Probability and Statistics LabBS-252

Faculty Name: Dr. Soumi Ghosh **Assisstant Professor** I.T. Department

Student: AMNEESH SINGH Enrollment: 14114803121

Semester: IV Group: I7

Maharaja Agrasen Institute of Technology, PSP Area, Sector-22, Rohini, New Delhi 110086

PROBABILITY AND STATISTICS LAB PRACTICAL RECORD

Paper Code : BS-252

Name of the student : Amneesh Singh University Enrollment number : 14114803121

Branch : Information Technology

Group : I7

PRACTICAL DETAILS

Experiments according to the lab syllabus prescribed by GGSIPU

Exp. No.	Experiment Name	Perfor- mance Date	Date Checked	Marks

Objective

Installation of Scilab and demonstration of simple programming concepts like matrix multiplication (scalar and vector), loop, conditional statements and plotting.

Method

- 1. Installed Scilab binary on desktop via nix package manager.
- 2. Launched the binary and opened console.
- 3. Declared matrix and integer, evaluated the product of matrix with a scalar

Code

```
A = [4 8 12; 16 32 48; 64 72 80];
x = 5;
B = x * A;
disp(B);
```

Output

```
--> disp(B);

20. 40. 60.

80. 160. 240.

320. 360. 400.
```

4. Declared another matrix and evaluated the vector product

Code

```
A = [12 32 54; 9 4 2; 1 2 3];
B = [1 2 3; 7 2 4; 11 2 13];
x = 5;
C= x * A * B;
disp(C);
```

Output

```
-> disp(C);
4150. 980. 4330.
295. 150. 345.
240. 60. 250.
```

5. Declared another matrix and evaluated the dot product

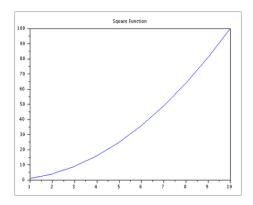
```
A = [12 32 54];
B = [1 2 3];
dot = A * B';
disp(dot);
```

6. Declared another matrix and evaluated the dot product

Code

```
x = 1:10;
y = x .^ 2;
plot(x,y);
title('Square Function');
```

Output



Result

Installed Scilab and demonstrated simple programming concepts like matrix multiplication (scalar and vector), loop, conditional statements and plotting.

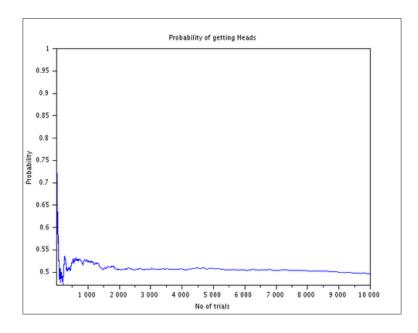
Objective

Program for demonstration of theoretical probability limits.

Method

- 1. Opened Scilab console and evaluated the following commands.
- 2. Declared integer *n* and set it to 10000, similarly declared and set another integer *head_count* to 0.
- 3. Set up a loop from 1 to 10000 and generated a random number between 0 and 1 using rand() command
- 4. if the value of number is less then 0.5 then incremented *head_count* by 1
- 5. Set up a function P(i) for probability of heads in trial.
- 6. Plotted the graph of P(i) using plot() command.

```
n = 10000;
head_count = 0;
for i = 1:n
x = rand(1)
if x<0.5 then
  head_count = head_count + 1;
end
p(i) = head_count / i;
end
disp(p(10000))
plot(1:n,p)
xlabel("No of trials");
ylabel("Probability");
title("Probability of getting Heads");
```



Result

We see that as the number of lips increase the theoretical probability of 0.5 is approached and the theoretical and practical probabilities become the same.

Objective

Program to plot normal distributions and exponential distributions for various parametric values.

a) Method: Normal Distribution

- 1. Opened Scilab console and evaluated the following commands.
- 2. Declared 2 arrays, m_values and s_values with various parametric values of mean and standard deviation.
- 3. Set up a loop from 1 to length of the array *means* and got a pair of values of mean and standard deviation.
- 4. Using those values, generated the probability density function

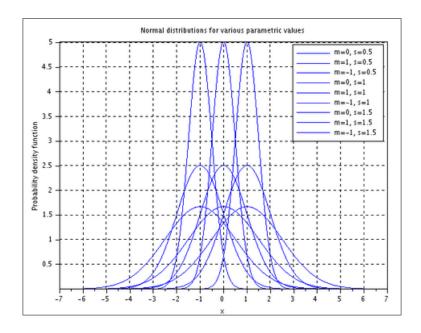
$$f(\boldsymbol{x}) = \frac{1}{s} \cdot \sqrt{2\pi} \cdot e^{\frac{-(\boldsymbol{x} - m)^2}{(2*s^2)}}$$

