25 Commits

Author SHA1 Message Date
fae03a263b cpu/arm: fix MSR by changing modes
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-13 03:55:08 +05:30
c4a9c5ee5e cpu: align PC every step
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-13 03:54:46 +05:30
0029e302b2 cpu/arm: fix block data transfer
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-13 03:54:12 +05:30
08cc582f23 io: i really ought to be working on the ppu and apu by now
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-13 03:53:25 +05:30
933b622493 io(placeholder): add naive io structure
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-11 23:30:22 +05:30
8b80f818c6 cpu/psr(chore): minor change
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-11 23:29:05 +05:30
441665abad cpu/arm: fix single data transfer
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-11 23:28:27 +05:30
1a2e101ebd cpu/arm: fix branch and exchange
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-11 23:27:07 +05:30
f34efb183f cpu: fix changing modes
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-11 23:26:02 +05:30
9e6b121918 cpu/thumb: fix pc relative load
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-11 23:22:34 +05:30
15c4802838 cpu/{arm|thumb}(chore): change how branch disassembly happens
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-11 23:21:39 +05:30
0062ad424b chore: stage bunch of size_t to uint32_t
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-11 22:58:09 +05:30
028c80f6cb comeback(?)
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-11 22:46:48 +05:30
174008f60c memory: bus and rom should not be writeable
so fix tests and shit

Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-10-05 00:21:18 +05:30
e0f7f32699 refactor: reorganize everything
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-10-04 01:41:38 +05:30
36d71a4ee2 thumb: add execution of instructions
also arm: fix some instructions

Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-30 01:31:09 +05:30
03dbb7052f nix: bump
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-30 01:30:44 +05:30
0f09874929 cpu: get rid of the test workaround
now can we remove the pimpl?

Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-27 22:43:50 +05:30
03ebc6378a clang: make linter happy
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-27 17:36:25 +05:30
5ec5e6dddc thumb: add disassembler
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-27 17:31:00 +05:30
208527b7f8 thumb: initialise instruction formats
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-27 01:36:05 +05:30
6822e1255a meson: make disassembler feature true by default
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-27 01:33:51 +05:30
bd91112509 refactor: make disassembler optional
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-27 01:31:32 +05:30
1baebd72f6 refactor: make cpu-impl private when not testing
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-27 01:25:47 +05:30
b55f6ee16b refactor: replace fmt ostreams with stringify
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2023-09-27 01:24:32 +05:30
62 changed files with 5792 additions and 1340 deletions

2
.gitignore vendored
View File

@@ -3,5 +3,5 @@ result
build/ build/
.cache/ .cache/
*~ *~
#*# \#*\#
.#* .#*

View File

@@ -5,18 +5,21 @@ But if you are curious (probably not), read ahead
# Dependencies # Dependencies
## Tested toolchains ## Tested toolchains
- LLVM 16.0.6 - LLVM 18.1.7
- GCC 12.3.0 - GCC 14.1.0
In theory, any toolchain supporting at least the C++20 standard should work. In theory, any toolchain supporting at least the c++23 standard should work.
I am using LLVM's clang and libcxx as the primary toolchain. I am using LLVM's clang and libcxx as the primary toolchain.
## Static libraries ## Static libraries
| Name | Version | Required? | | Name | Version | Required? | Purpose |
|:------:|:----------|:---------:| |:------:|:--------|:---------:|:---------:|
| fmt | >= 10.1.1 | yes | | catch2 | >= 3.4 | no | for tests |
| catch2 | >= 3.4 | for tests |
This goes without saying but using a different toolchain to compile these libraries before linking probably won't work. This goes without saying but using a different toolchain to compile these libraries before linking probably won't work.
I will add meson wrap support once LLVM 17 is out, since I want to get rid of fmt.
-----
# LOG
- June 11, 2024: After almost an year, I have come back to this silly abandoned project, will probably complete it soon.

