450 lines
35 KiB
Plaintext
450 lines
35 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"aallah\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(\"aallah\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import seaborn as sns"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"ename": "AttributeError",
|
|
"evalue": "module 'seaborn' has no attribute 'set_theme'",
|
|
"output_type": "error",
|
|
"traceback": [
|
|
"\u001b[0;31m--------------------------------------------------------------\u001b[0m",
|
|
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
|
"\u001b[0;32m<ipython-input-3-a89cf2b5f8d5>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mseaborn\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0msns\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpyplot\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_theme\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstyle\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"whitegrid\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;31m# Load the example diamonds dataset\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
|
"\u001b[0;31mAttributeError\u001b[0m: module 'seaborn' has no attribute 'set_theme'"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"import seaborn as sns\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"sns.set_theme(style=\"whitegrid\")\n",
|
|
"\n",
|
|
"# Load the example diamonds dataset\n",
|
|
"diamonds = sns.load_dataset(\"diamonds\")\n",
|
|
"\n",
|
|
"# Draw a scatter plot while assigning point colors and sizes to different\n",
|
|
"# variables in the dataset\n",
|
|
"f, ax = plt.subplots(figsize=(6.5, 6.5))\n",
|
|
"sns.despine(f, left=True, bottom=True)\n",
|
|
"clarity_ranking = [\"I1\", \"SI2\", \"SI1\", \"VS2\", \"VS1\", \"VVS2\", \"VVS1\", \"IF\"]\n",
|
|
"sns.scatterplot(x=\"carat\", y=\"price\",\n",
|
|
" hue=\"clarity\", size=\"depth\",\n",
|
|
" palette=\"ch:r=-.2,d=.3_r\",\n",
|
|
" hue_order=clarity_ranking,\n",
|
|
" sizes=(1, 8), linewidth=0,\n",
|
|
" data=diamonds, ax=ax)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import numpy as np\n",
|
|
"\n",
|
|
"plt.style.use('_mpl-gallery')\n",
|
|
"\n",
|
|
"# make data\n",
|
|
"x = np.linspace(0, 10, 100)\n",
|
|
"y = 4 + 2 * np.sin(2 * x)\n",
|
|
"\n",
|
|
"# plot\n",
|
|
"fig, ax = plt.subplots()\n",
|
|
"\n",
|
|
"ax.plot(x, y, linewidth=2.0)\n",
|
|
"\n",
|
|
"ax.set(xlim=(0, 8), xticks=np.arange(1, 8),\n",
|
|
" ylim=(0, 8), yticks=np.arange(1, 8))\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAACGCAYAAADQHI0rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAACyRJREFUeJzt3V+IXOd9xvHv05UFjWviJF67QbIatah1VYjBmSpukzZ2i1PJNIiAL+SGGExAuI1L6UWJ6YVz0ZuW3JS0ToQwIuQi1kVjJyrIlg2hdajrVKviP5ITh62SxosC/otDnVIj59eLOULDetd7tDs7s9n3+4Fh55z3fWd/87J7nj1n55yTqkKS1K5fmHYBkqTpMggkqXEGgSQ1ziCQpMYZBJLUOINAkhq3YhAkOZLkxSSnl2lPki8mmU/yTJIbRtr2Jnm+a7tnnIVLksajzx7BV4C979C+D9jVPQ4CXwZIMgPc17XvBm5PsnstxUqSxm/FIKiqx4FX36HLfuCrNfQkcGWS9wN7gPmqOltVbwJHu76SpA1kHP8j2Aa8MLK80K1bbr0kaQPZMobXyBLr6h3WL/0iyUGGh5a4/PLLP3TdddeNoTRJasOpU6derqrZ1YwdRxAsANeOLG8HzgFbl1m/pKo6DBwGGAwGNTc3N4bSJKkNSf57tWPHcWjoGHBH9+mhG4HXq+rHwElgV5KdSbYCB7q+kqQNZMU9giQPADcBVyVZAD4PXAZQVYeA48CtwDzwU+DOru18kruBE8AMcKSqzqzDe5AkrcGKQVBVt6/QXsBnl2k7zjAoJEkblGcWS1LjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIa1ysIkuxN8nyS+ST3LNH+V0me6h6nk7yV5L1d2w+TPNu1eSNiSdpg+tyqcga4D7iF4Y3qTyY5VlXPXehTVV8AvtD1/wTwl1X16sjL3FxVL4+1cknSWPTZI9gDzFfV2ap6EzgK7H+H/rcDD4yjOEnS+usTBNuAF0aWF7p1b5PkXcBe4Osjqwt4NMmpJAdXW6gkaX2seGgIyBLrapm+nwD+bdFhoY9U1bkkVwOPJfleVT3+tm8yDImDADt27OhRliRpHPrsESwA144sbwfOLdP3AIsOC1XVue7ri8BDDA81vU1VHa6qQVUNZmdne5QlSRqHPkFwEtiVZGeSrQw39scWd0rybuBjwDdH1l2e5IoLz4GPA6fHUbgkaTxWPDRUVeeT3A2cAGaAI1V1JsldXfuhrusngUer6o2R4dcADyW58L2+VlWPjPMNSJLWJlXLHe6fnsFgUHNznnIgSX0lOVVVg9WM9cxiSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjegVBkr1Jnk8yn+SeJdpvSvJ6kqe6x719x0qSpmvFW1UmmQHuA25heCP7k0mOVdVzi7p+u6r+eJVjJUlT0mePYA8wX1Vnq+pN4Ciwv+frr2WsJGkC+gTBNuCFkeWFbt1iv5Pk6SQPJ/mtSxxLkoNJ5pLMvfTSSz3KkiSNQ58gyBLrFt/x/j+BX6mq64F/AL5xCWOHK6sOV9Wgqgazs7M9ypIkjUOfIFgArh1Z3g6cG+1QVT+pqv/pnh8HLktyVZ+xkqTp6hMEJ4FdSXYm2QocAI6Ndkjyy0nSPd/Tve4rfcZKkqZrxU8NVdX5JHcDJ4AZ4EhVnUlyV9d+CLgN+NMk54H/BQ5UVQFLjl2n9yJJWoUMt9cby2AwqLm5uWmXIUk/N5KcqqrBasZ6ZrEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmN6xUESfYmeT7JfJJ7lmj/VJJnuscTSa4fafthkmeTPJXEmwxI0gaz4h3KkswA9wG3MLwH8ckkx6rquZFuPwA+VlWvJdkHHAY+PNJ+c1W9PMa6JUlj0mePYA8wX1Vnq+pN4Ciwf7RDVT1RVa91i08yvEm9JOnnQJ8g2Aa8MLK80K1bzmeAh0eWC3g0yakkBy+9REnSelrx0BCQJdYteaPjJDczDIKPjqz+SFWdS3I18FiS71XV40uMPQgcBNixY0ePsiRJ49Bnj2ABuHZkeTtwbnGnJB8E7gf2V9UrF9ZX1bnu64vAQwwPNb1NVR2uqkFVDWZnZ/u/A0nSmvQJgpPAriQ7k2wFDgDHRjsk2QE8CHy6qr4/sv7yJFdceA58HDg9ruIlSWu34qGhqjqf5G7gBDADHKmqM0nu6toPAfcC7wO+lATgfFUNgGuAh7p1W4CvVdUj6/JOJEmrkqolD/dP1WAwqLk5TzmQpL6SnOr+AL9knlksSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWpcryBIsjfJ80nmk9yzRHuSfLFrfybJDX3HSpKma8UgSDID3AfsA3YDtyfZvajbPmBX9zgIfPkSxkqSpqjPHsEeYL6qzlbVm8BRYP+iPvuBr9bQk8CVSd7fc6wkaYr6BME24IWR5YVuXZ8+fcZKkqZoS48+WWLd4jveL9enz9jhCyQHGR5WAvi/JKd71NaCq4CXp13EBuA8XORcXORcXPQbqx3YJwgWgGtHlrcD53r22dpjLABVdRg4DJBkrqoGPWrb9JyLIefhIufiIufioiRzqx3b59DQSWBXkp1JtgIHgGOL+hwD7ug+PXQj8HpV/bjnWEnSFK24R1BV55PcDZwAZoAjVXUmyV1d+yHgOHArMA/8FLjzncauyzuRJK1Kn0NDVNVxhhv70XWHRp4X8Nm+Y3s4fIn9NzPnYsh5uMi5uMi5uGjVc5HhNlyS1CovMSFJjZtaEKzlshWbTY+5+FQ3B88keSLJ9dOocxL6XpIkyW8neSvJbZOsb5L6zEWSm5I8leRMkn+ddI2T0uN35N1J/jnJ091c3DmNOtdbkiNJXlzu4/Wr3m5W1cQfDP9x/F/ArzL8iOnTwO5FfW4FHmZ4LsKNwHemUesGmYvfBd7TPd/X8lyM9PsWw/893Tbtuqf4c3El8Bywo1u+etp1T3Eu/hr4u+75LPAqsHXata/DXPw+cANwepn2VW03p7VHsJbLVmw2K85FVT1RVa91i08yPB9jM+p7SZI/B74OvDjJ4iasz1z8CfBgVf0IoKo263z0mYsCrkgS4JcYBsH5yZa5/qrqcYbvbTmr2m5OKwjWctmKzeZS3+dnGCb+ZrTiXCTZBnwSOMTm1ufn4teB9yT5lySnktwxseomq89c/CPwmwxPWH0W+Iuq+tlkyttQVrXd7PXx0XWwlstWbDaXchmOmxkGwUfXtaLp6TMXfw98rqreGv7xt2n1mYstwIeAPwR+Efj3JE9W1ffXu7gJ6zMXfwQ8BfwB8GvAY0m+XVU/We/iNphVbTenFQRruWzFZtPrfSb5IHA/sK+qXplQbZPWZy4GwNEuBK4Cbk1yvqq+MZkSJ6bv78jLVfUG8EaSx4Hrgc0WBH3m4k7gb2t4oHw+yQ+A64D/mEyJG8aqtpvTOjS0lstWbDYrzkWSHcCDwKc34V97o1aci6raWVUfqKoPAP8E/NkmDAHo9zvyTeD3kmxJ8i7gw8B3J1znJPSZix8x3DMiyTUML8B2dqJVbgyr2m5OZY+g1nDZis2m51zcC7wP+FL3l/D52oQX2uo5F03oMxdV9d0kjwDPAD8D7q+qTXfV3p4/F38DfCXJswwPj3yuqjbdVUmTPADcBFyVZAH4PHAZrG276ZnFktQ4zyyWpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNe7/Afoa1zZMLEgXAAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"import matplotlib.pyplot as plt\n",
|
|
"fig = plt.figure()\n",
|
|
"ax = fig.add_subplot(2, 1, 1) # two rows, one column, first plot"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEHCAYAAACumTGlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xu8lXPe//HXRyeScthJIhuTsxQbUYwJN5oUmozbIUwzIdzjvhliBmMwN2NmbvwYNBjG8U6ZERlNIgxKOzpIRTmVU4eZyDG1P78/Pte+95a9d2vXWutah/fz8ViPva+1rr3W56q9r891fQ+fr7k7IiIiG6QdgIiIFAYlBBERAZQQREQkoYQgIiKAEoKIiCSUEEREBFBCkDJnZl3N7FMza5F2LCJpM81DEBER0B2CiIgklBCkaJnZCDNbYGYrzOw1Mzu2iX33M7NqM/vEzD4ys98nz1eamZtZy2R7kpldaWbPJ+/7dzOrqPc+vczsBTNbbmYzzOyQRj7vdDN7tN72fDMbVW97oZn1SL6/Idn+xMymmdlByfNbm9kXZrZ5vZ/raWZLzaxVsv0jM5tjZv8ys/Fmtt06/nOKKCFIUVsAHAR0AK4A7jWzzo3sewNwg7u3B3YERjWyH8CJwOnAlkBr4AIAM+sCjAOuAjZPnh9jZh0beI9ngIPMbIMkplZA7+R9dgDaATOTfacCPZL3vB94yMw2dPf3gReBQWvENtrdvzazY4BLgOOAjsBzwANNHJdIk5QQpGi5+0Pu/r6717j7/wJvAPs1svvXwHfMrMLdP3X3yU289Z/c/XV3/4JIHD2S508GHnf3x5PPnABUA/0aiO1NYEXys98FxgPvmdkuyfZz7l6T7Huvuy9z91Xu/jugDbBz8lb3A/8OYGYGnJA8B3AG8N/uPsfdVwG/BnroLkHWlRKCFC0zG2Jm05Pmm+XAHkBFI7sPBXYC5prZVDPr38Rbf1jv+8+Jq3mA7YDBtZ+XfGYfoLG7kmeAQ4CDk+8nEcngu8l27XGcnzT7fJy8Z4d6xzEaOMDMtk7ex4k7gdp4bqgXyz8BA7o0cWwijWqZdgAi6yK5Cv4jcCjworuvNrPpxAnxW9z9DeDfzWwDoolltJlt0cyPXQjc4+4/yXD/Z4Cjge2Jq/flwEnAAcBNyXEcBFyUHMdsd68xs3/VHoe7LzezvwPHA7sCD3jd0MCFwNXufl8zj0OkQbpDkGK1MXG1vASiE5e4Q2iQmZ1sZh2TZprlydOrm/mZ9wJHm9kRZtbCzDY0s0PMbJtG9n8G+B6wkbsvIq7sjwS2AF5J9tkEWJUcR0szuwxov8b73A8MIfoS7q/3/K3AxWa2e3KMHcxscDOPSeT/KCFIUXL314DfEZ2