- 5. Created a range of *x* values to plot the normal distribution using linspace() command.
- 6. Correctly titled and labelled the graph.
- 7. Plotted various normal distribution curves using plot() command.

a) Code

```
m \text{ values} = [0, 1, -1];
s values = [0.5, 1, 1.5];
for m = m_values
for s =s values
  t =grand(1, 1000, "nor", m, s);
  x = linspace(m-4*s, m+4*s, 1000)
  y = (1/s*sqrt(2*\%pi))*exp(-(x - m).^2/(2*s^2));
  plot(x, y);
  hold on;
  xgrid();
end
legend("m=0, s=0.5", "m=1, s=0.5", "m=-1, s=0.5",...
      "m=0, s=1" , "m=1, s=1" , "m=-1, s=1", ...
      "m=0, s=1.5", "m=1, s=1.5", "m=-1, s=1.5");
xlabel("x")
ylabel("Probability density function");
title("Normal distributions for various parametric values");
```

a) Output



b) Method: Exponential Distribution

- 1. Opened Scilab console and evaluated the following commands.
- 2. Declared an array, $lambda_values$ with various values of lambda
- 3. Set up a loop from 1 to length of the array *lambda_values* and the function grand() is used to generate 1000 random numbers from the exponential distribution.
- 4. Using those values, generated the probability density function

```
f(x) = Y = lambda \cdot e^{-lambda \cdot x}
```

- 5. Created a range of *x* values to plot the exponential distribution using linspace() command.
- 6. Correctly titled and labelled the graph.
- 7. Plotted various exponential distribution curves using plot() command.

b) Code

```
lambda_values = [0.5, 1, 2];
for lambda = lambda_values
t = grand(1, 1000, "exp", lambda);
x = linspace(0, 8/lambda, 1000);
y = lambda * exp(-lambda * x);

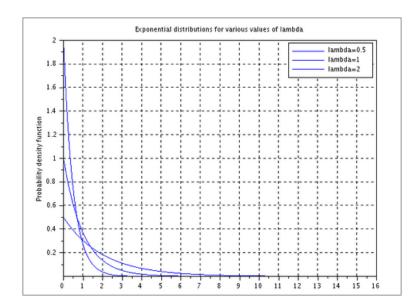
plot(x, y);

xgrid();
hold on;
```

 $\quad \text{end} \quad$

```
xlabel("x");
ylabel("Probability density function");
title("Exponential distributions for various values of lambda");
legend(["lambda=0.5", "lambda=1", "lambda=2"]);
```

b) Output



Objective

Program to plot normal distributions and exponential distributions for various parametric values.

Theory

Binomial Distribution: A probability distribution that summarizes the likelihood that a variable will take one of two independent values under a given set of parameters. The distribution is obtained by performing a number of Bernoulli trials. A Bernoulli trial is assumed to meet each of these criteria:

- 1. There must be only 2 possible outcomes.
- 2. Each outcome has a fixed probability of occurring. A success has the probability of p, and a failure has the probability of 1-p.
- 3. Each trial is completely independent of all others.
- 4. To calculate the binomial distribution values, we can use the binomial distribution formula:

$$P(X = x) = {}^{n}C_{x} \cdot p^{x} \cdot (1 - p)^{n-x}$$

where n is the total number of trials, p is the probability of success, and x is the number of successes. We can calculate the binomial distribution values for each possible value of x using this formula and the values of x and y given above.

Problem statement

6 fair dice are tossed 1458 times. Getting a 2 or a 3 is counted as success. Fit a binomial distribution and calculate expected frequencies.

Method

- 1. Find the number of cases, times the experiment is repeated, and the probability of success.
- 2. Here, we have to find the Binomial Probability Distribution, which is defined as:

$$P(X = x) = \frac{n!}{x! \cdot (n-x)!} \cdot s^x \cdot (1-s)^{n-x}$$

Calculate it.

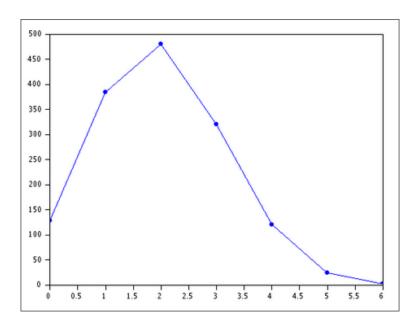
- 1. Calculate the frequency, which is given by E = P*N.
- 2. Put the calculated values in the table below.