View File

@@ -7,8 +7,7 @@
#include <fstream> #include <fstream>
#include <iostream> #include <iostream>
#include <memory> #include <memory>
#include <ostream> #include <thread>
#include <unistd.h>
#include <vector> #include <vector>
// NOLINTBEGIN // NOLINTBEGIN
@@ -93,7 +92,7 @@ main(int argc, const char* argv[]) {
matar::Cpu cpu(bus); matar::Cpu cpu(bus);
while (true) { while (true) {
cpu.step(); cpu.step();
sleep(2); std::this_thread::sleep_for(std::chrono::seconds(1));
} }
} catch (const std::exception& e) { } catch (const std::exception& e) {
std::cerr << "Exception: " << e.what() << std::endl; std::cerr << "Exception: " << e.what() << std::endl;

30
flake.lock generated
View File

@@ -5,11 +5,11 @@
"nixpkgs-lib": "nixpkgs-lib" "nixpkgs-lib": "nixpkgs-lib"
}, },
"locked": { "locked": {
"lastModified": 1693611461, "lastModified": 1717285511,
"narHash": "sha256-aPODl8vAgGQ0ZYFIRisxYG5MOGSkIczvu2Cd8Gb9+1Y=", "narHash": "sha256-iKzJcpdXih14qYVcZ9QC9XuZYnPc6T8YImb6dX166kw=",
"owner": "hercules-ci", "owner": "hercules-ci",
"repo": "flake-parts", "repo": "flake-parts",
"rev": "7f53fdb7bdc5bb237da7fefef12d099e4fd611ca", "rev": "2a55567fcf15b1b1c7ed712a2c6fadaec7412ea8",
"type": "github" "type": "github"
}, },
"original": { "original": {
@@ -20,11 +20,11 @@
}, },
"nixpkgs": { "nixpkgs": {
"locked": { "locked": {
"lastModified": 1695318763, "lastModified": 1717868076,
"narHash": "sha256-FHVPDRP2AfvsxAdc+AsgFJevMz5VBmnZglFUMlxBkcY=", "narHash": "sha256-c83Y9t815Wa34khrux81j8K8ET94ESmCuwORSKm2bQY=",
"owner": "nixos", "owner": "nixos",
"repo": "nixpkgs", "repo": "nixpkgs",
"rev": "e12483116b3b51a185a33a272bf351e357ba9a99", "rev": "cd18e2ae9ab8e2a0a8d715b60c91b54c0ac35ff9",
"type": "github" "type": "github"
}, },
"original": { "original": {
@@ -36,20 +36,14 @@
}, },
"nixpkgs-lib": { "nixpkgs-lib": {
"locked": { "locked": {
"dir": "lib", "lastModified": 1717284937,
"lastModified": 1693471703, "narHash": "sha256-lIbdfCsf8LMFloheeE6N31+BMIeixqyQWbSr2vk79EQ=",
"narHash": "sha256-0l03ZBL8P1P6z8MaSDS/MvuU8E75rVxe5eE1N6gxeTo=", "type": "tarball",
"owner": "NixOS", "url": "https://github.com/NixOS/nixpkgs/archive/eb9ceca17df2ea50a250b6b27f7bf6ab0186f198.tar.gz"
"repo": "nixpkgs",
"rev": "3e52e76b70d5508f3cec70b882a29199f4d1ee85",
"type": "github"
}, },
"original": { "original": {
"dir": "lib", "type": "tarball",
"owner": "NixOS", "url": "https://github.com/NixOS/nixpkgs/archive/eb9ceca17df2ea50a250b6b27f7bf6ab0186f198.tar.gz"
"ref": "nixos-unstable",
"repo": "nixpkgs",
"type": "github"
} }
}, },
"root": { "root": {

View File

@@ -26,7 +26,7 @@
".hh" ".hh"
".cc" ".cc"
".build" ".build"
"meson_options.txt" ".options"
]; ];
in in
rec { rec {

