state == State::Arm)
rst_nth_bit(pc, 1);
},
[this](ArmInstruction::Branch& data) {
auto offset = data.offset;
// lsh 2 and sign extend the 26 bit offset to 32 bits
offset <<= 2;
if (get_nth_bit(offset, 25))
offset |= 0xFC000000;
if (data.link)
gpr[14] = pc - ARM_INSTRUCTION_SIZE;
pc += offset - ARM_INSTRUCTION_SIZE;
},
[this, pc_error](ArmInstruction::Multiply& data) {
if (data.rd == data.rm)
log_error("rd and rm are not distinct in {}",
typeid(data).name());
pc_error(data.rd);
pc_error(data.rd);
pc_error(data.rd);
gpr[data.rd] =
gpr[data.rm] * gpr[data.rs] + (data.acc ? gpr[data.rn] : 0);
if (data.set) {
cpsr.set_z(!static_cast<bool>(gpr[data.rd]));
cpsr.set_n(get_nth_bit(gpr[data.rd], 31));
cpsr.set_c(0);
}
},
[this, pc_error](ArmInstruction::MultiplyLong& data) {
if (data.rdhi == data.rdlo || data.rdhi == data.rm ||
data.rdlo == data.rm)
log_error("rdhi, rdlo and rm are not distinct in {}",
typeid(data).name());
pc_error(data.rdhi);
pc_error(data.rdlo);
pc_error(data.rm);
pc_error(data.rs);
if (data.uns) {
uint64_t eval =
static_cast<uint64_t>(gpr[data.rm]) *
static_cast<uint64_t>(gpr[data.rs]) +
(data.acc ? static_cast<uint64_t>(gpr[data.rdhi]) << 32 |
static_cast<uint64_t>(gpr[data.rdlo])
: 0);
gpr[data.rdlo] = get_bit_range(eval, 0, 31);
gpr[data.rdhi] = get_bit_range(eval, 32, 63);
} else {
int64_t eval =
static_cast<int64_t>(gpr[data.rm]) *
static_cast<int64_t>(gpr[data.rs]) +
(data.acc ? static_cast<int64_t>(gpr[data.rdhi]) << 32 |
static_cast<int64_t>(gpr[data.rdlo])
: 0);
gpr[data.rdlo] = get_bit_range(eval, 0, 31);
gpr[data.rdhi] = get_bit_range(eval, 32, 63);
}
if (data.set) {
cpsr.set_z(!(static_cast<bool>(gpr[data.rdhi]) ||
static_cast<bool>(gpr[data.rdlo])));
cpsr.set_n(get_nth_bit(gpr[data.rdhi], 31));
cpsr.set_c(0);
cpsr.set_v(0);
}
},
[](ArmInstruction::Undefined) { log_warn("Undefined instruction"); },
[this, pc_warn](ArmInstruction::SingleDataSwap& data) {
pc_warn(data.rm);
pc_warn(data.rn);
pc_warn(data.rd);
if (data.byte) {
gpr[data.rd] = bus->read_byte(gpr[data.rn]);
bus->write_byte(gpr[data.rn], gpr[data.rm] & 0xFF);
} else {
gpr[data.rd] = bus->read_word(gpr[data.rn]);
bus->write_word(gpr[data.rn], gpr[data.rm]);
}
},
[this, pc_warn, pc_error](ArmInstruction::SingleDataTransfer& data) {
uint32_t offset = 0;
uint32_t address = gpr[data.rn];
if (!data.pre && data.write)
log_warn("Write-back enabled with post-indexing in {}",
typeid(data).name());
if (data.write)
pc_warn(data.rn);
// evaluate the offset
if (const uint16_t* immediate =
std::get_if<uint16_t>(&data.offset)) {
offset = *immediate;
} else if (const Shift* shift = std::get_if<Shift>(&data.offset)) {
uint8_t amount =
(shift->data.immediate ? shift->data.operand
: gpr[shift->data.operand] & 0xFF);
bool carry = cpsr.c();
if (!shift->data.immediate)
pc_error(shift->data.operand);
pc_error(shift->rm);
eval_shift(shift->data.type, gpr[shift->rm], amount, carry);
cpsr.set_c(carry);
}
// PC is always two instructions ahead
if (data.rn == 15)
address -= 2 * ARM_INSTRUCTION_SIZE;
if (data.pre)
address += (data.up ? offset : -offset);
// load
if (data.load) {
// byte
if (data.byte)
gpr[data.rd] = bus->read_byte(address);
// word
else
gpr[data.rd] = bus->read_word(address);
// store
} else {
// take PC into consideration
if (data.rd == 15)
address += ARM_INSTRUCTION_SIZE;
// byte
if (data.byte)
bus->write_byte(address, gpr[data.rd] & 0xFF);
// word
else
bus->write_word(address, gpr[data.rd]);
}
if (!data.pre)
address += (data.up ? offset : -offset);
if (!data.pre || data.write)
gpr[data.rn] = address;
},
[this, pc_warn, pc_error](ArmInstruction::HalfwordTransfer& data) {
uint32_t address = gpr[data.rn];
if (!data.pre && data.write)
log_error("Write-back enabled with post-indexing in {}",
typeid(data).name());
if (data.sign && !data.load)
log_error("Signed data found in {}", typeid(data).name());
if (data.write)
pc_warn(data.rn);
// offset is register number (4 bits) when not an immediate
if (!data.imm)
pc_error(data.offset);
if (data.pre)
address += (data.up ? data.offset : -data.offset);
// load
if (data.load) {
// signed
if (data.sign) {
// halfword
if (data.half) {
gpr[data.rd] = bus->read_halfword(address);
// sign extend the halfword
if (get_nth_bit(gpr[data.rd], 15))
gpr[data.rd] |= 0xFFFF0000;
// byte
} else {
gpr[data.rd] = bus->read_byte(address);
// sign extend the byte
if (get_nth_bit(gpr[data.rd], 7))
gpr[data.rd] |= 0xFFFFFF00;
}
// unsigned halfword
} else if (data.half) {
gpr[data.rd] = bus->read_halfword(address);
}
// store
} else {
// take PC into consideration
if (data.rd == 15)
address += ARM_INSTRUCTION_SIZE;
// halfword
if (data.half)
bus->write_halfword(address, gpr[data.rd]);
}
if (!data.pre)
address += (data.up ? data.offset : -data.offset);
if (!data.pre || data.write)
gpr[data.rn] = address;
},
[this](ArmInstruction::SoftwareInterrupt) {
chg_mode(Mode::Supervisor);
pc = 0x08;
spsr = cpsr;
},
[](auto& data) { log_error("{} instruction", typeid(data).name()); } },
data);
}
void void
Cpu::step() { Cpu::step() {
// Current instruction is two instructions behind PC
uint32_t cur_pc = pc - 2 * ARM_INSTRUCTION_SIZE; uint32_t cur_pc = pc - 2 * ARM_INSTRUCTION_SIZE;
if (cpsr.state() == State::Arm) { if (cpsr.state() == State::Arm) {
ArmInstruction instruction(bus->read_word(cur_pc)); debug(cur_pc);
log_info("{:#034b}", bus->read_word(cur_pc)); uint32_t x = bus->read_word(cur_pc);
arm::Instruction instruction(x);
log_info("{:#034b}", x);
exec_arm(instruction); exec_arm(instruction);
log_info("{:#010X} : {}", cur_pc, instruction.disassemble()); log_info("0x{:08X} : {}", cur_pc, instruction.disassemble());
if (is_flushed) {
// if flushed, do not increment the PC, instead set it to two
// instructions ahead to account for flushed "fetch" and "decode"
// instructions
pc += 2 * ARM_INSTRUCTION_SIZE;
is_flushed = false;
} else {
// if not flushed continue like normal
pc += ARM_INSTRUCTION_SIZE; pc += ARM_INSTRUCTION_SIZE;
} }
}
} }

View File

@@ -1,55 +0,0 @@
#pragma once
#include "bus.hh"
#include "instruction.hh"
#include "psr.hh"
#include <cstdint>
using std::size_t;
class Cpu {
public:
Cpu(Bus& bus);
void step();
private:
static constexpr size_t GPR_COUNT = 16;
static constexpr size_t GPR_FIQ_FIRST = 8;
static constexpr size_t GPR_SVC_FIRST = 13;
static constexpr size_t GPR_ABT_FIRST = 13;
static constexpr size_t GPR_IRQ_FIRST = 13;
static constexpr size_t GPR_UND_FIRST = 13;
static constexpr size_t GPR_SYS_USR_FIRST = 8;
std::shared_ptr<Bus> bus;
std::array<uint32_t, GPR_COUNT> gpr; // general purpose registers
Psr cpsr; // current program status register
Psr spsr; // status program status register
uint32_t& pc = gpr[15];
struct {
std::array<uint32_t, GPR_COUNT - GPR_FIQ_FIRST - 1> fiq;
std::array<uint32_t, GPR_COUNT - GPR_SVC_FIRST - 1> svc;
std::array<uint32_t, GPR_COUNT - GPR_ABT_FIRST - 1> abt;
std::array<uint32_t, GPR_COUNT - GPR_IRQ_FIRST - 1> irq;
std::array<uint32_t, GPR_COUNT - GPR_UND_FIRST - 1> und;
// visible registers before the mode switch
std::array<uint32_t, GPR_COUNT - GPR_SYS_USR_FIRST> old;
} gpr_banked; // banked general purpose registers
struct {
Psr fiq;
Psr svc;
Psr abt;
Psr irq;
Psr und;
} spsr_banked; // banked saved program status registers
void chg_mode(const Mode to);
void exec_arm(const ArmInstruction instruction);
};