uHwF7As838SNHArPN7FOig/kEd/+ymZ+5EBhIdOQuIa7Qf0Yjf0fu/jrwKUkTj7t/ArwJPO/utcloPPA34HXgHeDL5H3rGwt0Az5y9xn13v8vwLXAg2b2CfAqcFRzjkmkPk1MExERQHcIIiKSUEIQERFACUFERBJKCCIiAighiIhIItWJaWZ2J9AfWOzujY4hr1VRUeGVlZU5j0tEpJRMmzZtqbs3VHPrG9KeqXwXMWPzz5nsXFlZSXV1dU4DEhEpNWb2Tib7pdpk5O7PEvVXREQkZWnfIUgKPvsM3norHm+/DR9+CEuXxuPTT+Grr2DlSnCHNm3isfHGUFERj06doLIStt8+HptskvYRiUg2FHxCMLNhwDCArl27phxN8VmxAiZPhhdfhBkzYOZMWLAgTvbZsv320L077LUXHHAA9OoFm26avfcXkfxIvXSFmVUCj2XSqVxVVeXqQ2jaV1/BP/4B48fDhAmRAGpqvrlPy5awww51V/hdusSV/xZbxNV+mzbQunXsu3JlPFasgGXL4i7i/ffr7jDefDNer88M9tgDDjsMjjgCDj4YNtooP8cvIt9mZtPcvWpt+xX8HYKs3YoV8PjjMHo0/O1v0SRUq2VLqKqC3r1hn33iSn7nnetO+Ovr66/h9ddh1iyYNg2efz6+zpoVj//5H9hwQzjySBg0CI4+Gjp0yM5ni0h2pXqHYGYPEAuIVBAVKy939zsa2193CHVWrYo7gLvvhkcegS/r1e3cc8+4Mj/iCDjwQGjbNr+xffllNFONHx+PV16pe611a+jfH049FY46Clq1ym9sIuUo0zuE1JuMmkMJARYtgttugzvugA8+qHu+d++4Aj/uONiuwBZQfO89ePhhGDMGnnuurgmrY0c4/XQ466zopBaR3FBCKCHu0S9w/fVxN7A6qaTfrVtcaZ9yChRLf/v778O998adzWuvxXNm8P3vw3nnQd++sS0i2aOEUAJqamDsWPjNb2KUEESfwKBBMHw4HHRQ8Z483WHKFLj5Zhg1qq5jeu+94cIL4xhbqodLJCsyTQiqZVSAamriJLnnnnDssZEMNt8cLr0U3n0XHnwwRu4UazKAiL1XL7jnHli4EK68MpqQXn4ZTjgBdtstXlu1Ku1IRcqHEkIBcY+29u7d4Yc/jCaVrl3hxhsjEfzqV9C5c9pRZt+WW8IvfgHvvAO33go77ghvvAFDhsDuu8MDD3x76KyIZJ8SQoF47rkYETRoEMyeHYngttvixHjuuTFTuNRttBGccQbMnQt/+lPMlXj9dTjxRNh3X3jyybQjFCltSggpW7AAjjkmmoAmT46r5ZtuihPhsGHZmy9QTFq2hNNOi8Rw++0xce7ll+Hww2M+w5w5aUcoUpqUEFKyYgVcfHG0lT/ySNwBXH45zJ8PZ58ds4XLXatWMHRoJMdf/xrat495Dd27w3/+JyxfnnaEIqVFCSHP3OGhh2CXXeCaa2J0zZAhcdL75S9VKK4hbdtG8pw/P+6aVq+OIbg77RQdz0U0UE6koCkh5NGbb0K/fnD88TEef999o5no7rth663Tjq7wdewY/SrTpkGfPrBkSSTTvn2jeUlE1o8SQh6sWgW//W2MmHniiagEesstMZx0//3Tjq749OwJzz4bHc8VFTBpUlRaveqqqK0kIutGCSHHZs2K0UM/+1nU+DnppLiaPfNMaNEi7eiKl1ldx/PQodH0dumlUcivjOYuimSVEkKOrFoFV18dFUanToVtt42KpPfeGwvMSHZssUWMRJo4MYapzpwZE95+8Ytvl+UWkaYpIeTA3LlxV/CLX0QTxllnwauvRnVPyY2+feNu7L/+KyaxXX017LdfLAokIplRQsgi95hD0LNn3V3BhAnwhz/EkEnJrbZt4Xe/i/6FHXaIZLDvvlELqrYgoIg0TgkhSz78MEYQnXtu9BWcdlpcsR52WNqRlZ8+fSIZnHVW3KFddFH8PyxcmHZkIoVNCSELxo2LQnRPPBFF6EaPjhEwWhksPe3axZ3ZuHEx+3vSpJjQNnp02pGJFC4lhPXw1VcxY7Z//1hr+LDDolNz0KC0I5Na/frFnVr//jGzefDgGOH1xRdpRyZSeJQQ1tGCBdFxfP31UXvn2mujrEKXLmlHJmvacstYV+LGG6M21G23Rd9C7QI9IhKUENbB6NGxkMvLL8P228dqZhdeCBvoX7NgmUX/zpQpsPPOUVF2332j9IWIBJ3CmuGrr+KkMngwfPJJNA298opmGxeTHj1i4topp8Dnn0fpi6FD43uRcqeEkKF3340lK2+6Kapw3nhjFKlTx3Hxadcu6kfdfjtsuCHceScccEAUzxMpZ0oIGRg/PpqIpk6F7baD55+PO4ViXsKy3JnFncGUKdCtWwwG2Gcf+Otf045MJD1KCE2oqYm1fo86CpYti8VZpk2LtmcpDd27R6I/7rhoBjz2WBgxQhPZpDwpITRi+fJYyeyyy2L7iitiTPsWW6Qbl2Rfhw4xUOC666Lg4LXXRvJfujTtyETySwmhAbNnRx2cRx+FzTaLRHDZZRpFVMrM4IILYt3mjh3j6z77xEgykXKx1lOcmW1sZhsk3+9kZgPMrFXuQ0vHww/HqKE33oga+9XVKkpXTg45JJLAfvvFQILevaNCrUg5yOSa91lgQzPrAkwETgfuymVQaVi9OqqTDhoEn30GJ54IL7wQRdKkvGyzTRTI+8lPoi7VKafEjPRVq9KOTCS3MkkI5u6fA8cB/8/djwV2y21Y+fXxxzBwYJRM3mCDqJh5771RPVPKU5s2MHIk3HprDDO+/nr4t39Tv4KUtowSgpkdAJwEjEuea5m7kPJr3rxoIho3LgrTjR8fNfU1pFQAzjgDnn46FjV6+ukYYTZzZtpRieRGJgnhp8DFwF/cfbaZ7QA8nduw8uPxx6OteN68qFY6darKVcu39e4dfUlVVfD22zGJTVVTpRRlkhA6ufsAd78WwN3fBJ7LbVi55R5DC/v3rytBof4CaUptv8LJJ0eZi8GDY+RZTU3akYlkTyYJ4eIMn2s2MzvSzOaZ2XwzG5GN91ybL76IP+oRIyIxXHEFjBoV5QxEmrLRRvDnP8Nvfxt9TVdeGRcTK1akHZlIdjTaF2BmRwH9gC5mdmO9l9oD6z3ewsxaADcDhwOLgKlmNtbdc1aUeNGimIlaXR0J4J57YvKZSKbM4PzzYY894Ic/jFIXBx4Y5bW33z7t6ETWT1N3CO8D04Avk6+1j7HAEVn47P2A+e7+pruvBB4EBmbhfRs0eXJ0CFZXxx/uiy8qGci6O+IIeOkl2GUXePXV+N2aNCntqETWT6MJwd1nuPtdwI7ufne9x8Pu/q8sfHYXoP4qt4uS57Lu7rvhu9+NdY+/973oPN5jj1x8kpSTnXaKC41+/aLW1eGHwy23pB2VyLprNCGY2Swzmwm8bGYz13xk4bMbGtjpDcQxzMyqzax6yZIlzf6Qjz+OxWtWroSzz45hpapHJNnSoUM0F114YUxcGz4czjoLvv467chEmq+p+QT9c/zZi4Bt621vQzRTfYO7jwRGAlRVVX0rYaxNhw4wZkzUJzrjjHUNVaRxtQXx9twTfvzjmMw2Z04MTa2oSDs6KQVPPRVlVXJdT62pJqN3ah9EP8KeyeOL5Ln1NRXoZmbbm1lr4ASifyLr+vRRMpDcO/nkGJrauTM884wmscn6W7UqBjEceihcdVXuPy+T4nbHAy8Bg4HjgSlm9oP1/WB3XwWcA4wH5gCj3H32+r6vSJr22y8GLuy7b0xiO/DAKJgo0lz/+lfMlfr976Fly5gtn2vm3nQrjJnNAA5398XJdkfgSXffK/fhfVNVVZVXV1fn+2NFmu2LL2DYsLpKqZdfrhLqkrm5c2HAgKi6XFERzd4HH7zu72dm09y9am