View File

@@ -1,6 +1,7 @@
#pragma once #pragma once
#include "memory.hh" #include "memory.hh"
#include "io/io.hh"
#include <memory> #include <memory>
namespace matar { namespace matar {
@@ -8,16 +9,17 @@ class Bus {
public: public:
Bus(const Memory& memory); Bus(const Memory& memory);
uint8_t read_byte(size_t address); uint8_t read_byte(uint32_t address);
void write_byte(size_t address, uint8_t byte); void write_byte(uint32_t address, uint8_t byte);
uint16_t read_halfword(size_t address); uint16_t read_halfword(uint32_t address);
void write_halfword(size_t address, uint16_t halfword); void write_halfword(uint32_t address, uint16_t halfword);
uint32_t read_word(size_t address); uint32_t read_word(uint32_t address);
void write_word(size_t address, uint32_t word); void write_word(uint32_t address, uint32_t word);
private: private:
IoDevices io;
std::shared_ptr<Memory> memory; std::shared_ptr<Memory> memory;
}; };
} }

52
include/cpu/alu.hh Normal file
View File

@@ -0,0 +1,52 @@
#pragma once
#include <cstdint>
namespace matar {
enum class ShiftType {
LSL = 0b00,
LSR = 0b01,
ASR = 0b10,
ROR = 0b11
};
constexpr auto
stringify(ShiftType shift_type) {
#define CASE(type) \
case ShiftType::type: \
return #type;
switch (shift_type) {
CASE(LSL)
CASE(LSR)
CASE(ASR)
CASE(ROR)
}
#undef CASE
return "";
}
struct ShiftData {
ShiftType type;
bool immediate;
uint8_t operand;
};
struct Shift {
uint8_t rm;
ShiftData data;
};
uint32_t
eval_shift(ShiftType shift_type, uint32_t value, uint32_t amount, bool& carry);
uint32_t
sub(uint32_t a, uint32_t b, bool& carry, bool& overflow);
uint32_t
add(uint32_t a, uint32_t b, bool& carry, bool& overflow, bool c = 0);
uint32_t
sbc(uint32_t a, uint32_t b, bool& carry, bool& overflow, bool c);
}

View File

@@ -2,12 +2,15 @@
#include "cpu/alu.hh" #include "cpu/alu.hh"
#include "cpu/psr.hh" #include "cpu/psr.hh"
#include <cstdint> #include <cstdint>
#include <fmt/ostream.h> #include <string>
#include <variant> #include <variant>
namespace matar { namespace matar {
class Cpu;
namespace arm { namespace arm {
// https://en.cppreference.com/w/cpp/utility/variant/visit
template<class... Ts> template<class... Ts>
struct overloaded : Ts... { struct overloaded : Ts... {
using Ts::operator()...; using Ts::operator()...;
@@ -23,7 +26,7 @@ struct BranchAndExchange {
struct Branch { struct Branch {
bool link; bool link;
uint32_t offset; int32_t offset;
}; };
struct Multiply { struct Multiply {
@@ -113,6 +116,37 @@ struct DataProcessing {
OpCode opcode; OpCode opcode;
}; };
constexpr auto
stringify(DataProcessing::OpCode opcode) {
#define CASE(opcode) \
case DataProcessing::OpCode::opcode: \
return #opcode;
switch (opcode) {
CASE(AND)
CASE(EOR)
CASE(SUB)
CASE(RSB)
CASE(ADD)
CASE(ADC)
CASE(SBC)
CASE(RSC)
CASE(TST)
CASE(TEQ)
CASE(CMP)
CASE(CMN)
CASE(ORR)
CASE(MOV)
CASE(BIC)
CASE(MVN)
}
#undef CASE
return "";
}
struct PsrTransfer { struct PsrTransfer {
enum class Type { enum class Type {
Mrs, Mrs,
@@ -178,23 +212,19 @@ using InstructionData = std::variant<BranchAndExchange,
SoftwareInterrupt>; SoftwareInterrupt>;
struct Instruction { struct Instruction {
Instruction(uint32_t insn);
Instruction(Condition condition, InstructionData data)
: condition(condition)
, data(data) {};
void exec(Cpu& cpu);
#ifdef DISASSEMBLER
std::string disassemble();
#endif
Condition condition; Condition condition;
InstructionData data; InstructionData data;
Instruction(uint32_t insn);
Instruction(Condition condition, InstructionData data) noexcept
: condition(condition)
, data(data){};
std::string disassemble();
}; };
std::ostream&
operator<<(std::ostream& os, const DataProcessing::OpCode cond);
} }
} }
namespace fmt {
template<>
struct formatter<matar::arm::DataProcessing::OpCode> : ostream_formatter {};
}