View File

@@ -1,359 +0,0 @@
#include "instruction.hh"
#include "util/bits.hh"
ArmInstruction::ArmInstruction(uint32_t insn)
: condition(static_cast<Condition>(get_bit_range(insn, 28, 31))) {
// Branch and exhcange
if ((insn & 0x0FFFFFF0) == 0x012FFF10) {
uint8_t rn = insn & 0b1111;
data = BranchAndExchange{ rn };
// Branch
} else if ((insn & 0x0E000000) == 0x0A000000) {
bool link = get_nth_bit(insn, 24);
uint32_t offset = get_bit_range(insn, 0, 23);
data = Branch{ .link = link, .offset = offset };
// Multiply
} else if ((insn & 0x0FC000F0) == 0x00000090) {
uint8_t rm = get_bit_range(insn, 0, 3);
uint8_t rs = get_bit_range(insn, 8, 11);
uint8_t rn = get_bit_range(insn, 12, 15);
uint8_t rd = get_bit_range(insn, 16, 19);
bool set = get_nth_bit(insn, 20);
bool acc = get_nth_bit(insn, 21);
data = Multiply{
.rm = rm, .rs = rs, .rn = rn, .rd = rd, .set = set, .acc = acc
};
// Multiply long
} else if ((insn & 0x0F8000F0) == 0x00800090) {
uint8_t rm = get_bit_range(insn, 0, 3);
uint8_t rs = get_bit_range(insn, 8, 11);
uint8_t rdlo = get_bit_range(insn, 12, 15);
uint8_t rdhi = get_bit_range(insn, 16, 19);
bool set = get_nth_bit(insn, 20);
bool acc = get_nth_bit(insn, 21);
bool uns = get_nth_bit(insn, 22);
data = MultiplyLong{ .rm = rm,
.rs = rs,
.rdlo = rdlo,
.rdhi = rdhi,
.set = set,
.acc = acc,
.uns = uns };
// Undefined
} else if ((insn & 0x0E000010) == 0x06000010) {
data = Undefined{};
// Single data swap
} else if ((insn & 0x0FB00FF0) == 0x01000090) {
uint8_t rm = get_bit_range(insn, 0, 3);
uint8_t rd = get_bit_range(insn, 12, 15);
uint8_t rn = get_bit_range(insn, 16, 19);
bool byte = get_nth_bit(insn, 22);
data = SingleDataSwap{ .rm = rm, .rd = rd, .rn = rn, .byte = byte };
// Single data transfer
} else if ((insn & 0x0C000000) == 0x04000000) {
std::variant<uint16_t, Shift> offset;
uint8_t rd = get_bit_range(insn, 12, 15);
uint8_t rn = get_bit_range(insn, 16, 19);
bool load = get_nth_bit(insn, 20);
bool write = get_nth_bit(insn, 21);
bool byte = get_nth_bit(insn, 22);
bool up = get_nth_bit(insn, 23);
bool pre = get_nth_bit(insn, 24);
bool imm = get_nth_bit(insn, 25);
if (imm) {
uint8_t rm = get_bit_range(insn, 0, 3);
bool reg = get_nth_bit(insn, 4);
ShiftType shift_type =
static_cast<ShiftType>(get_bit_range(insn, 5, 6));
uint8_t operand = get_bit_range(insn, (reg ? 8 : 7), 11);
offset = Shift{ .rm = rm,
.data = ShiftData{ .type = shift_type,
.immediate = !reg,
.operand = operand } };
} else {
offset = static_cast<uint16_t>(get_bit_range(insn, 0, 11));
}
data = SingleDataTransfer{ .offset = offset,
.rd = rd,
.rn = rn,
.load = load,
.write = write,
.byte = byte,
.up = up,
.pre = pre };
// Halfword transfer
} else if ((insn & 0x0E000090) == 0x00000090) {
uint8_t offset = get_bit_range(insn, 0, 3);
bool half = get_nth_bit(insn, 5);
bool sign = get_nth_bit(insn, 6);
uint8_t rd = get_bit_range(insn, 12, 15);
uint8_t rn = get_bit_range(insn, 16, 19);
bool load = get_nth_bit(insn, 20);
bool write = get_nth_bit(insn, 21);
bool imm = get_nth_bit(insn, 22);
bool up = get_nth_bit(insn, 23);
bool pre = get_nth_bit(insn, 24);
offset |= (imm ? get_bit_range(insn, 8, 11) << 2 : 0);
data = HalfwordTransfer{ .offset = offset,
.half = half,
.sign = sign,
.rd = rd,
.rn = rn,
.load = load,
.write = write,
.imm = imm,
.up = up,
.pre = pre };
// Block data transfer
} else if ((insn & 0x0E000000) == 0x08000000) {
/*static constexpr array<stringv, 2> syn = { "STM", "LDM" };
uint16_t regs = get_bit_range(insn, 0, 15);
uint8_t rn = get_bit_range(insn, 16, 19);
bool load = get_nth_bit(insn, 20);
bool write = get_nth_bit(insn, 21);
bool s = get_nth_bit(insn, 22);
bool up = get_nth_bit(insn, 23);
bool pre = get_nth_bit(insn, 24);
// disassembly
{
uint8_t lpu = load << 2 | pre << 1 | up;
std::string addr_mode;
switch(lpu) {
}
}*/
data = Undefined{};
// Software Interrupt
// What to do here?
} else if ((insn & 0x0F000000) == 0x0F000000) {
data = SoftwareInterrupt{};
// Coprocessor data transfer
} else if ((insn & 0x0E000000) == 0x0C000000) {
uint8_t offset = get_bit_range(insn, 0, 7);
uint8_t cpn = get_bit_range(insn, 8, 11);
uint8_t crd = get_bit_range(insn, 12, 15);
uint8_t rn = get_bit_range(insn, 16, 19);
bool load = get_nth_bit(insn, 20);
bool write = get_nth_bit(insn, 21);
bool len = get_nth_bit(insn, 22);
bool up = get_nth_bit(insn, 23);
bool pre = get_nth_bit(insn, 24);
data = CoprocessorDataTransfer{ .offset = offset,
.cpn = cpn,
.crd = crd,
.rn = rn,
.load = load,
.write = write,
.len = len,
.up = up,
.pre = pre };
// Coprocessor data operation
} else if ((insn & 0x0F000010) == 0x0E000000) {
uint8_t crm = get_bit_range(insn, 0, 4);
uint8_t cp = get_bit_range(insn, 5, 7);
uint8_t cpn = get_bit_range(insn, 8, 11);
uint8_t crd = get_bit_range(insn, 12, 15);
uint8_t crn = get_bit_range(insn, 16, 19);
uint8_t cp_opc = get_bit_range(insn, 20, 23);
data = CoprocessorDataOperation{ .crm = crm,
.cp = cp,
.cpn = cpn,
.crd = crd,
.crn = crn,
.cp_opc = cp_opc };
// Coprocessor register transfer
} else if ((insn & 0x0F000010) == 0x0E000010) {
uint8_t crm = get_bit_range(insn, 0, 4);
uint8_t cp = get_bit_range(insn, 5, 7);
uint8_t cpn = get_bit_range(insn, 8, 11);
uint8_t rd = get_bit_range(insn, 12, 15);
uint8_t crn = get_bit_range(insn, 16, 19);
bool load = get_nth_bit(insn, 20);
uint8_t cp_opc = get_bit_range(insn, 21, 23);
data = CoprocessorRegisterTransfer{ .crm = crm,
.cp = cp,
.cpn = cpn,
.rd = rd,
.crn = crn,
.load = load,
.cp_opc = cp_opc };
} else {
data = Undefined{};
}
}
std::string
ArmInstruction::disassemble() {
static const std::string undefined = "UNDEFINED";
// goddamn this is gore
// TODO: make this less ugly
return std::visit(
overloaded{
[this](BranchAndExchange& data) {
return fmt::format("BX{} R{:d}", condition, data.rn);
},
[this](Branch& data) {
return fmt::format(
"B{}{} {:#08X}", (data.link ? "L" : ""), condition, data.offset);
},
[this](Multiply& data) {
if (data.acc) {
return fmt::format("MLA{}{} R{:d},R{:d},R{:d},R{:d}",
condition,
(data.set ? "S" : ""),
data.rd,
data.rm,
data.rs,
data.rn);
} else {
return fmt::format("MUL{}{} R{:d},R{:d},R{:d}",
condition,
(data.set ? "S" : ""),
data.rd,
data.rm,
data.rs);
}
},
[this](MultiplyLong& data) {
return fmt::format("{}{}{}{} R{:d},R{:d},R{:d},R{:d}",
(data.uns ? 'U' : 'S'),
(data.acc ? "MLAL" : "MULL"),
condition,
(data.set ? "S" : ""),
data.rdlo,
data.rdhi,
data.rm,
data.rs);
},
[](Undefined) { return undefined; },
[this](SingleDataSwap& data) {
return fmt::format("SWP{}{} R{:d},R{:d},[R{:d}]",
condition,
(data.byte ? "B" : ""),
data.rd,
data.rm,
data.rn);
},
[this](SingleDataTransfer& data) {
std::string expression;
std::string address;
if (const uint16_t* offset = std::get_if<uint16_t>(&data.offset)) {
if (*offset == 0) {
expression = "";
} else {
expression = fmt::format(",#{:d}", *offset);
}
} else if (const Shift* shift = std::get_if<Shift>(&data.offset)) {
expression = fmt::format(",{}R{:d},{} {}{:d}",
(data.up ? '+' : '-'),
shift->rm,
shift->data.type,
(shift->data.immediate ? '#' : 'R'),
shift->data.operand);
}
return fmt::format(
"{}{}{}{} R{:d},[R{:d}{}]{}",
(data.load ? "LDR" : "STR"),
condition,
(data.byte ? "B" : ""),
(!data.pre && data.write ? "T" : ""),
data.rd,
data.rn,
(data.pre ? expression : ""),
(data.pre ? (data.write ? "!" : "") : expression));
},
[this](HalfwordTransfer& data) {
std::string expression;
if (data.imm) {
if (data.offset == 0) {
expression = "";
} else {
expression = fmt::format(",#{:d}", data.offset);
}
} else {
expression =
fmt::format(",{}R{:d}", (data.up ? '+' : '-'), data.offset);
}
return fmt::format(
"{}{}{}{} R{:d},[R{:d}{}]{}",
(data.load ? "LDR" : "STR"),
condition,
(data.sign ? "S" : ""),
(data.half ? 'H' : 'B'),
data.rd,
data.rn,
(data.pre ? expression : ""),
(data.pre ? (data.write ? "!" : "") : expression));
},
[this](SoftwareInterrupt) { return fmt::format("SWI{}", condition); },
[this](CoprocessorDataTransfer& data) {
std::string expression = fmt::format(",#{:d}", data.offset);
return fmt::format(
"{}{}{} p{:d},c{:d},[R{:d}{}]{}",
(data.load ? "LDC" : "STC"),
condition,
(data.len ? "L" : ""),
data.cpn,
data.crd,
data.rn,
(data.pre ? expression : ""),
(data.pre ? (data.write ? "!" : "") : expression));
},
[this](CoprocessorDataOperation& data) {
return fmt::format("CDP{} p{},{},c{},c{},c{},{}",
condition,
data.cpn,
data.cp_opc,
data.crd,
data.crn,
data.crm,
data.cp);
},
[this](CoprocessorRegisterTransfer& data) {
return fmt::format("{}{} p{},{},c{},c{},c{},{}",
(data.load ? "MRC" : "MCR"),
condition,
data.cpn,
data.cp_opc,
data.rd,
data.crn,
data.crm,
data.cp);
},
[](auto) { return undefined; } },
data);
}