37ZfLruUFtMkgsy/DnRMpW7SS2666LJHDFFZrEJpl57LFvluCfOnX9kkFzZHJi/5uZjTez08zsNKLA3eO5DUuk+NUuujNuXAxu+Otfow7SggVpRyaFyD0qLg8YECV1Bg+O9dsrK/MXQyYJ4UPgXqJDuTsw0t0vymlUIiXkyCPrJrHNnh39C+PHpx2VFJJPP4Xjj481WSASw//+L2y8cX7jyCQhbAKMIGYWLwBeyGlEIiVop51gyhQ4+ujoLOzXD37zm7gqlPK2YEFdBd1NNoFHHoFLLkmnBP9aE4K7X+HuuwNnA1sDz5jZkzmPTKTEtG8fzUa1VVIvughOOCGuDqU8PfFElFV/9dW4g5w6NS4a0tKczuHFRPPRMmDL3IQjUtpqO5j/8pe4Ghw1Cnr1ig5EKR81NTGvoF8/WL48+g2mTIGdd043rkzmIZxlZpOI9ZQrgJ+4e/dcByZSyo45Jk4Atf0KVVXw6KNpRyX58PHHcNxxcOmlsV17gdC+fbpxQWZ3CNsB57n77u5+eS7LU4uUk113jaRw7LExqmTAgOhUXL067cgkV2bNikEFjzwCm24aQ0wLaX5KJn0II9x9ej6CESk37dvHpKP//u84KVx9dZTWXoc6jlLg7rmnbn5B9+4xo71fv7Sj+qYCyUsi5cssVvCbMAE6doSJE6FnzxiDLsXvyy/hzDNhyJCYwX7aabEey447ph3ZtykhiBSIvn3hlVei/tF778UaHtddp3Wbi9n8+TGk9LbboE0b+OMf4c47oW3btCNrmBKCSAHp0iVWXrvgguhLuPBCGDgwFuCR4jJqFOy9N0yfHncDL74Y5dHTmF+QKSUEkQLTqlXcGYwdC5ttFh2PPXpEaW0pfJ9/HoUNf/jDqF01eDC8/HI0AxY6JQSRAnX00dGEdMABsGhRLP/6y19GjXwpTLWjiP74x2giuvnmKEFRCENKM6GEIFLAttsuFtu55JIoc3HFFbFy1ltvpR2Z1FdTAzfcEMngtddiSPFLL8WSqoXcRLQmJQSRAteqVQxHnTAhVmN7/vkoi3zPPaqFVAg++CCGj553Hnz1FQwdGiUouhfh9F0lBJEiceih0SRx3HHRNj1kSLRTL12admTl66GHYi3t8eNh881jdbzbb89/ldJsUUIQKSJbbBFVMe+4A9q1ixPS7rtH0TzJn2XLojDh8cfH94cfHsn62GPTjmz9KCGIFBkz+NGP4gR0yCGweHGciE4+WXcL+fDww5GEa9cruOWWuEPYeuu0I1t/SggiRaqyMmY133BDLNl5332w225xolLfQvZ9+CH84AexFOpHH8FBB8GMGTELuZg6jpuihCBSxDbYAP7jP2DmzLhbWLIkmjIGDIC33047utJQUwMjR8bIoTFjoqnu5ptjAmEhlp9YH0oIIiXgO9+Bp56KE1eHDjGZbbfd4JprYOXKtKMrXjNmQO/ecMYZsW7BUUdFufLhwwunQmk2leAhiZQnM/jJT2DuXDjxxCikdvHFMfzxiSfSjq64LFsG55wTpScmT47hvqNGwbhx0LVr2tHljhKCSInZaqvoT5gwIdZynjcvrmz794fXX087usL29dfRHLTTTvHVLJrk5s6NEhSl0lfQGCUEkRJ12GExEum3v43lOseNi2ak4cOjU1TquMfooT32iDuDf/4z5n1Mnx6d9sVSemJ9KSGIlLDWreH882NRlh//OE58t9wSnaGXXx7t4uXMHZ5+OvoJBg2KO6hu3SI5TJgQCaKcKCGIlIFOnaLg2qxZMQLps8/gV7+KoatXXFGeiWHSpBiZ1bdvlKbecstoJpo9O+Z1lHrzUEOUEETKyG67xXq+//hHNIl8/HFUUN1uO7joInj//bQjzK2amjj+3r2jeuyzz0aJ8auuisVshg+P2lHlSglBpAz17g1PPhmVVPv2hU8+gd/8Ju4YTj8dpk1LO8LsWrEimsp23x2OOQZeeCESwa9+FZVjf/7z6Gcpd0oIImXs4INjtvOUKTELd9UquOsuqKqCXr3gz3+O5qViNXMmnHturEQ3fHiMFuraFa6/Ht59Fy69NOZtSDAvojnuVVVVXl1dnXYYIiVr/nz4wx/gT3+q61do1y6KuA0ZAn36QIsW6ca4Nh99FOU77rorFhiq1acPnH12dB6XW7OQmU1z96q17qeEICJr+vxzuP/+WBD+xRfrnu/UKTpcBw2KWj5t2qQXY33vvBN9A2PGwHPP1dVy2myzKOVx5pnFuT5BthR0QjCzwcAvgV2B/dw9o7O8EoJI/s2bF01HDz4Ib75Z9/zGG8conSOOiOSw5575u3tYsiQS1cSJUWl03ry611q3jpiGDIllSAslaaWp0BPCrkANcBtwgRKCSOFzj4laY8bA2LExhLW+du1g//1jMfk994zHd76zfp21q1fDe+/BnDnRHzBzZixNueaM6/btY02C446LGdnlMpEsUwWdEP7vw80moYQgUpTefx/+/ve4Sn/hhW/ePdS3xRYxeqlTJ6ioiO22bePKvXXrOOmvXBnLTy5fHms6LF0KCxdGx+/XX3/7PTfaKJJPnz5xN7D//uXXL9AcmSaElvkIRkRKz9Zbw2mnxQNibeGXXqq7kp89O4Z0LlsWj3W11VYxe3ivveKuo2dP6NFDCSAXcpYQzOxJYKsGXvq5uz/SjPcZBgwD6FrKZQZFilznzjBwYDxq1dTEqJ+336678l+6FL78Mu4IVq6Mfofau4UOHeruIrp0iQlzbdumdkhlJ2cJwd0Py9L7jARGQjQZZeM9RSQ/NtggEkXnzmlHIpnQxDQREQFSSghmdqyZLQIOAMaZ2fg04hARkTpFNTHNzJYA76zjj1cAS7MYTrEox+Mux2OG8jzucjxmaP5xb+fuHde2U1ElhPVhZtWZDLsqNeV43OV4zFCex12Oxwy5O271IYiICKCEICIiiXJKCCPTDiAl5Xjc5XjMUJ7HXY7HDDk67rLpQxARkaaV0x2CiIg0oeQSgpkdaWbzzGy+mY1o4HUzsxuT12ea2d5pxJlNGRzzScmxzjSzF8xsrzTizLa1HXe9/fY1s9Vm9oN8xpcLmRyzmR1iZtPNbLaZPZPvGHMhg9/xDmb2qJnNSI779DTizCYzu9PMFpvZq428nv1zmbuXzANoASwAdgBaAzOA3dbYpx/wN8CAXsCUtOPOwzEfCGyWfH9UsR9zpsddb7+ngMeBH6Qddx7+rzcFXgO6Jttbph13no77EuDa5PuOwD+B1mnHvp7HfTCwN/BqI69n/VxWancI+wHz3f1Nd18JPAgMXGOfgcCfPUwGNjWzYq60stZjdvcX3P1fyeZkYJs8x5gLmfxfA5wLjAEW5zO4HMnkmE8EHnb3dwHcvVyO24FNzMyAdkRCWJXfMLPL3Z8ljqMxWT+XlVpC6AIsrLe9KHmuufsUk+Yez1DiqqLYrfW4zawLcCxwax7jyqVM/q93AjYzs0lmNs3MhuQtutzJ5LhvIlZgfB+YBfzU3WvyE15qsn4uK7X1EKyB59YcRpXJPsUk4+Mxs+8RCaFPTiPKj0yO+3rgIndfHReORS+TY24J7AMcCmwEvGhmk9399W/9ZPHI5LiPAKYDfYEdgQlm9py7f5Lr4FKU9XNZqSWERcC29ba3Ia4YmrtPMcnoeMysO3A7cJS7r8dyJQUjk+OuAh5MkkEF0M/MVrn7X/MTYtZl+vu91N0/Az4zs2eBvYBiTgiZHPfpwDUejevzzewtYBfgpfyEmIqsn8tKrcloKtDNzLY3s9bACcDYNfYZCwxJeuh7AR+7+wf5DjSL1nrMZtYVeBg4pcivFOtb63G7+/buXunulcBoYHgRJwPI7Pf7EeAgM2tpZm2B/YE5eY4z2zI57neJuyLMrBOwM9DIop4lI+vnspK6Q3D3VWZ2DjCeGJlwp7vPNrMzk9dvJUab9APmA58TVxZFK8NjvgzYAvhDcrW8you8IFiGx11SMjlmd59jZk8AM4Ea4HZ3b3DYYrHI8P/6SuAuM5tFNKVc5O5FXQXVzB4ADgEqkuUCLgdaQe7OZZqpLCIiQOk1GYmIyDpSQhAREUAJQUREEkoIIiICKCGIiEhCCUFERAAlBBERSSghiIgIoIQgIiIJJQQREQFKrJZRfRUVFV5ZWZl2GCIiGZs2bdpSd++Y1ueXbEKorKykuro67TBERDJmZu+k+flqMhIREaAAE4KZbWpmo81srpnNMbMDzGxzM5tgZm8kXzdLO04RkVJTcAkBuAF4wt13IVZ6mgOMACa6ezdgYrItIiJZVFAJwczaAwcDdwC4+0p3Xw4MBO5OdrsbOCadCKX4bUWsn7Lmo0UDz22VUowi6SiohADsACwB/mRmr5jZ7Wa2MdCpdmm45OuWaQYpxeyjRp6vaca+IqWp0BJCS2Bv4BZ37wl8RjOah8xsmJlVm1n1kiVLchWjlJWG7iZ05yClqdASwiJgkbtPSbZHEwniIzPrDJB8XdzQD7v7SHevcveqjh1TG8oreddYM1CuTty6c5DSVFAJwd0/BBaa2c7JU4cCrwFjgVOT504FHkkhPClYjZ2gdeIWaY5CnJh2LnCfmbUG3gROJxLXKDMbCrwLDE4xPhGRklRwCcHdpwNVDbx0aL5jkUK0FbryF8mNgmoyElk7JQORXFFCEBERQAlBSt6aI4/yraERUBq2KoVJCUEkpxpq4lKzlxQmJQQREQGUEEREJKGEIJIKlcSQwqOEIJIVjZXPaA71LUi6lBBEskIncyl+SggiIgIoIYiISEIJQUREACUEERFJKCGIiAhQgOWvRYpDGnWRRHJLdwgiIgIoIYiISEIJQUREgAJMCGbWwsxeMbPHku3NzWyCmb2RfN0s7RhFcmfN0hctGnhOdY8kNwouIQA/BebU2x4BTHT3bsDEZFukTNQ08rxKZUj2FVRCMLNtgO8Dt9d7eiBwd/L93cAx+Y5LRKQcFFRCAK4HLuSbl0Wd3P0DgOTrlmkEJiJS6gomIZhZf2Cxu09bj/cYZmbVZla9ZMmSLEYn+ZeNctIi0hwFkxCA3sAAM3sbeBDoa2b3Ah+ZWWeA5Ovixt7A3Ue6e5W7V3Xs2DEfMUvOqI1cJN8KJiG4+8Xuvo27VwInAE+5+8nAWODUZLdTgUdSClFEpKQVTEJowjXA4Wb2BnB4si0iIllWkLWM3H0SMCn5fhlwaJrxiIiUg2K4Q5CS0VhHsSZZiRSCgrxDkFLVWEfxR2gEkUj6dIcgIiKAEoKIiCSUEEREBFBCECli6pyX7FJCECkZmt0t60cJQUREACUEERFJKCGIiAighCAiIgklBBERAZQQREQkoYQgIiKAEoKIiCSUEEREBFBCkJxpaO0DESlkBZUQzGxbM3vazOaY2Wwz+2ny/OZmNsHM3ki+bpZ2rLI2KqNQOBpKzi0aeE71kMpdQSUEYBVwvrvvCvQCzjaz3YARwER37wZMTLZFJCMNJeeaZuwr5aKgEoK7f+DuLyffrwDmAF2AgcDdyW53A8ekE6GISOkq2CU0zawS6AlMATq5+wcQScPMtkwxNJECpr4aWXcFdYdQy8zaAWOA89z9k2b83DAzqzaz6iVLluQuQKmnofZpnZREilHBJQQza0Ukg/vc/eHk6Y/MrHPyemdgcUM/6+4j3b3K3as6duyYn4DLntqcRUpFQSUEMzPgDmCOu/++3ktjgVOT708FHsl3bCIipa7Q+hB6A6cAs8xsevLcJcA1wCgzGwq8CwxOKT4RkZJVUAnB3f9B4w3Qh+YzFhGRclNQTUYiIpIeJQQREQGUEEREJKGEICIigBKCiIgklBCkGVTSWqSUKSGUvYZO8o2VQNas5PKgUtnRCHzTAAAGeklEQVTlSgmh7DV0kteJX+prqlS2kkQpUUIQkSzSxUQxK6iZylJI1D8gUm50hyAiIoASQpFrbC0CteOKSPMpIRS1xtpr1Y4rIs2nhCAiIoASgoiIJJQQREQEUEIQEZGEEoKIiABFlBDM7Egzm2dm881sRNrxFJ/GhqiK5ENzamZJWooiIZhZC+Bm4ChgN+DfzWy37H9SNsb1N+cXv6F9c1VITENRJU2N1cxq6He9ob8BJY98KIqEAOwHzHf3N919JfAgMDD7H5ONcf3NKRbX0PPNKSTWFN0JSFrW9060ob+BbFzQ5OoupXTufoolIXQBFtbbXpQ8JyKSoVxV9i2disHFUtyuoUsM/9ZOZsOAYcnmp2Y2L7chZKwCbGm2IsmCCkDxNE7xNC2leBr9G1zPeLJ+B53Es07vu12WY2mWYkkIi4Bt621vA7y/5k7uPhIYma+gMmVm1e5elXYctRRP0xRP0xRP0wotnuYoliajqUA3M9vezFoDJwBjU45JRKSkFMUdgruvMrNzgPHEEIQ73X12ymGJiJSUokgIAO7+OPB42nGso0JrxlI8TVM8TVM8TSu0eDJm7t/qmxURkTJULH0IIiKSY0oIeWJmV5rZTDObbmZ/N7OtU47nOjObm8T0FzPbNOV4BpvZbDOrMbPURmgUUokUM7vTzBab2atpxlHLzLY1s6fNbE7yf/XTlOPZ0MxeMrMZSTxXpBlPLTNrYWavmNljacfSXEoI+XOdu3d39x7AY8BlKcczAdjD3bsDrwMXpxzPq8BxwLNpBZC/EikZuws4MsXPX9Mq4Hx33xXoBZyd8r/PV0Bfd98L6AEcaWa9Uoyn1k+BOWkHsS6UEPLE3T+pt7kxDUysyyd3/7u7r0o2JxNzO9KMZ467Z3Ei4TrJU4mUzLj7s8A/0/r8Nbn7B+7+cvL9CuKkl1rFAA+fJputkkeqf1dmtg3wfeD2NONYV0oIeWRmV5vZQuAk0r9DqO9HwN/SDqIAqERKhsysEugJTEk5jhZmNh1YDExw91TjAa4HLqTxomQFTQkhi8zsSTN7tYHHQAB3/7m7bwvcB5yTdjzJPj8nmgLuK4R4UpZRiZRyZ2btgDHAeWvc+eadu69OmmG3AfYzsz3SisXM+gOL3X1aWjGsr6KZh1AM3P2wDHe9HxgHXJ7DcNYaj5mdCvQHDvU8jD9uxr9PWjIqkVLOzKwVkQzuc/eH046nlrsvN7NJRJ9LWp3wvYEBZtYP2BBob2b3uvvJKcXTbLpDyBMz61ZvcwAwN61YIEbTABcBA9z98zRjKSAqkdIEMzPgDmCOu/++AOLpWDs6zsw2Ag4jxb8rd7/Y3bdx90rid+epYkoGoISQT9ckzSMzgX8jRiKk6SZgE2BCMhT21jSDMbNjzWwRcAAwzszG5zuGpJO9tkTKHGBUmiVSzOwB4EVgZzNbZGZD04ol0Rs4Beib/M5MT66G09IZeDr5m5pK9CEU3VDPQqKZyiIiAugOQUREEkoIIiICKCGIiEhCCUFERAAlBBERSSghSFkws03NbHi97a3NbHSOPusYM2u0NImZ7Wlmd+Xis0XWh4adSllIau885u45L21gZi8QE/6WNrHPk8CP3P3dXMcjkindIUi5uAbYMZlMdZ2ZVdauM2Bmp5nZX83sUTN7y8zOMbP/SmraTzazzZP9djSzJ8xsmpk9Z2a7rPkhZrYT8FVtMkjWeXg1qdlfv7T3o8RsVpGCoYQg5WIEsMDde7j7zxp4fQ/gRKIE9tXA5+7ek5gpPCTZZyRwrrvvA1wA/KGB9+kNvFxv+zLgiKRm/4B6z1cDB63H8YhknYrbiYSnkxr/K8zsY+IKHmAW0D2p8Hkg8FCU9AGgTQPv0xlYUm/7eeAuMxsF1C8GtxhIddU8kTUpIYiEr+p9X1Nvu4b4O9kAWJ6UWm7KF0CH2g13P9PM9icWTZluZj3cfRlRDfOLbAUvkg1qMpJysYIo5rdOkrr/b5nZYIjKn2a2VwO7zgG+U7thZju6+xR3vwxYSl157Z1Ir0yzSIOUEKQsJFflzycdvNet49ucBAw1sxnAbBpeXvNZoKfVtStdZ2azkg7sZ4EZyfPfI9bEECkYGnYqkmVmdgPwqLs/2cjrbYBngD711rUWSZ3uEESy79dA2yZe7wqMUDKQQqM7BBERAXSHICIiCSUEEREBlBBERCShhCAiIoASgoiIJJQQREQEgP8PAaKIqfCCz+EAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 2 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"\n",