X	Expected Frequency	Binomial Distribution $P(X = x)$
0	28.43	0.004831
1	181.83	0.003107
2	547.50	0.009387
3	1009.53	0.017307
4	1213.50	0.020803
5	947.25	0.016255
6	312.50	0.002132

Steps

- 1. Find the number of cases, here, we take it as n.
- 2. Find the probability of success. Here, we take it as s = 2/6.
- 3. Define the number of times the process is repeated, and mark it as N. Here, acc to question, it's 1458.
- 4. Take a variable *x* that varies from 0 to number of cases.
- 5. Apply the Formula for Binomial Probability Distribution.
- 6. Apply the formula for the Frequency.
- 7. Plot the Graph.

```
n=6;
s=1/3;
N=1458;
x=0:n;
P= (1-s).^(n-x).*s.^x.*factorial(n)./(factorial(x).*factorial(n-x));
E= P*N;
clf();
plot(x,E,"b.-");
```



Objective

Program for fitting of binomial distributions after computing mean and variance.

Theory

Binomial Distribution: A probability distribution that summarizes the likelihood that a variable will take one of two independent values under a given set of parameters. The distribution is obtained by performing a number of Bernoulli trials. A Bernoulli trial is assumed to meet each of these criteria:

- 1. There must be only 2 possible outcomes.
- 2. Each outcome has a fixed pobability of occurring. A success has the probability of p, and a failure has the probability of 1-p.
- 3. Each trial is completely independent of all others.
- 4. To calculate the binomial distribution values, we can use the binomial distribution formula:

$$P(X = x) = {}^{n}C_{x} \cdot p^{x} \cdot (1 - p)^{n-x}$$

where n is the total number of trials, p is the probability of success, and x is the number of successes. We can calculate the binomial distribution values for each possible value of x using this formula and the values of x and y given above.

Problem statement

A set of three similar coins are tossed 100 (N) times with the following results

No. of Heads
$$(x)$$
 0 1 2 3 Frequency (f) 36 40 22 2

Fit a binomial distribution and calculate expected frequencies.

Method

- 1. For given data, total number of coins(n) = 3 and total number of trials(N) would be = 100
- 2. Find $X \cdot F$ to calculate the mean, for all corresponding values of X and F, and calculate $\Sigma F \cdot x$

12

Mean would then be = $\frac{\Sigma F \cdot x}{n}$ i.e., $\frac{90}{100} = 0.9$.

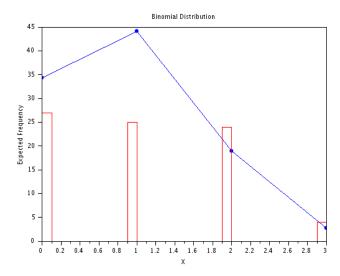
1. Since we know for binomial distribution, $mean = n \cdot p$. So, $0.9 = 3 \cdot p \Rightarrow p = 0.3$.

- 2. Calculate variance. We already know that $var = n \cdot p \cdot (1-p)$.
- 3. Now, calculate Binomial distribution, P(X = x) and calculate expectes valued using $P \cdot N$.

X	F	$\mid X \cdot F \mid$
0	36	0
1	40	40
2	22	44
3	2	6
TOTAL(N)	100	90

X	0	1	2	3	TOTAL
Observed Frequency	26	40	2 2	2	100
Expected Frequency	343	44.1	18.9	2.7	100

```
n = 3;
N = 100;
F = [36, 40, 22, 2];
X = [0,1,2,3];
FX = (36*0+40*1+22*2+2*3);
Mean = FX/N;
disp("Mean = ", Mean);
p = Mean/n;
disp("Probability of success = ",p);
var = n*p*(1-p);
disp("Variance = ",var);
x = 0:3;
P= (1-p).^(n-x).*p.^x.*((factorial(n))./((factorial(x).*factorial(n-x))));
disp("Binomial distribution = ",P);
E = N*P;
disp("Expected Frequency = ", E);
clf();
plot(X,E,"b.-");
xlabel('X ');
ylabel('Expected Frequency');
title('Binomial Distribution ');
Y = grand(1, 80, "bin", 3,p);
disp(Y);
histplot(30, Y, normalization=%f, style=5);
```



Objective

Program for fitting of Poisson distributions for given value of lambda..

Theory

Poisson Distribution: The Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space, assuming that these events occur with a known constant rate and independently of the time since the last event. It is often used to model rare events.