View File

@@ -1,132 +0,0 @@
#include "cpu/utility.hh"
#include <cstdint>
#include <variant>
template<class... Ts>
struct overloaded : Ts... {
using Ts::operator()...;
};
template<class... Ts>
overloaded(Ts...) -> overloaded<Ts...>;
class ArmInstruction {
public:
ArmInstruction() = delete;
ArmInstruction(uint32_t insn);
auto get_condition() const { return condition; }
auto get_data() const { return data; }
std::string disassemble();
struct BranchAndExchange {
uint8_t rn;
};
struct Branch {
bool link;
uint32_t offset;
};
struct Multiply {
uint8_t rm;
uint8_t rs;
uint8_t rn;
uint8_t rd;
bool set;
bool acc;
};
struct MultiplyLong {
uint8_t rm;
uint8_t rs;
uint8_t rdlo;
uint8_t rdhi;
bool set;
bool acc;
bool uns;
};
struct SingleDataSwap {
uint8_t rm;
uint8_t rd;
uint8_t rn;
bool byte;
};
struct SingleDataTransfer {
std::variant<uint16_t, Shift> offset;
uint8_t rd;
uint8_t rn;
bool load;
bool write;
bool byte;
bool up;
bool pre;
};
struct HalfwordTransfer {
uint8_t offset;
bool half;
bool sign;
uint8_t rd;
uint8_t rn;
bool load;
bool write;
bool byte;
bool imm;
bool up;
bool pre;
};
struct CoprocessorDataTransfer {
uint8_t offset;
uint8_t cpn;
uint8_t crd;
uint8_t rn;
bool load;
bool write;
bool len;
bool up;
bool pre;
};
struct CoprocessorDataOperation {
uint8_t crm;
uint8_t cp;
uint8_t cpn;
uint8_t crd;
uint8_t crn;
uint8_t cp_opc;
};
struct CoprocessorRegisterTransfer {
uint8_t crm;
uint8_t cp;
uint8_t cpn;
uint8_t rd;
uint8_t crn;
bool load;
uint8_t cp_opc;
};
struct Undefined {};
struct SoftwareInterrupt {};
using InstructionData = std::variant<BranchAndExchange,
Branch,
Multiply,
MultiplyLong,
SingleDataSwap,
SingleDataTransfer,
HalfwordTransfer,
CoprocessorDataTransfer,
CoprocessorDataOperation,
CoprocessorRegisterTransfer,
Undefined,
SoftwareInterrupt>;
private:
Condition condition;
InstructionData data;
};

View File

@@ -1,6 +1,7 @@
lib_sources += files( lib_sources += files(
'cpu.cc', 'cpu.cc',
'instruction.cc',
'psr.cc', 'psr.cc',
'utility.cc' 'utility.cc'
) )
subdir('arm')

View File

@@ -1,10 +1,20 @@
#include "psr.hh" #include "cpu/psr.hh"
#include "util/bits.hh" #include "util/bits.hh"
#include "util/log.hh" #include "util/log.hh"
Psr::Psr(uint32_t raw) Psr::Psr(uint32_t raw)
: psr(raw & PSR_CLEAR_RESERVED) {} : psr(raw & PSR_CLEAR_RESERVED) {}
uint32_t
Psr::raw() const {
return psr;
}
void
Psr::set_all(uint32_t raw) {
psr = raw & ~PSR_CLEAR_RESERVED;
}
Mode Mode
Psr::mode() const { Psr::mode() const {
return static_cast<Mode>(psr & ~PSR_CLEAR_MODE); return static_cast<Mode>(psr & ~PSR_CLEAR_MODE);
@@ -18,20 +28,20 @@ Psr::set_mode(Mode mode) {
State State
Psr::state() const { Psr::state() const {
return static_cast<State>(get_nth_bit(psr, 5)); return static_cast<State>(get_bit(psr, 5));
} }
void void
Psr::set_state(State state) { Psr::set_state(State state) {
chg_nth_bit(psr, 5, static_cast<bool>(state)); chg_bit(psr, 5, static_cast<bool>(state));
} }
#define GET_SET_NTH_BIT_FUNCTIONS(name, n) \ #define GET_SET_NTH_BIT_FUNCTIONS(name, n) \
bool Psr::name() const { \ bool Psr::name() const { \
return get_nth_bit(psr, n); \ return get_bit(psr, n); \
} \ } \
void Psr::set_##name(bool val) { \ void Psr::set_##name(bool val) { \
chg_nth_bit(psr, n, val); \ chg_bit(psr, n, val); \
} }
GET_SET_NTH_BIT_FUNCTIONS(fiq_disabled, 6) GET_SET_NTH_BIT_FUNCTIONS(fiq_disabled, 6)
@@ -82,4 +92,6 @@ Psr::condition(Condition cond) const {
case Condition::AL: case Condition::AL:
return true; return true;
} }
return false;
} }

View File

@@ -1,52 +0,0 @@
#pragma once
#include "utility.hh"
#include <cstdint>
class Psr {
public:
// clear the reserved bits i.e, [8:27]
Psr(uint32_t raw);
// Mode : [4:0]
Mode mode() const;
void set_mode(Mode mode);
// State : [5]
State state() const;
void set_state(State state);
#define GET_SET_NTH_BIT_FUNCTIONS(name) \
bool name() const; \
void set_##name(bool val);
// FIQ disable : [6]
GET_SET_NTH_BIT_FUNCTIONS(fiq_disabled)
// IRQ disable : [7]
GET_SET_NTH_BIT_FUNCTIONS(irq_disabled)
// Reserved bits : [27:8]
// Overflow flag : [28]
GET_SET_NTH_BIT_FUNCTIONS(v)
// Carry flag : [29]
GET_SET_NTH_BIT_FUNCTIONS(c)
// Zero flag : [30]
GET_SET_NTH_BIT_FUNCTIONS(z)
// Negative flag : [30]
GET_SET_NTH_BIT_FUNCTIONS(n)
#undef GET_SET_NTH_BIT_FUNCTIONS
bool condition(Condition cond) const;
private:
static constexpr uint32_t PSR_CLEAR_RESERVED = 0xf00000ff;
static constexpr uint32_t PSR_CLEAR_MODE = 0x0b00000;
uint32_t psr;
};

View File

@@ -1,4 +1,4 @@
#include "utility.hh" #include "cpu/utility.hh"
#include "util/bits.hh" #include "util/bits.hh"
#include <bit> #include <bit>
@@ -35,45 +35,85 @@ operator<<(std::ostream& os, const Condition cond) {
return os; return os;
} }
std::ostream&
operator<<(std::ostream& os, const OpCode opcode) {
#define CASE(opcode) \
case OpCode::opcode: \
os << #opcode; \
break;
switch (opcode) {
CASE(AND)
CASE(EOR)
CASE(SUB)
CASE(RSB)
CASE(ADD)
CASE(ADC)
CASE(SBC)
CASE(RSC)
CASE(TST)
CASE(TEQ)
CASE(CMP)
CASE(CMN)
CASE(ORR)
CASE(MOV)
CASE(BIC)
CASE(MVN)
}
#undef CASE
return os;
}
uint32_t uint32_t
eval_shift(ShiftType shift_type, uint32_t value, uint8_t amount, bool& carry) { eval_shift(ShiftType shift_type, uint32_t value, uint8_t amount, bool& carry) {
uint32_t eval = 0;
switch (shift_type) { switch (shift_type) {
case ShiftType::LSL: case ShiftType::LSL:
if (amount > 0 && amount <= 32) if (amount > 0 && amount <= 32)
carry = get_nth_bit(value, 32 - amount); carry = get_bit(value, 32 - amount);
else if (amount > 32) else if (amount > 32)
carry = 0; carry = 0;
return value << amount; eval = value << amount;
break;
case ShiftType::LSR: case ShiftType::LSR:
if (amount > 0 && amount <= 32) if (amount > 0 && amount <= 32)
carry = get_nth_bit(value, amount - 1); carry = get_bit(value, amount - 1);
else if (amount > 32) else if (amount > 32)
carry = 0; carry = 0;
else else
carry = get_nth_bit(value, 31); carry = get_bit(value, 31);
return value >> amount; eval = value >> amount;
break;
case ShiftType::ASR: case ShiftType::ASR:
if (amount > 0 && amount <= 32) if (amount > 0 && amount <= 32)
carry = get_nth_bit(value, amount - 1); carry = get_bit(value, amount - 1);
else else
carry = get_nth_bit(value, 31); carry = get_bit(value, 31);
return static_cast<int32_t>(value) >> amount; return static_cast<int32_t>(value) >> amount;
break;
case ShiftType::ROR: case ShiftType::ROR:
if (amount == 0) { if (amount == 0) {
bool old_carry = carry; bool old_carry = carry;
carry = get_nth_bit(value, 0); carry = get_bit(value, 0);
return (value >> 1) | (old_carry << 31); eval = (value >> 1) | (old_carry << 31);
} else { } else {
carry = get_nth_bit(value, (amount % 32 + 31) % 32); carry = get_bit(value, (amount % 32 + 31) % 32);
return std::rotr(value, amount); eval = std::rotr(value, amount);
} }
break;
} }
return eval;
} }
std::ostream& std::ostream&