|
|
"fig = plt.figure()\n",
|
|
"fig.subplots_adjust(top=0.8)\n",
|
|
"ax1 = fig.add_subplot(211)\n",
|
|
"ax1.set_ylabel('volts')\n",
|
|
"ax1.set_title('a sine wave')\n",
|
|
"\n",
|
|
"t = np.arange(0.0, 1.0, 0.01)\n",
|
|
"s = np.sin(2*np.pi*t)\n",
|
|
"line, = ax1.plot(t, s, color='blue', lw=2)\n",
|
|
"\n",
|
|
"# Fixing random state for reproducibility\n",
|
|
"np.random.seed(19680801)\n",
|
|
"\n",
|
|
"ax2 = fig.add_axes([0.15, 0.1, 0.7, 0.3])\n",
|
|
"n, bins, patches = ax2.hist(np.random.randn(1000), 50,\n",
|
|
" facecolor='yellow', edgecolor='yellow')\n",
|
|
"ax2.set_xlabel('time (s)')\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"ename": "AttributeError",
|
|
"evalue": "module 'seaborn' has no attribute 'set_theme'",
|
|
"output_type": "error",
|
|
"traceback": [
|
|
"\u001b[0;31m--------------------------------------------------------------\u001b[0m",
|
|
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
|
"\u001b[0;32m<ipython-input-13-a89cf2b5f8d5>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mseaborn\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0msns\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpyplot\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_theme\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstyle\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"whitegrid\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;31m# Load the example diamonds dataset\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
|
"\u001b[0;31mAttributeError\u001b[0m: module 'seaborn' has no attribute 'set_theme'"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"import seaborn as sns\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"sns.set_theme(style=\"whitegrid\")\n",
|
|
"\n",
|
|
"# Load the example diamonds dataset\n",
|
|
"diamonds = sns.load_dataset(\"diamonds\")\n",
|
|
"\n",
|
|
"# Draw a scatter plot while assigning point colors and sizes to different\n",
|
|
"# variables in the dataset\n",
|
|
"f, ax = plt.subplots(figsize=(6.5, 6.5))\n",
|
|
"sns.despine(f, left=True, bottom=True)\n",
|
|
"clarity_ranking = [\"I1\", \"SI2\", \"SI1\", \"VS2\", \"VS1\", \"VVS2\", \"VVS1\", \"IF\"]\n",
|
|
"sns.scatterplot(x=\"carat\", y=\"price\",\n",
|
|
" hue=\"clarity\", size=\"depth\",\n",
|
|
" palette=\"ch:r=-.2,d=.3_r\",\n",
|
|
" hue_order=clarity_ranking,\n",
|
|
" sizes=(1, 8), linewidth=0,\n",
|
|
" data=diamonds, ax=ax)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'/nix/store/4w1rxv6wfkv728jzmm6pqq3jsqd4yvi7-python3-3.7.3/bin:/nix/store/vcj6f6sv9v5gqjx27qf9sbkiiiap2v5p-python3.7-notebook-5.7.8/bin:/nix/store/zhhnxn9np7ly8gdycldvkdkzc7sgkjrq-python3.7-setuptools-41.0.1/bin:/nix/store/x3d33scgp0lk4b0qh3b18673f610bb2g-python3.7-jupyter_core-4.4.0/bin:/nix/store/g802a8fmwlidanw0j903xfzhh5q99qd5-python3.7-ipython-7.2.0/bin:/nix/store/k5jmrfn6q01xcggjd49rf78cvj21kbjl-python3.7-Pygments-2.3.1/bin:/nix/store/ww5qjqrcyzrdmdmj7wgvp4ycflg4rjh9-python3.7-docutils-0.14/bin:/nix/store/4hzr51hzdzx835vnhvri6bg18jx3w7sr-python3.7-jupyter_client-5.2.4/bin:/nix/store/g0bq93y20369j0275xzsdxin2idcpc0w-python3.7-nbformat-4.4.0/bin:/nix/store/84f6mzp4yw3f42l1bhwp7dyf4rwi6w6b-python3.7-jsonschema-2.6.0/bin:/nix/store/dnbxpvphxnmij8f5skxkym3a696y25m1-python3.7-nbconvert-5.4.1/bin:/nix/store/q3ida6v51vglk8l4v446481qgimnl7ap-python3.7-chardet-3.0.4/bin:/nix/store/x3d33scgp0lk4b0qh3b18673f610bb2g-python3.7-jupyter_core-4.4.0/bin:/nix/store/4w1rxv6wfkv728jzmm6pqq3jsqd4yvi7-python3-3.7.3/bin:/nix/store/x3d33scgp0lk4b0qh3b18673f610bb2g-python