The Poisson distribution has only one parameter, often denoted as λ , which represents the average rate of occurrence of the events over the given interval. The probability of observing exactly k events in the interval is given by the Poisson probability mass function:

$$P(X = k) = (e^{-\lambda} * \lambda^k)/k!$$

where X is the random variable representing the number of events, e is the base of the natural logarithm, and k! denotes the factorial of k.

The mean and variance of the Poisson distribution are both equal to λ , which means that the distribution is unimodal and symmetric around λ .

The Poisson distribution is also a limiting case of the binomial distribution, when the number of trials n goes to infinity and the probability of success p goes to zero, but the product $n \cdot p$ remains constant and equal to λ .

Problem statement

A set of three similar coins are tossed 100 (N) times with the following results in Table 1. Note the difference with experiment number 4 where "observed frequencies" were not given.

No. of Heads
$$(x) | 0 1 2 3$$

Frequency $(f) | 36 40 22 2$

Table 1: Table 1

Fit a binomial distribution and calculate expected frequencies.

Method

- 1. For given data, create a table (Table 2) to record the values of x, f, and xf. Here, x denotes the number of heads obtained in a single toss, f is the frequency of obtaining x heads, and xf is the product of x and f.
- 2. The mean of the binomial distribution can be calculated as $N \cdot p$, where N is the total number of trials and p is the probability of getting a head. Here, N = 100.

$$\begin{array}{c|ccccc}
x & 0 & 1 & 2 & 3 \\
f & 36 & 40 & 22 & 2 \\
xf & 0 & 40 & 44 & 6
\end{array}$$

Table 2: Table 2

- 3. Calculate the value of p, using the formula $p = \frac{x}{N}$, where x is the number of heads obtained in the 100 tosses. So, p = (036 + 140 + 222 + 32)/100 = 0.64.
- 4. Using the formula for the binomial distribution, calculate the expected frequency of obtaining x heads in a single toss as:

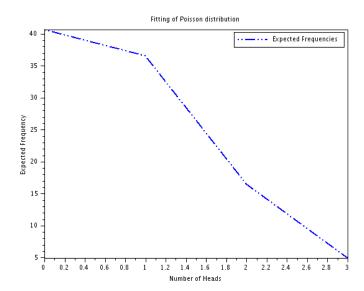
```
P(X = x) = {}^{n}C_{x} \cdot p^{x} \cdot (1 - p)^{n-x}
```

Where n is the total number of trials, x is the number of successful trials, and ${}^{n}C_{x}$ is the binomial coefficient. We can then multiply this value by 100 to get the expected frequency for each value of x.

Tabulate this information in Table 3.

Table 3: Table 3

```
observed_freq = [36, 40, 22, 2];
N = sum(observed freq);
x = 0:3;
mean = sum(x .* observed_freq) / N;
// Poisson distribution with lambda = mean
expected_freq = N * exp(-mean) * (mean .^ x) ./ factorial(x);
// Output tables
disp(["x", "Observed Freq", "Expected Freq"]);
disp([x', observed_freq', expected_freq']);
// Plot of expected frequencies
clf();
plot(x, expected_freq, '.-', 'LineWidth', 2);
xlabel('Number of Heads');
ylabel('Expected Frequency');
title('Fitting of Poisson distribution');
legend('Expected Frequencies');
```



Objective:

Plotting Regression line for the given data points.

Formulation and Method

Regression line

$$y = m \cdot x + b \tag{1}$$

where, m = slope, b = y-intercept.

Method of least squares:

$$E = \sum_{i} (Y_i - (m \cdot x + b))^2 \tag{2}$$

Find $\frac{\partial e}{\partial m}$, $\frac{\partial e}{\partial b} = 0$

Problem statement

Find the regression line for the given data points (x,y)

X	Y
20	0.18
60	0.37
100	0.35
140	0.70
160	0.56
220	0.75
260	0.18
300	0.36
340	1.17
380	1.65

Method

- 1. Make \boldsymbol{x} data and \boldsymbol{y} data lists.
- 2. Use regline() to find m and b
- 3. Use scatter() to plot x data and y data
- 4. Use plot() to draw regression line.

Results

The following are required as output:

- 1. The full code.
- 2. The plot for regression line and data points.

Code

```
x_data = [20,60,100,140,160,220,260,300,340,380]
y_data = [0.18,0.37,0.35,0.70,0.56,0.75,0.18,0.36,1.17,1.65]

[a, b] = reglin(x_data, y_data);
scatter(x_data,y_data,30,"x")
plot(x_data, a*x_data+b,"red")

xlabel("X")
ylabel("Y")
title("Simple Linear Regression")
```