View File

@@ -1,93 +0,0 @@
#pragma once
#include <fmt/ostream.h>
#include <ostream>
static constexpr size_t ARM_INSTRUCTION_SIZE = 4;
static constexpr size_t THUMB_INSTRUCTION_SIZE = 2;
enum class Mode {
/* M[4:0] in PSR */
User = 0b10000,
Fiq = 0b10001,
Irq = 0b10010,
Supervisor = 0b10011,
Abort = 0b10111,
Undefined = 0b11011,
System = 0b11111,
};
enum class State {
Arm = 0,
Thumb = 1
};
enum class Condition {
EQ = 0b0000,
NE = 0b0001,
CS = 0b0010,
CC = 0b0011,
MI = 0b0100,
PL = 0b0101,
VS = 0b0110,
VC = 0b0111,
HI = 0b1000,
LS = 0b1001,
GE = 0b1010,
LT = 0b1011,
GT = 0b1100,
LE = 0b1101,
AL = 0b1110
};
// https://fmt.dev/dev/api.html#std-ostream-support
std::ostream&
operator<<(std::ostream& os, const Condition cond);
template<>
struct fmt::formatter<Condition> : ostream_formatter {};
enum class OpCode {
AND = 0b0000,
EOR = 0b0001,
SUB = 0b0010,
RSB = 0b0011,
ADD = 0b0100,
ADC = 0b0101,
SBC = 0b0110,
RSC = 0b0111,
TST = 0b1000,
TEQ = 0b1001,
CMP = 0b1010,
CMN = 0b1011,
ORR = 0b1100,
MOV = 0b1101,
BIC = 0b1110,
MVN = 0b1111
};
enum class ShiftType {
LSL = 0b00,
LSR = 0b01,
ASR = 0b10,
ROR = 0b11
};
struct ShiftData {
ShiftType type;
bool immediate;
uint8_t operand;
};
struct Shift {
uint8_t rm;
ShiftData data;
};
uint32_t
eval_shift(ShiftType shift_type, uint32_t value, uint8_t amount, bool& carry);
// https://fmt.dev/dev/api.html#std-ostream-support
std::ostream&
operator<<(std::ostream& os, const ShiftType cond);
template<>
struct fmt::formatter<ShiftType> : ostream_formatter {};

View File

@@ -1,45 +0,0 @@
#pragma once
#include <cstdint>
#include <string>
#include <vector>
struct Header {
enum class UniqueCode {
Old, // old games
New, // new games
Newer, // unused (newer games)
Famicom, // NES
YoshiKoro, // acceleration sensor
Ereader, // dot code scanner
Warioware, // rumble and z-axis gyro
Boktai, // RTC and solar sensor
DrillDozer, // rumble
};
enum class I18n {
Japan,
Europe,
French,
Spanish,
Usa,
German,
Italian
};
enum class BootMode {
Joybus,
Normal,
Multiplay
};
uint32_t entrypoint;
std::string title;
std::string title_code;
UniqueCode unique_code;
I18n i18n;
uint8_t version;
BootMode multiboot;
uint32_t multiboot_entrypoint;
uint8_t slave_id;
};

View File

@@ -4,11 +4,12 @@
#include "util/log.hh" #include "util/log.hh"
#include "util/utils.hh" #include "util/utils.hh"
#include <bitset> #include <bitset>
#include <stdexcept>
using namespace logger; using namespace logger;
Memory::Memory(std::array<uint8_t, BIOS_SIZE>&& bios, Memory::Memory(std::array<uint8_t, BIOS_SIZE>&& bios,
std::vector<uint8_t>&& rom) noexcept std::vector<uint8_t>&& rom)
: bios(std::move(bios)) : bios(std::move(bios))
, board_wram({ 0 }) , board_wram({ 0 })
, chip_wram({ 0 }) , chip_wram({ 0 })
@@ -58,7 +59,7 @@ Memory::read(size_t address) const {
return rom[address - ROM_2_START]; return rom[address - ROM_2_START];
} else { } else {
log_error("Invalid memory region accessed"); log_error("Invalid memory region accessed");
return 0; return 0xFF;
} }
} }
@@ -116,18 +117,24 @@ Memory::read_word(size_t address) const {
} }
void void
Memory::write_word(size_t address, uint32_t halfword) { Memory::write_word(size_t address, uint32_t word) {
if (address & 0b11) if (address & 0b11)
log_warn("Writing to a non aligned word address"); log_warn("Writing to a non aligned word address");
write(address, halfword & 0xFF); write(address, word & 0xFF);
write(address + 1, halfword >> 8 & 0xFF); write(address + 1, word >> 8 & 0xFF);
write(address + 2, halfword >> 16 & 0xFF); write(address + 2, word >> 16 & 0xFF);
write(address + 3, halfword >> 24 & 0xFF); write(address + 3, word >> 24 & 0xFF);
} }
void void
Memory::parse_header() { Memory::parse_header() {
if (rom.size() < 192) {
throw std::out_of_range(
"ROM is not large enough to even have a header");
}
// entrypoint // entrypoint
header.entrypoint = header.entrypoint =
rom[0x00] | rom[0x01] << 8 | rom[0x02] << 16 | rom[0x03] << 24; rom[0x00] | rom[0x01] << 8 | rom[0x02] << 16 | rom[0x03] << 24;

View File

@@ -1,64 +0,0 @@
#pragma once
#include "header.hh"
#include <array>
#include <cstddef>
#include <cstdint>
#include <vector>
class Memory {
public:
static constexpr size_t BIOS_SIZE = 1024 * 16;
Memory(std::array<uint8_t, BIOS_SIZE>&& bios,
std::vector<uint8_t>&& rom) noexcept;
uint8_t read(size_t address) const;
void write(size_t address, uint8_t byte);
uint16_t read_halfword(size_t address) const;
void write_halfword(size_t address, uint16_t halfword);
uint32_t read_word(size_t address) const;
void write_word(size_t address, uint32_t word);
private:
#define MEMORY_REGION(name, start, end) \
static constexpr size_t name##_START = start; \
static constexpr size_t name##_END = end;
#define DECL_MEMORY(name, ident, start, end) \
MEMORY_REGION(name, start, end) \
std::array<uint8_t, name##_END - name##_START + 1> ident;
MEMORY_REGION(BIOS, 0x00000000, 0x00003FFF)
std::array<uint8_t, BIOS_SIZE> bios;
static_assert(BIOS_END - BIOS_START + 1 == BIOS_SIZE);
// board working RAM
DECL_MEMORY(BOARD_WRAM, board_wram, 0x02000000, 0x0203FFFF)
// chip working RAM
DECL_MEMORY(CHIP_WRAM, chip_wram, 0x03000000, 0x03007FFF)
// palette RAM
DECL_MEMORY(PALETTE_RAM, palette_ram, 0x05000000, 0x050003FF)
// video RAM
DECL_MEMORY(VRAM, vram, 0x06000000, 0x06017FFF)
// OAM OBJ attributes
DECL_MEMORY(OAM_OBJ_ATTR, oam_obj_attr, 0x07000000, 0x070003FF)
#undef DECL_MEMORY
MEMORY_REGION(ROM_0, 0x08000000, 0x09FFFFFF)
MEMORY_REGION(ROM_1, 0x0A000000, 0x0BFFFFFF)
MEMORY_REGION(ROM_2, 0x0C000000, 0x0DFFFFFF)
#undef MEMORY_REGION
std::vector<uint8_t> rom;
Header header;
void parse_header();
};

View File

@@ -10,8 +10,8 @@ lib = library(
meson.project_name(), meson.project_name(),
lib_sources, lib_sources,
dependencies: [fmt], dependencies: [fmt],
install: true, include_directories: inc,
cpp_args: '-DFMT_HEADER_ONLY' install: true
) )
import('pkgconfig').generate(lib) import('pkgconfig').generate(lib)

View File

@@ -7,32 +7,32 @@ using std::size_t;
template<std::integral Int> template<std::integral Int>
inline bool inline bool
get_nth_bit(Int num, size_t n) { get_bit(Int num, size_t n) {
return (num >> n) & 1; return (num >> n) & 1;
} }
template<std::integral Int> template<std::integral Int>
inline void inline void
set_nth_bit(Int& num, size_t n) { set_bit(Int& num, size_t n) {
num |= (1 << n); num |= (1 << n);
} }
template<std::integral Int> template<std::integral Int>
inline void inline void
rst_nth_bit(Int& num, size_t n) { rst_bit(Int& num, size_t n) {
num &= ~(1 << n); num &= ~(1 << n);
} }
template<std::integral Int> template<std::integral Int>
inline void inline void
chg_nth_bit(Int& num, size_t n, bool x) { chg_bit(Int& num, size_t n, bool x) {
num = (num & ~(1 << n)) | (x << n); num = (num & ~(1 << n)) | (x << n);
} }
/// read range of bits from start to end inclusive /// read range of bits from start to end inclusive
template<std::integral Int> template<std::integral Int>
inline Int inline Int
get_bit_range(Int num, size_t start, size_t end) { bit_range(Int num, size_t start, size_t end) {
// NOTE: we do not require -1 if it is a signed integral // NOTE: we do not require -1 if it is a signed integral
Int left = Int left =
std::numeric_limits<Int>::digits - (std::is_unsigned<Int>::value) - end; std::numeric_limits<Int>::digits - (std::is_unsigned<Int>::value) - end;

View File

@@ -3,8 +3,6 @@
#include <array> #include <array>
#include <bit> #include <bit>
#include <fmt/core.h> #include <fmt/core.h>
#include <iomanip>
#include <sstream>
#include <string> #include <string>
// Why I wrote this myself? I do not know // Why I wrote this myself? I do not know