3.7-jupyter_core-4.4.0/bin:/nix/store/g802a8fmwlidanw0j903xfzhh5q99qd5-python3.7-ipython-7.2.0/bin:/nix/store/zhhnxn9np7ly8gdycldvkdkzc7sgkjrq-python3.7-setuptools-41.0.1/bin:/nix/store/k5jmrfn6q01xcggjd49rf78cvj21kbjl-python3.7-Pygments-2.3.1/bin:/nix/store/ww5qjqrcyzrdmdmj7wgvp4ycflg4rjh9-python3.7-docutils-0.14/bin:/nix/store/8kgsjv57icc18qhpmj588g9x1w34hi4j-bash-interactive-5.1-p12/bin:/nix/store/qpzwm6z4igakmqr4n4k6k3q0a4bqy3ws-patchelf-0.9/bin:/nix/store/1ap5d85630s3ksal6xgkjnbglmbng3kg-gcc-wrapper-7.4.0/bin:/nix/store/d8k7bv2w9g669dv7r9z4wrr9cnzdncdv-gcc-7.4.0/bin:/nix/store/2fxzw4ilrgc4klppk1nc50vgcwfphh1s-glibc-2.27-bin/bin:/nix/store/wpjdad5wpylnpqbjw4dbnih8f6q32l43-coreutils-8.31/bin:/nix/store/yzijh65sak6z06cdvrg9wi2d1964g6h3-binutils-wrapper-2.31.1/bin:/nix/store/c222w06ysx899n7r1jqaw96l6x6g8q9i-binutils-2.31.1/bin:/nix/store/2fxzw4ilrgc4klppk1nc50vgcwfphh1s-glibc-2.27-bin/bin:/nix/store/wpjdad5wpylnpqbjw4dbnih8f6q32l43-coreutils-8.31/bin:/nix/store/awzvfmszh60vfkajsg1mgvyq81vlm50m-chord-0.1.0/bin:/nix/store/r1az7lczwhzwz8hss7rvj0gnm7xlri5v-python3-3.7.3-env/bin:/nix/store/wpjdad5wpylnpqbjw4dbnih8f6q32l43-coreutils-8.31/bin:/nix/store/d9y878m6hk96mc05pz4vdzqrlqcfl7rs-findutils-4.6.0/bin:/nix/store/xnvj5phwyv5fj4idkrwass1243nn5n19-diffutils-3.7/bin:/nix/store/g92ybkzhiqcw7xsz5yq1dayjjlhll914-gnused-4.7/bin:/nix/store/da2jifip9xsab81yh34h887a1fwnz9gd-gnugrep-3.3/bin:/nix/store/vk9rvr21phkc2jfb765rnrlhb171ywh2-gawk-4.2.1/bin:/nix/store/d34nmar6fd15yf24rw8h5aiiwcywlzbq-gnutar-1.32/bin:/nix/store/f1689ai31ca0m7j6q8lpyf10z16rmrmw-gzip-1.10/bin:/nix/store/cr2fv6r0bic97wmakjdxcwbvyp4hqn2z-bzip2-1.0.6.0.1-bin/bin:/nix/store/cpn4i0g3s7m5l0i6v1i7k855ylfxfn0g-gnumake-4.2.1/bin:/nix/store/fyxcppddjg7abrand8n10gwzm5gknc48-bash-4.4-p23/bin:/nix/store/1nnnsl2l0hcnzcy4410pbpicsvkfkzj9-patch-2.7.6/bin:/nix/store/rshc59lkp5j44fjzg2a5hi2ril4dd7ka-xz-5.2.4-bin/bin:/home/dumball/.autojump/bin:/run/wrappers/bin:/home/dumball/.nix-profile/bin:/etc/profiles/per-user/dumball/bin:/nix/var/nix/profiles/default/bin:/run/current-system/sw/bin'"
|
|
]
|
|
},
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"import matplotlib\n",
|
|
"import os\n",
|
|
"os.environ.get('MPLCONFIGDIR')\n",
|
|
"os.environ.get('PATH')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import os \n",
|
|
"import tempfile\n",
|
|
"os.environ['MPLCONFIGDIR'] = tempfile.mkdtemp()\n",
|
|
"import matplotlib"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'/run/user/1000/tmpc2r9f11o'"
|
|
]
|
|
},
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"import matplotlib\n",
|
|
"import os\n",
|
|
"os.environ.get('MPLCONFIGDIR')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 19,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"0.9.0\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(sns.__version__)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Using TensorFlow backend.\n"
|
|
]
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz\n",
|
|
"11493376/11490434 [==============================] - 14s 1us/step\n",
|
|
"WARNING:tensorflow:From /nix/store/49fyimyln41iyh8ghp35q1bxf6lnfj97-python3-3.7.3-env/lib/python3.7/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.\n",
|
|
"Instructions for updating:\n",
|
|
"Colocations handled automatically by placer.\n",
|
|
"WARNING:tensorflow:From /nix/store/49fyimyln41iyh8ghp35q1bxf6lnfj97-python3-3.7.3-env/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.\n",
|
|
"Instructions for updating:\n",
|
|
"Use tf.cast instead.\n",
|
|
"Train on 60000 samples, validate on 10000 samples\n",
|
|
"Epoch 1/10\n",
|
|
"60000/60000 [==============================] - 5s 75us/step - loss: 0.0763 - val_loss: 0.0529\n",
|
|
"Epoch 2/10\n",
|
|
"60000/60000 [==============================] - 4s 67us/step - loss: 0.0436 - val_loss: 0.0355\n",
|
|
"Epoch 3/10\n",
|
|
"60000/60000 [==============================] - 4s 68us/step - loss: 0.0328 - val_loss: 0.0296\n",