View File

@@ -0,0 +1,3 @@
headers += files(
'instruction.hh'
)

View File

@@ -1,21 +1,70 @@
#pragma once
#include "arm/instruction.hh"
#include "bus.hh" #include "bus.hh"
#include "cpu/psr.hh"
#include "thumb/instruction.hh"
#include <cstdint>
namespace matar { namespace matar {
class CpuImpl;
class Cpu { class Cpu {
public: public:
Cpu(const Bus& bus) noexcept; Cpu(const Bus& bus) noexcept;
Cpu(const Cpu&) = delete;
Cpu(Cpu&&) = delete;
Cpu& operator=(const Cpu&) = delete;
Cpu& operator=(Cpu&&) = delete;
~Cpu();
void step(); void step();
void chg_mode(const Mode to);
private: private:
std::unique_ptr<CpuImpl> impl; friend void arm::Instruction::exec(Cpu& cpu);
friend void thumb::Instruction::exec(Cpu& cpu);
static constexpr uint8_t GPR_COUNT = 16;
static constexpr uint8_t GPR_FIQ_FIRST = 8;
static constexpr uint8_t GPR_SVC_FIRST = 13;
static constexpr uint8_t GPR_ABT_FIRST = 13;
static constexpr uint8_t GPR_IRQ_FIRST = 13;
static constexpr uint8_t GPR_UND_FIRST = 13;
static constexpr uint8_t GPR_OLD_FIRST = 8;
std::shared_ptr<Bus> bus;
std::array<uint32_t, GPR_COUNT> gpr; // general purpose registers
Psr cpsr; // current program status register
Psr spsr; // status program status register
static constexpr uint8_t SP_INDEX = 13;
static_assert(SP_INDEX < GPR_COUNT);
uint32_t& sp = gpr[SP_INDEX];
static constexpr uint8_t LR_INDEX = 14;
static_assert(LR_INDEX < GPR_COUNT);
uint32_t& lr = gpr[LR_INDEX];
static constexpr uint8_t PC_INDEX = 15;
static_assert(PC_INDEX < GPR_COUNT);
uint32_t& pc = gpr[PC_INDEX];
struct {
std::array<uint32_t, GPR_COUNT - GPR_FIQ_FIRST - 1> fiq;
std::array<uint32_t, GPR_COUNT - GPR_SVC_FIRST - 1> svc;
std::array<uint32_t, GPR_COUNT - GPR_ABT_FIRST - 1> abt;
std::array<uint32_t, GPR_COUNT - GPR_IRQ_FIRST - 1> irq;
std::array<uint32_t, GPR_COUNT - GPR_UND_FIRST - 1> und;
// visible registers before the mode switch
std::array<uint32_t, GPR_COUNT - GPR_OLD_FIRST - 1> old;
} gpr_banked; // banked general purpose registers
struct {
Psr fiq;
Psr svc;
Psr abt;
Psr irq;
Psr und;
} spsr_banked; // banked saved program status registers
bool is_flushed;
}; };
} }

View File

@@ -1,3 +1,8 @@
headers += files( headers += files(
'alu.hh',
'cpu.hh', 'cpu.hh',
'psr.hh'
) )
subdir('arm')
subdir('thumb')