227
tests/cpu/arm/exec.cc Normal file
View File

@@ -0,0 +1,227 @@
#include "cpu/cpu.hh"
#include "cpu/utility.hh"
#include <bit>
#include <catch2/catch_test_macros.hpp>
#include <iostream>
#include <limits>
#include <random>
// I could have written some public API but that wouldn't be the best practice,
// so instead I will try to do my best to test these functions using memory
// manipulation. We also use a fake PC to match the current instruction's
// address.
//
// We are going to use some addresses for specific tasks
// - (4 * 400) + 4 => Storing, then reading registers
//
// We are also going to keep some registers reserved for testing
// - R0 is always zero
// - R1 for reading PSR
class CpuFixture {
public:
uint32_t fake_pc = 2 * ARM_INSTRUCTION_SIZE;
CpuFixture()
// BIOS is all zeroes so let's do what we can
: memory(std::array<uint8_t, Memory::BIOS_SIZE>(),
std::vector<uint8_t>(192))
, bus(memory)
, cpu(bus) {}
void write_register(uint8_t rd, uint8_t value, uint8_t rotate = 0) {
// MOV
uint32_t raw = 0b11100011101000000000000000000000;
raw |= rd << 12;
raw |= rotate << 8;
raw |= value;
execute(raw);
}
uint32_t read_register(uint8_t rd) {
// use R0
static constexpr uint16_t offset = MAX_FAKE_PC + ARM_INSTRUCTION_SIZE;
uint32_t raw = 0b11100101100000000000000000000000;
raw |= rd << 12;
raw |= offset;
execute(raw);
return bus.read_word(offset + (rd == 15 ? ARM_INSTRUCTION_SIZE : 0));
}
Psr read_cpsr() {
// use R1
uint32_t raw = 0b11100001000011110001000000000000;
execute(raw);
return Psr(read_register(1));
}
void execute(uint32_t raw) {
bus.write_word(fake_pc - 2 * ARM_INSTRUCTION_SIZE, raw);
step();
}
private:
static constexpr uint32_t MAX_FAKE_PC = 400 * ARM_INSTRUCTION_SIZE;
Memory memory;
void step() {
cpu.step();
fake_pc += ARM_INSTRUCTION_SIZE;
if (fake_pc == MAX_FAKE_PC)
fake_pc = 0;
}
protected:
Bus bus;
Cpu cpu;
};
#define TAG "arm execution"
using namespace arm;
TEST_CASE_METHOD(CpuFixture, "Test fixture", TAG) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<uint8_t> value_d;
std::uniform_int_distribution<uint8_t> shift_d(0, (1 << 4) - 1);
// R0 is reserved to be 0 so that it can be used as as offset
write_register(0, 0);
REQUIRE(read_register(0) == 0);
for (uint8_t i = 1; i < 15; i++) {
uint8_t value = value_d(gen);
uint8_t shift = shift_d(gen);
uint32_t amount = std::rotr(static_cast<uint32_t>(value), 2 * shift);
write_register(i, value, shift);
REQUIRE(read_register(i) == amount);
}
REQUIRE(read_cpsr().mode() == Mode::Supervisor);
INFO("Fixture is OK");
}
TEST_CASE_METHOD(CpuFixture, "Branch and Exchange", TAG) {
uint32_t raw = 0b11100001001011111111111100011010;
write_register(10, 240);
execute(raw);
fake_pc = 240 + 2 * ARM_INSTRUCTION_SIZE;
REQUIRE(read_register(15) == 240 + 2 * ARM_INSTRUCTION_SIZE);
}
// TODO write BX for when switching to thumb
TEST_CASE_METHOD(CpuFixture, "Branch", TAG) {
uint32_t raw = 0b11101011000000000000000000111100;
uint32_t old_pc = fake_pc;
execute(raw);
fake_pc = old_pc + 240;
// pipeline is flushed
fake_pc += 2 * ARM_INSTRUCTION_SIZE;
REQUIRE(read_register(15) == old_pc + 240 + 2 * ARM_INSTRUCTION_SIZE);
REQUIRE(read_register(14) == old_pc - ARM_INSTRUCTION_SIZE);
}
TEST_CASE_METHOD(CpuFixture, "Multiply", TAG) {
uint32_t raw = 0b11100000001111011100101110011010;
uint32_t result = 0;
write_register(10, 230);
write_register(11, 192);
write_register(12, 37);
execute(raw);
result = 230 * 192 + 37;
REQUIRE(read_register(13) == result);
REQUIRE(read_cpsr().n() == (result >> 31 & 1));
// when product is zero
write_register(10, 230);
write_register(11, 0);
write_register(12, 0);
execute(raw);
REQUIRE(read_register(13) == 0);
REQUIRE(read_cpsr().z() == true);
}
TEST_CASE_METHOD(CpuFixture, "Multiply Long", TAG) {
uint32_t raw = 0b11100000101111011100101110011010;
uint64_t result = 0;
write_register(10, 230, 3); // 2550136835
write_register(11, 192, 12); // 49152
write_register(12, 255, 9); // 4177920
write_register(13, 11, 4); // 184549376
result = 2550136835ull * 49152ull + (184549376ull << 32 | 4177920ull);
execute(raw);
REQUIRE(read_register(12) == (result & 0xFFFFFFFF));
REQUIRE(read_register(13) == (result >> 32 & 0xFFFFFFFF));
REQUIRE(read_cpsr().z() == false);
REQUIRE(read_cpsr().n() == (result >> 63 & 1));
// signed
raw = 0b11100000111111011100101110011010;
write_register(12, 255, 9); // 4177920
write_register(13, 11, 4); // 184549376
execute(raw);
REQUIRE(read_register(12) == (result & 0xFFFFFFFF));
REQUIRE(read_register(13) == (result >> 32 & 0xFFFFFFFF));
REQUIRE(read_cpsr().z() == false);
REQUIRE(read_cpsr().n() == (result >> 63 & 1));
// 0 and no accumulation
raw = 0b11100000110111011100101110011010;
write_register(10, 0);
execute(raw);
REQUIRE(read_register(12) == 0);
REQUIRE(read_register(13) == 0);
REQUIRE(read_cpsr().z() == true);
}
TEST_CASE_METHOD(CpuFixture, "Single Data Swap", TAG) {
write_register(6, 230, 3); // 2550136835
write_register(9, 160, 0); // 160
bus.write_word(read_register(9), 49152);
SECTION("word") {
uint32_t raw = 0b11100001000010010101000010010110;
execute(raw);
REQUIRE(read_register(5) == 49152);
REQUIRE(bus.read_word(read_register(9)) == 2550136835);
}
SECTION("byte") {
uint32_t raw = 0b11100001010010010101000010010110;
execute(raw);
REQUIRE(read_register(5) == (49152 & 0xFF));
REQUIRE(bus.read_byte(read_register(9)) == (2550136835 & 0xFF));
}
}
#undef TAG