|
|
"Epoch 4/10\n",
|
|
"60000/60000 [==============================] - 4s 69us/step - loss: 0.0285 - val_loss: 0.0265\n",
|
|
"Epoch 5/10\n",
|
|
"60000/60000 [==============================] - 4s 68us/step - loss: 0.0259 - val_loss: 0.0244\n",
|
|
"Epoch 6/10\n",
|
|
"60000/60000 [==============================] - 4s 68us/step - loss: 0.0240 - val_loss: 0.0227\n",
|
|
"Epoch 7/10\n",
|
|
"60000/60000 [==============================] - 4s 69us/step - loss: 0.0225 - val_loss: 0.0215\n",
|
|
"Epoch 8/10\n",
|
|
"60000/60000 [==============================] - 4s 69us/step - loss: 0.0214 - val_loss: 0.0205\n",
|
|
"Epoch 9/10\n",
|
|
"60000/60000 [==============================] - 4s 71us/step - loss: 0.0205 - val_loss: 0.0197\n",
|
|
"Epoch 10/10\n",
|
|
"60000/60000 [==============================] - 4s 71us/step - loss: 0.0197 - val_loss: 0.0189\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"import keras\n",
|
|
"from keras.datasets import mnist\n",
|
|
"from keras.models import Sequential, Model\n",
|
|
"from keras.layers import Dense, Input\n",
|
|
"from keras import optimizers\n",
|
|
"from keras.optimizers import Adam\n",
|
|
"\n",
|
|
"(x_train, y_train), (x_test, y_test) = mnist.load_data()\n",
|
|
"train_x = x_train.reshape(60000, 784) / 255\n",
|
|
"val_x = x_test.reshape(10000, 784) / 255\n",
|
|
"\n",
|
|
"autoencoder = Sequential()\n",
|
|
"autoencoder.add(Dense(512, activation='elu', input_shape=(784,)))\n",
|
|
"autoencoder.add(Dense(128, activation='elu'))\n",
|
|
"autoencoder.add(Dense(10, activation='linear', name=\"bottleneck\"))\n",
|
|
"autoencoder.add(Dense(128, activation='elu'))\n",
|
|
"autoencoder.add(Dense(512, activation='elu'))\n",
|
|
"autoencoder.add(Dense(784, activation='sigmoid'))\n",
|
|
"autoencoder.compile(loss='mean_squared_error', optimizer = Adam())\n",
|
|
"trained_model = autoencoder.fit(train_x, train_x, batch_size=1024, epochs=10, verbose=1, validation_data=(val_x, val_x))\n",
|
|
"encoder = Model(autoencoder.input, autoencoder.get_layer('bottleneck').output)\n",
|
|
"encoded_data = encoder.predict(train_x) # bottleneck representation\n",
|
|
"decoded_output = autoencoder.predict(train_x) # reconstruction\n",
|
|
"encoding_dim = 10\n",
|
|
"\n",
|
|
"# return the decoder\n",
|
|
"encoded_input = Input(shape=(encoding_dim,))\n",
|
|
"decoder = autoencoder.layers[-3](encoded_input)\n",
|
|
"decoder = autoencoder.layers[-2](decoder)\n",
|
|
"decoder = autoencoder.layers[-1](decoder)\n",
|
|
"decoder = Model(encoded_input, decoder)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"this is putting a huge load on my computer \n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(\"this is putting a huge load on my computer \")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[5070.066]\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"%matplotlib inline\n",
|
|
"from keras.preprocessing import image\n",
|
|
"img = image.load_img(\"./hello.png\", target_size=(28, 28), color_mode = \"grayscale\")\n",
|
|
"input_img = image.img_to_array(img)\n",
|
|
"inputs = input_img.reshape(1,784)\n",
|
|
"target_data = autoencoder.predict(inputs)\n",
|
|
"dist = np.linalg.norm(inputs - target_data, axis=-1)\n",
|
|
"print(dist)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[6674.866]\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"%matplotlib inline\n",
|
|
"from keras.preprocessing import image\n",
|
|
"img = image.load_img(\"./1_nlfLUgHUEj5vW7WVJpxY-g.png\", target_size=(28, 28), color_mode = \"grayscale\")\n",
|
|
"input_img = image.img_to_array(img)\n",
|
|
"inputs = input_img.reshape(1,784)\n",
|
|
"target_data = autoencoder.predict(inputs)\n",
|
|
"dist = np.linalg.norm(inputs - target_data, axis=-1)\n",
|
|
"print(dist)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.7.3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|