View File

@@ -0,0 +1,469 @@
#include "cpu/arm/instruction.hh"
#include "cpu/utility.hh"
#include <catch2/catch_test_macros.hpp>
#define TAG "disassembler"
using namespace arm;
TEST_CASE("Branch and Exchange", TAG) {
uint32_t raw = 0b11000001001011111111111100011010;
Instruction instruction(raw);
BranchAndExchange* bx = nullptr;
REQUIRE((bx = std::get_if<BranchAndExchange>(&instruction.data)));
REQUIRE(instruction.condition == Condition::GT);
REQUIRE(bx->rn == 10);
REQUIRE(instruction.disassemble() == "BXGT R10");
}
TEST_CASE("Branch", TAG) {
uint32_t raw = 0b11101011100001010111111111000011;
Instruction instruction(raw);
Branch* b = nullptr;
REQUIRE((b = std::get_if<Branch>(&instruction.data)));
REQUIRE(instruction.condition == Condition::AL);
// last 24 bits = 8748995
// (8748995 << 8) >> 6 sign extended = 0xFE15FF0C
// Also +8 since PC is two instructions ahead
REQUIRE(b->offset == 0xFE15FF14);
REQUIRE(b->link == true);
REQUIRE(instruction.disassemble() == "BL 0xFE15FF14");
b->link = false;
REQUIRE(instruction.disassemble() == "B 0xFE15FF14");
}
TEST_CASE("Multiply", TAG) {
uint32_t raw = 0b00000000001110101110111110010000;
Instruction instruction(raw);
Multiply* mul = nullptr;
REQUIRE((mul = std::get_if<Multiply>(&instruction.data)));
REQUIRE(instruction.condition == Condition::EQ);
REQUIRE(mul->rm == 0);
REQUIRE(mul->rs == 15);
REQUIRE(mul->rn == 14);
REQUIRE(mul->rd == 10);
REQUIRE(mul->acc == true);
REQUIRE(mul->set == true);
REQUIRE(instruction.disassemble() == "MLAEQS R10,R0,R15,R14");
mul->acc = false;
mul->set = false;
REQUIRE(instruction.disassemble() == "MULEQ R10,R0,R15");
}
TEST_CASE("Multiply Long", TAG) {
uint32_t raw = 0b00010000100111100111011010010010;
Instruction instruction(raw);
MultiplyLong* mull = nullptr;
REQUIRE((mull = std::get_if<MultiplyLong>(&instruction.data)));
REQUIRE(instruction.condition == Condition::NE);
REQUIRE(mull->rm == 2);
REQUIRE(mull->rs == 6);
REQUIRE(mull->rdlo == 7);
REQUIRE(mull->rdhi == 14);
REQUIRE(mull->acc == false);
REQUIRE(mull->set == true);
REQUIRE(mull->uns == true);
REQUIRE(instruction.disassemble() == "UMULLNES R7,R14,R2,R6");
mull->acc = true;
REQUIRE(instruction.disassemble() == "UMLALNES R7,R14,R2,R6");
mull->uns = false;
mull->set = false;
REQUIRE(instruction.disassemble() == "SMLALNE R7,R14,R2,R6");
}
TEST_CASE("Undefined", TAG) {
// notice how this is the same as single data transfer except the shift
// is now a register based shift
uint32_t raw = 0b11100111101000101010111100010110;
Instruction instruction(raw);
REQUIRE(instruction.condition == Condition::AL);
REQUIRE(instruction.disassemble() == "UND");
}
TEST_CASE("Single Data Swap", TAG) {
uint32_t raw = 0b10100001000010010101000010010110;
Instruction instruction(raw);
SingleDataSwap* swp = nullptr;
REQUIRE((swp = std::get_if<SingleDataSwap>(&instruction.data)));
REQUIRE(instruction.condition == Condition::GE);
REQUIRE(swp->rm == 6);
REQUIRE(swp->rd == 5);
REQUIRE(swp->rn == 9);
REQUIRE(swp->byte == false);
REQUIRE(instruction.disassemble() == "SWPGE R5,R6,[R9]");
swp->byte = true;
REQUIRE(instruction.disassemble() == "SWPGEB R5,R6,[R9]");
}
TEST_CASE("Single Data Transfer", TAG) {
uint32_t raw = 0b11100111101000101010111100000110;
Instruction instruction(raw);
SingleDataTransfer* ldr = nullptr;
Shift* shift = nullptr;
REQUIRE((ldr = std::get_if<SingleDataTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::AL);
REQUIRE((shift = std::get_if<Shift>(&ldr->offset)));
REQUIRE(shift->rm == 6);
REQUIRE(shift->data.immediate == true);
REQUIRE(shift->data.type == ShiftType::LSL);
REQUIRE(shift->data.operand == 30);
REQUIRE(ldr->rd == 10);
REQUIRE(ldr->rn == 2);
REQUIRE(ldr->load == false);
REQUIRE(ldr->write == true);
REQUIRE(ldr->byte == false);
REQUIRE(ldr->up == true);
REQUIRE(ldr->pre == true);
ldr->load = true;
ldr->byte = true;
ldr->write = false;
shift->data.type = ShiftType::ROR;
REQUIRE(instruction.disassemble() == "LDRB R10,[R2,+R6,ROR #30]");
ldr->up = false;
ldr->pre = false;
REQUIRE(instruction.disassemble() == "LDRB R10,[R2],-R6,ROR #30");
ldr->offset = static_cast<uint16_t>(9023);
REQUIRE(instruction.disassemble() == "LDRB R10,[R2],-#9023");
ldr->pre = true;
REQUIRE(instruction.disassemble() == "LDRB R10,[R2,-#9023]");
}
TEST_CASE("Halfword Transfer", TAG) {
uint32_t raw = 0b00110001101011110010000010110110;
Instruction instruction(raw);
HalfwordTransfer* ldr = nullptr;
REQUIRE((ldr = std::get_if<HalfwordTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::CC);
// offset is not immediate
REQUIRE(ldr->imm == 0);
// hence this offset is a register number (rm)
REQUIRE(ldr->offset == 6);
REQUIRE(ldr->half == true);
REQUIRE(ldr->sign == false);
REQUIRE(ldr->rd == 2);
REQUIRE(ldr->rn == 15);
REQUIRE(ldr->load == false);
REQUIRE(ldr->write == true);
REQUIRE(ldr->up == true);
REQUIRE(ldr->pre == true);
REQUIRE(instruction.disassemble() == "STRCCH R2,[R15,+R6]!");
ldr->pre = false;
ldr->load = true;
ldr->sign = true;
ldr->up = false;
REQUIRE(instruction.disassemble() == "LDRCCSH R2,[R15],-R6");
ldr->half = false;
REQUIRE(instruction.disassemble() == "LDRCCSB R2,[R15],-R6");
ldr->load = false;
// not a register anymore
ldr->imm = 1;
ldr->offset = 90;
REQUIRE(instruction.disassemble() == "STRCCSB R2,[R15],-#90");
}
TEST_CASE("Block Data Transfer", TAG) {
uint32_t raw = 0b10011001010101110100000101101101;
Instruction instruction(raw);
BlockDataTransfer* ldm = nullptr;
REQUIRE((ldm = std::get_if<BlockDataTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::LS);
{
uint16_t regs = 0;
regs |= 1 << 0;
regs |= 1 << 2;
regs |= 1 << 3;
regs |= 1 << 5;
regs |= 1 << 6;
regs |= 1 << 8;
regs |= 1 << 14;
REQUIRE(ldm->regs == regs);
}
REQUIRE(ldm->rn == 7);
REQUIRE(ldm->load == true);
REQUIRE(ldm->write == false);
REQUIRE(ldm->s == true);
REQUIRE(ldm->up == false);
REQUIRE(ldm->pre == true);
REQUIRE(instruction.disassemble() == "LDMLSDB R7,{R0,R2,R3,R5,R6,R8,R14}^");
ldm->write = true;
ldm->s = false;
ldm->up = true;
REQUIRE(instruction.disassemble() == "LDMLSIB R7!,{R0,R2,R3,R5,R6,R8,R14}");
ldm->regs &= ~(1 << 6);
ldm->regs &= ~(1 << 3);
ldm->regs &= ~(1 << 8);
ldm->load = false;
ldm->pre = false;
REQUIRE(instruction.disassemble() == "STMLSIA R7!,{R0,R2,R5,R14}");
}
TEST_CASE("PSR Transfer", TAG) {
PsrTransfer* msr = nullptr;
SECTION("MRS") {
uint32_t raw = 0b01000001010011111010000000000000;
Instruction instruction(raw);
PsrTransfer* mrs = nullptr;
REQUIRE((mrs = std::get_if<PsrTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::MI);
REQUIRE(mrs->type == PsrTransfer::Type::Mrs);
// Operand is a register in the case of MRS (PSR -> Register)
REQUIRE(mrs->operand == 10);
REQUIRE(mrs->spsr == true);
REQUIRE(instruction.disassemble() == "MRSMI R10,SPSR_all");
}
SECTION("MSR") {
uint32_t raw = 0b11100001001010011111000000001000;
Instruction instruction(raw);
PsrTransfer* msr = nullptr;
REQUIRE((msr = std::get_if<PsrTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::AL);
REQUIRE(msr->type == PsrTransfer::Type::Msr);
// Operand is a register in the case of MSR (Register -> PSR)
REQUIRE(msr->operand == 8);
REQUIRE(msr->spsr == false);
REQUIRE(instruction.disassemble() == "MSR CPSR_all,R8");
}
SECTION("MSR_flg with register operand") {
uint32_t raw = 0b01100001001010001111000000001000;
Instruction instruction(raw);
REQUIRE((msr = std::get_if<PsrTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::VS);
REQUIRE(msr->type == PsrTransfer::Type::Msr_flg);
REQUIRE(msr->imm == 0);
REQUIRE(msr->operand == 8);
REQUIRE(msr->spsr == false);
REQUIRE(instruction.disassemble() == "MSRVS CPSR_flg,R8");
}
SECTION("MSR_flg with immediate operand") {
uint32_t raw = 0b11100011011010001111011101101000;
Instruction instruction(raw);
REQUIRE((msr = std::get_if<PsrTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::AL);
REQUIRE(msr->type == PsrTransfer::Type::Msr_flg);
REQUIRE(msr->imm == 1);
// 104 (32 bits) rotated by 2 * 7
REQUIRE(msr->operand == 27262976);
REQUIRE(msr->spsr == true);
REQUIRE(instruction.disassemble() == "MSR SPSR_flg,#27262976");
}
}
TEST_CASE("Data Processing", TAG) {
uint32_t raw = 0b11100000000111100111101101100001;
Instruction instruction(raw);
DataProcessing* alu = nullptr;
Shift* shift = nullptr;
REQUIRE((alu = std::get_if<DataProcessing>(&instruction.data)));
REQUIRE(instruction.condition == Condition::AL);
// operand 2 is a shifted register
REQUIRE((shift = std::get_if<Shift>(&alu->operand)));
REQUIRE(shift->rm == 1);
REQUIRE(shift->data.immediate == true);
REQUIRE(shift->data.type == ShiftType::ROR);
REQUIRE(shift->data.operand == 22);
REQUIRE(alu->rd == 7);
REQUIRE(alu->rn == 14);
REQUIRE(alu->set == true);
REQUIRE(alu->opcode == OpCode::AND);
REQUIRE(instruction.disassemble() == "ANDS R7,R14,R1,ROR #22");
shift->data.immediate = false;
shift->data.operand = 2;
alu->set = false;
REQUIRE(instruction.disassemble() == "AND R7,R14,R1,ROR R2");
alu->operand = static_cast<uint32_t>(3300012);
REQUIRE(instruction.disassemble() == "AND R7,R14,#3300012");
SECTION("set-only operations") {
alu->set = true;
alu->opcode = OpCode::TST;
REQUIRE(instruction.disassemble() == "TST R14,#3300012");
alu->opcode = OpCode::TEQ;
REQUIRE(instruction.disassemble() == "TEQ R14,#3300012");
alu->opcode = OpCode::CMP;
REQUIRE(instruction.disassemble() == "CMP R14,#3300012");
alu->opcode = OpCode::CMN;
REQUIRE(instruction.disassemble() == "CMN R14,#3300012");
}
SECTION("destination operations") {
alu->opcode = OpCode::EOR;
REQUIRE(instruction.disassemble() == "EOR R7,R14,#3300012");
alu->opcode = OpCode::SUB;
REQUIRE(instruction.disassemble() == "SUB R7,R14,#3300012");
alu->opcode = OpCode::RSB;
REQUIRE(instruction.disassemble() == "RSB R7,R14,#3300012");
alu->opcode = OpCode::SUB;
REQUIRE(instruction.disassemble() == "SUB R7,R14,#3300012");
alu->opcode = OpCode::ADC;
REQUIRE(instruction.disassemble() == "ADC R7,R14,#3300012");
alu->opcode = OpCode::SBC;
REQUIRE(instruction.disassemble() == "SBC R7,R14,#3300012");
alu->opcode = OpCode::RSC;
REQUIRE(instruction.disassemble() == "RSC R7,R14,#3300012");
alu->opcode = OpCode::ORR;
REQUIRE(instruction.disassemble() == "ORR R7,R14,#3300012");
alu->opcode = OpCode::MOV;
REQUIRE(instruction.disassemble() == "MOV R7,#3300012");
alu->opcode = OpCode::BIC;
REQUIRE(instruction.disassemble() == "BIC R7,R14,#3300012");
alu->opcode = OpCode::MVN;
REQUIRE(instruction.disassemble() == "MVN R7,#3300012");
}
}
TEST_CASE("Coprocessor Data Transfer", TAG) {
uint32_t raw = 0b10101101101001011111000101000110;
Instruction instruction(raw);
CoprocessorDataTransfer* ldc = nullptr;
REQUIRE((ldc = std::get_if<CoprocessorDataTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::GE);
REQUIRE(ldc->offset == 70);
REQUIRE(ldc->cpn == 1);
REQUIRE(ldc->crd == 15);
REQUIRE(ldc->rn == 5);
REQUIRE(ldc->load == false);
REQUIRE(ldc->write == true);
REQUIRE(ldc->len == false);
REQUIRE(ldc->up == true);
REQUIRE(ldc->pre == true);
REQUIRE(instruction.disassemble() == "STCGE p1,c15,[R5,#70]!");
ldc->load = true;
ldc->pre = false;
ldc->write = false;
ldc->len = true;
REQUIRE(instruction.disassemble() == "LDCGEL p1,c15,[R5],#70");
}
TEST_CASE("Coprocessor Operand Operation", TAG) {
uint32_t raw = 0b11101110101001011111000101000110;
Instruction instruction(raw);
CoprocessorDataOperation* cdp = nullptr;
REQUIRE((cdp = std::get_if<CoprocessorDataOperation>(&instruction.data)));
REQUIRE(instruction.condition == Condition::AL);
REQUIRE(cdp->crm == 6);
REQUIRE(cdp->cp == 2);
REQUIRE(cdp->cpn == 1);
REQUIRE(cdp->crd == 15);
REQUIRE(cdp->crn == 5);
REQUIRE(cdp->cp_opc == 10);
REQUIRE(instruction.disassemble() == "CDP p1,10,c15,c5,c6,2");
}
TEST_CASE("Coprocessor Register Transfer", TAG) {
uint32_t raw = 0b11101110101001011111000101010110;
Instruction instruction(raw);
CoprocessorRegisterTransfer* mrc = nullptr;
REQUIRE(
(mrc = std::get_if<CoprocessorRegisterTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::AL);
REQUIRE(mrc->crm == 6);
REQUIRE(mrc->cp == 2);
REQUIRE(mrc->cpn == 1);
REQUIRE(mrc->rd == 15);
REQUIRE(mrc->crn == 5);
REQUIRE(mrc->load == false);
REQUIRE(mrc->cp_opc == 5);
REQUIRE(instruction.disassemble() == "MCR p1,5,R15,c5,c6,2");
}
TEST_CASE("Software Interrupt", TAG) {
uint32_t raw = 0b00001111101010101010101010101010;
Instruction instruction(raw);
REQUIRE(instruction.condition == Condition::EQ);
REQUIRE(instruction.disassemble() == "SWIEQ");
}
#undef TAG

View File

@@ -0,0 +1,4 @@
tests_sources += files(
'instruction.cc',
'exec.cc'
)

0
tests/cpu/cpu.cc Normal file
View File

467
tests/cpu/instruction.cc Normal file
View File

@@ -0,0 +1,467 @@
#include "cpu/arm/instruction.hh"
#include "cpu/utility.hh"
#include <catch2/catch_test_macros.hpp>
[[maybe_unused]] static constexpr auto TAG = "disassembler";
using namespace arm;
TEST_CASE("Branch and Exchange", TAG) {
uint32_t raw = 0b11000001001011111111111100011010;
Instruction instruction(raw);
BranchAndExchange* bx = nullptr;
REQUIRE((bx = std::get_if<BranchAndExchange>(&instruction.data)));
REQUIRE(instruction.condition == Condition::GT);
REQUIRE(bx->rn == 10);
REQUIRE(instruction.disassemble() == "BXGT R10");
}
TEST_CASE("Branch", TAG) {
uint32_t raw = 0b11101011100001010111111111000011;
Instruction instruction(raw);
Branch* b = nullptr;
REQUIRE((b = std::get_if<Branch>(&instruction.data)));
REQUIRE(instruction.condition == Condition::AL);
// last 24 bits = 8748995
// (8748995 << 8) >> 6 sign extended = 0xFE15FF0C
// Also +8 since PC is two instructions ahead
REQUIRE(b->offset == 0xFE15FF14);
REQUIRE(b->link == true);
REQUIRE(instruction.disassemble() == "BL 0xFE15FF14");
b->link = false;
REQUIRE(instruction.disassemble() == "B 0xFE15FF14");
}
TEST_CASE("Multiply", TAG) {
uint32_t raw = 0b00000000001110101110111110010000;
Instruction instruction(raw);
Multiply* mul = nullptr;
REQUIRE((mul = std::get_if<Multiply>(&instruction.data)));
REQUIRE(instruction.condition == Condition::EQ);
REQUIRE(mul->rm == 0);
REQUIRE(mul->rs == 15);
REQUIRE(mul->rn == 14);
REQUIRE(mul->rd == 10);
REQUIRE(mul->acc == true);
REQUIRE(mul->set == true);
REQUIRE(instruction.disassemble() == "MLAEQS R10,R0,R15,R14");
mul->acc = false;
mul->set = false;
REQUIRE(instruction.disassemble() == "MULEQ R10,R0,R15");
}
TEST_CASE("Multiply Long", TAG) {
uint32_t raw = 0b00010000100111100111011010010010;
Instruction instruction(raw);
MultiplyLong* mull = nullptr;
REQUIRE((mull = std::get_if<MultiplyLong>(&instruction.data)));
REQUIRE(instruction.condition == Condition::NE);
REQUIRE(mull->rm == 2);
REQUIRE(mull->rs == 6);
REQUIRE(mull->rdlo == 7);
REQUIRE(mull->rdhi == 14);
REQUIRE(mull->acc == false);
REQUIRE(mull->set == true);
REQUIRE(mull->uns == false);
REQUIRE(instruction.disassemble() == "SMULLNES R7,R14,R2,R6");
mull->acc = true;
REQUIRE(instruction.disassemble() == "SMLALNES R7,R14,R2,R6");
mull->uns = true;
mull->set = false;
REQUIRE(instruction.disassemble() == "UMLALNE R7,R14,R2,R6");
}
TEST_CASE("Undefined", TAG) {
// notice how this is the same as single data transfer except the shift
// is now a register based shift
uint32_t raw = 0b11100111101000101010111100010110;
Instruction instruction(raw);
REQUIRE(instruction.condition == Condition::AL);
REQUIRE(instruction.disassemble() == "UND");
}
TEST_CASE("Single Data Swap", TAG) {
uint32_t raw = 0b10100001000010010101000010010110;
Instruction instruction(raw);
SingleDataSwap* swp = nullptr;
REQUIRE((swp = std::get_if<SingleDataSwap>(&instruction.data)));
REQUIRE(instruction.condition == Condition::GE);
REQUIRE(swp->rm == 6);
REQUIRE(swp->rd == 5);
REQUIRE(swp->rn == 9);
REQUIRE(swp->byte == false);
REQUIRE(instruction.disassemble() == "SWPGE R5,R6,[R9]");
swp->byte = true;
REQUIRE(instruction.disassemble() == "SWPGEB R5,R6,[R9]");
}
TEST_CASE("Single Data Transfer", TAG) {
uint32_t raw = 0b11100111101000101010111100000110;
Instruction instruction(raw);
SingleDataTransfer* ldr = nullptr;
Shift* shift = nullptr;
REQUIRE((ldr = std::get_if<SingleDataTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::AL);
REQUIRE((shift = std::get_if<Shift>(&ldr->offset)));
REQUIRE(shift->rm == 6);
REQUIRE(shift->data.immediate == true);
REQUIRE(shift->data.type == ShiftType::LSL);
REQUIRE(shift->data.operand == 30);
REQUIRE(ldr->rd == 10);
REQUIRE(ldr->rn == 2);
REQUIRE(ldr->load == false);
REQUIRE(ldr->write == true);
REQUIRE(ldr->byte == false);
REQUIRE(ldr->up == true);
REQUIRE(ldr->pre == true);
ldr->load = true;
ldr->byte = true;
ldr->write = false;
shift->data.type = ShiftType::ROR;
REQUIRE(instruction.disassemble() == "LDRB R10,[R2,+R6,ROR #30]");
ldr->up = false;
ldr->pre = false;
REQUIRE(instruction.disassemble() == "LDRB R10,[R2],-R6,ROR #30");
ldr->offset = static_cast<uint16_t>(9023);
REQUIRE(instruction.disassemble() == "LDRB R10,[R2],-#9023");
ldr->pre = true;
REQUIRE(instruction.disassemble() == "LDRB R10,[R2,-#9023]");
}
TEST_CASE("Halfword Transfer", TAG) {
uint32_t raw = 0b00110001101011110010000010110110;
Instruction instruction(raw);
HalfwordTransfer* ldr = nullptr;
REQUIRE((ldr = std::get_if<HalfwordTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::CC);
// offset is not immediate
REQUIRE(ldr->imm == 0);
// hence this offset is a register number (rm)
REQUIRE(ldr->offset == 6);
REQUIRE(ldr->half == true);
REQUIRE(ldr->sign == false);
REQUIRE(ldr->rd == 2);
REQUIRE(ldr->rn == 15);
REQUIRE(ldr->load == false);
REQUIRE(ldr->write == true);
REQUIRE(ldr->up == true);
REQUIRE(ldr->pre == true);
REQUIRE(instruction.disassemble() == "STRCCH R2,[R15,+R6]!");
ldr->pre = false;
ldr->load = true;
ldr->sign = true;
ldr->up = false;
REQUIRE(instruction.disassemble() == "LDRCCSH R2,[R15],-R6");
ldr->half = false;
REQUIRE(instruction.disassemble() == "LDRCCSB R2,[R15],-R6");
ldr->load = false;
// not a register anymore
ldr->imm = 1;
ldr->offset = 90;
REQUIRE(instruction.disassemble() == "STRCCSB R2,[R15],-#90");
}
TEST_CASE("Block Data Transfer", TAG) {
uint32_t raw = 0b10011001010101110100000101101101;
Instruction instruction(raw);
BlockDataTransfer* ldm = nullptr;
REQUIRE((ldm = std::get_if<BlockDataTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::LS);
{
uint16_t regs = 0;
regs |= 1 << 0;
regs |= 1 << 2;
regs |= 1 << 3;
regs |= 1 << 5;
regs |= 1 << 6;
regs |= 1 << 8;
regs |= 1 << 14;
REQUIRE(ldm->regs == regs);
}
REQUIRE(ldm->rn == 7);
REQUIRE(ldm->load == true);
REQUIRE(ldm->write == false);
REQUIRE(ldm->s == true);
REQUIRE(ldm->up == false);
REQUIRE(ldm->pre == true);
REQUIRE(instruction.disassemble() == "LDMLSDB R7,{R0,R2,R3,R5,R6,R8,R14}^");
ldm->write = true;
ldm->s = false;
ldm->up = true;
REQUIRE(instruction.disassemble() == "LDMLSIB R7!,{R0,R2,R3,R5,R6,R8,R14}");
ldm->regs &= ~(1 << 6);
ldm->regs &= ~(1 << 3);
ldm->regs &= ~(1 << 8);
ldm->load = false;
ldm->pre = false;
REQUIRE(instruction.disassemble() == "STMLSIA R7!,{R0,R2,R5,R14}");
}
TEST_CASE("PSR Transfer", TAG) {
PsrTransfer* msr = nullptr;
SECTION("MRS") {
uint32_t raw = 0b01000001010011111010000000000000;
Instruction instruction(raw);
PsrTransfer* mrs = nullptr;
REQUIRE((mrs = std::get_if<PsrTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::MI);
REQUIRE(mrs->type == PsrTransfer::Type::Mrs);
// Operand is a register in the case of MRS (PSR -> Register)
REQUIRE(mrs->operand == 10);
REQUIRE(mrs->spsr == true);
REQUIRE(instruction.disassemble() == "MRSMI R10,SPSR_all");
}
SECTION("MSR") {
uint32_t raw = 0b11100001001010011111000000001000;
Instruction instruction(raw);
PsrTransfer* msr = nullptr;
REQUIRE((msr = std::get_if<PsrTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::AL);
REQUIRE(msr->type == PsrTransfer::Type::Msr);
// Operand is a register in the case of MSR (Register -> PSR)
REQUIRE(msr->operand == 8);
REQUIRE(msr->spsr == false);
REQUIRE(instruction.disassemble() == "MSR CPSR_all,R8");
}
SECTION("MSR_flg with register operand") {
uint32_t raw = 0b01100001001010001111000000001000;
Instruction instruction(raw);
REQUIRE((msr = std::get_if<PsrTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::VS);
REQUIRE(msr->type == PsrTransfer::Type::Msr_flg);
REQUIRE(msr->imm == 0);
REQUIRE(msr->operand == 8);
REQUIRE(msr->spsr == false);
REQUIRE(instruction.disassemble() == "MSRVS CPSR_flg,R8");
}
SECTION("MSR_flg with immediate operand") {
uint32_t raw = 0b11100011011010001111011101101000;
Instruction instruction(raw);
REQUIRE((msr = std::get_if<PsrTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::AL);
REQUIRE(msr->type == PsrTransfer::Type::Msr_flg);
REQUIRE(msr->imm == 1);
// 104 (32 bits) rotated by 2 * 7
REQUIRE(msr->operand == 27262976);
REQUIRE(msr->spsr == true);
REQUIRE(instruction.disassemble() == "MSR SPSR_flg,#27262976");
}
}
TEST_CASE("Data Processing", TAG) {
uint32_t raw = 0b11100010000111100111101101100001;
Instruction instruction(raw);
DataProcessing* alu = nullptr;
Shift* shift = nullptr;
REQUIRE((alu = std::get_if<DataProcessing>(&instruction.data)));
REQUIRE(instruction.condition == Condition::AL);
// operand 2 is a shifted register
REQUIRE((shift = std::get_if<Shift>(&alu->operand)));
REQUIRE(shift->rm == 1);
REQUIRE(shift->data.immediate == true);
REQUIRE(shift->data.type == ShiftType::ROR);
REQUIRE(shift->data.operand == 22);
REQUIRE(alu->rd == 7);
REQUIRE(alu->rn == 14);
REQUIRE(alu->set == true);
REQUIRE(alu->opcode == OpCode::AND);
REQUIRE(instruction.disassemble() == "ANDS R7,R14,R1,ROR #22");
shift->data.immediate = false;
shift->data.operand = 2;
alu->set = false;
REQUIRE(instruction.disassemble() == "AND R7,R14,R1,ROR R2");
alu->operand = static_cast<uint32_t>(3300012);
REQUIRE(instruction.disassemble() == "AND R7,R14,#3300012");
SECTION("set-only operations") {
alu->set = true;
alu->opcode = OpCode::TST;
REQUIRE(instruction.disassemble() == "TST R14,#3300012");
alu->opcode = OpCode::TEQ;
REQUIRE(instruction.disassemble() == "TEQ R14,#3300012");
alu->opcode = OpCode::CMP;
REQUIRE(instruction.disassemble() == "CMP R14,#3300012");
alu->opcode = OpCode::CMN;
REQUIRE(instruction.disassemble() == "CMN R14,#3300012");
}
SECTION("destination operations") {
alu->opcode = OpCode::EOR;
REQUIRE(instruction.disassemble() == "EOR R7,R14,#3300012");
alu->opcode = OpCode::SUB;
REQUIRE(instruction.disassemble() == "SUB R7,R14,#3300012");
alu->opcode = OpCode::RSB;
REQUIRE(instruction.disassemble() == "RSB R7,R14,#3300012");
alu->opcode = OpCode::SUB;
REQUIRE(instruction.disassemble() == "SUB R7,R14,#3300012");
alu->opcode = OpCode::ADC;
REQUIRE(instruction.disassemble() == "ADC R7,R14,#3300012");
alu->opcode = OpCode::SBC;
REQUIRE(instruction.disassemble() == "SBC R7,R14,#3300012");
alu->opcode = OpCode::RSC;
REQUIRE(instruction.disassemble() == "RSC R7,R14,#3300012");
alu->opcode = OpCode::ORR;
REQUIRE(instruction.disassemble() == "ORR R7,R14,#3300012");
alu->opcode = OpCode::MOV;
REQUIRE(instruction.disassemble() == "MOV R7,#3300012");
alu->opcode = OpCode::BIC;
REQUIRE(instruction.disassemble() == "BIC R7,R14,#3300012");
alu->opcode = OpCode::MVN;
REQUIRE(instruction.disassemble() == "MVN R7,#3300012");
}
}
TEST_CASE("Coprocessor Data Transfer", TAG) {
uint32_t raw = 0b10101101101001011111000101000110;
Instruction instruction(raw);
CoprocessorDataTransfer* ldc = nullptr;
REQUIRE((ldc = std::get_if<CoprocessorDataTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::GE);
REQUIRE(ldc->offset == 70);
REQUIRE(ldc->cpn == 1);
REQUIRE(ldc->crd == 15);
REQUIRE(ldc->rn == 5);
REQUIRE(ldc->load == false);
REQUIRE(ldc->write == true);
REQUIRE(ldc->len == false);
REQUIRE(ldc->up == true);
REQUIRE(ldc->pre == true);
REQUIRE(instruction.disassemble() == "STCGE p1,c15,[R5,#70]!");
ldc->load = true;
ldc->pre = false;
ldc->write = false;
ldc->len = true;
REQUIRE(instruction.disassemble() == "LDCGEL p1,c15,[R5],#70");
}
TEST_CASE("Coprocessor Operand Operation", TAG) {
uint32_t raw = 0b11101110101001011111000101000110;
Instruction instruction(raw);
CoprocessorDataOperation* cdp = nullptr;
REQUIRE((cdp = std::get_if<CoprocessorDataOperation>(&instruction.data)));
REQUIRE(instruction.condition == Condition::AL);
REQUIRE(cdp->crm == 6);
REQUIRE(cdp->cp == 2);
REQUIRE(cdp->cpn == 1);
REQUIRE(cdp->crd == 15);
REQUIRE(cdp->crn == 5);
REQUIRE(cdp->cp_opc == 10);
REQUIRE(instruction.disassemble() == "CDP p1,10,c15,c5,c6,2");
}
TEST_CASE("Coprocessor Register Transfer", TAG) {
uint32_t raw = 0b11101110101001011111000101010110;
Instruction instruction(raw);
CoprocessorRegisterTransfer* mrc = nullptr;
REQUIRE(
(mrc = std::get_if<CoprocessorRegisterTransfer>(&instruction.data)));
REQUIRE(instruction.condition == Condition::AL);
REQUIRE(mrc->crm == 6);
REQUIRE(mrc->cp == 2);
REQUIRE(mrc->cpn == 1);
REQUIRE(mrc->rd == 15);
REQUIRE(mrc->crn == 5);
REQUIRE(mrc->load == false);
REQUIRE(mrc->cp_opc == 5);
REQUIRE(instruction.disassemble() == "MCR p1,5,R15,c5,c6,2");
}
TEST_CASE("Software Interrupt", TAG) {
uint32_t raw = 0b00001111101010101010101010101010;
Instruction instruction(raw);
REQUIRE(instruction.condition == Condition::EQ);
REQUIRE(instruction.disassemble() == "SWIEQ");
}

1
tests/cpu/meson.build Normal file
View File

@@ -0,0 +1 @@
subdir('arm')

19
tests/meson.build Normal file
View File

@@ -0,0 +1,19 @@
tests_deps = [
lib
]
tests_sources = files()
subdir('cpu')
catch2 = dependency('catch2-with-main', version: '>=3.4.0', static: true)
catch2_tests = executable(
meson.project_name() + '_tests',
tests_sources,
dependencies: catch2,
link_with: tests_deps,
include_directories: inc,
build_by_default: false
)
test('catch2 tests', catch2_tests)