View File

@@ -1,7 +1,6 @@
#pragma once #pragma once
#include <cstdint> #include <cstdint>
#include <fmt/ostream.h>
namespace matar { namespace matar {
enum class Mode { enum class Mode {
@@ -38,6 +37,38 @@ enum class Condition {
AL = 0b1110 AL = 0b1110
}; };
constexpr auto
stringify(Condition cond) {
#define CASE(cond) \
case Condition::cond: \
return #cond;
switch (cond) {
CASE(EQ)
CASE(NE)
CASE(CS)
CASE(CC)
CASE(MI)
CASE(PL)
CASE(VS)
CASE(VC)
CASE(HI)
CASE(LS)
CASE(GE)
CASE(LT)
CASE(GT)
CASE(LE)
case Condition::AL: {
return "";
}
}
#undef CASE
return "";
}
class Psr { class Psr {
public: public:
// clear the reserved bits i.e, [8:27] // clear the reserved bits i.e, [8:27]
@@ -84,17 +115,7 @@ class Psr {
private: private:
static constexpr uint32_t PSR_CLEAR_RESERVED = 0xF00000FF; static constexpr uint32_t PSR_CLEAR_RESERVED = 0xF00000FF;
static constexpr uint32_t PSR_CLEAR_MODE = 0xFFFFFFE0;
uint32_t psr; uint32_t psr;
}; };
// https://fmt.dev/dev/api.html#std-ostream-support
std::ostream&
operator<<(std::ostream& os, const Condition cond);
}
namespace fmt {
template<>
struct formatter<matar::Condition> : ostream_formatter {};
} }

View File

@@ -0,0 +1,291 @@
#pragma once
#include "cpu/alu.hh"
#include "cpu/psr.hh"
#include <cstdint>
#include <string>
#include <variant>
namespace matar {
class Cpu;
namespace thumb {
// https://en.cppreference.com/w/cpp/utility/variant/visit
template<class... Ts>
struct overloaded : Ts... {
using Ts::operator()...;
};
template<class... Ts>
overloaded(Ts...) -> overloaded<Ts...>;
static constexpr size_t INSTRUCTION_SIZE = 2;
static constexpr uint8_t LO_GPR_COUNT = 8;
struct MoveShiftedRegister {
uint8_t rd;
uint8_t rs;
uint8_t offset;
ShiftType opcode;
};
struct AddSubtract {
enum class OpCode {
ADD = 0,
SUB = 1
};
uint8_t rd;
uint8_t rs;
uint8_t offset;
OpCode opcode;
bool imm;
};
constexpr auto
stringify(AddSubtract::OpCode opcode) {
#define CASE(opcode) \
case AddSubtract::OpCode::opcode: \
return #opcode;
switch (opcode) {
CASE(ADD)
CASE(SUB)
}
#undef CASE
return "";
}
struct MovCmpAddSubImmediate {
enum class OpCode {
MOV = 0b00,
CMP = 0b01,
ADD = 0b10,
SUB = 0b11
};
uint8_t offset;
uint8_t rd;
OpCode opcode;
};
constexpr auto
stringify(MovCmpAddSubImmediate::OpCode opcode) {
#define CASE(opcode) \
case MovCmpAddSubImmediate::OpCode::opcode: \
return #opcode;
switch (opcode) {
CASE(MOV)
CASE(CMP)
CASE(ADD)
CASE(SUB)
}
#undef CASE
return "";
}
struct AluOperations {
enum class OpCode {
AND = 0b0000,
EOR = 0b0001,
LSL = 0b0010,
LSR = 0b0011,
ASR = 0b0100,
ADC = 0b0101,
SBC = 0b0110,
ROR = 0b0111,
TST = 0b1000,
NEG = 0b1001,
CMP = 0b1010,
CMN = 0b1011,
ORR = 0b1100,
MUL = 0b1101,
BIC = 0b1110,
MVN = 0b1111
};
uint8_t rd;
uint8_t rs;
OpCode opcode;
};
constexpr auto
stringify(AluOperations::OpCode opcode) {
#define CASE(opcode) \
case AluOperations::OpCode::opcode: \
return #opcode;
switch (opcode) {
CASE(AND)
CASE(EOR)
CASE(LSL)
CASE(LSR)
CASE(ASR)
CASE(ADC)
CASE(SBC)
CASE(ROR)
CASE(TST)
CASE(NEG)
CASE(CMP)
CASE(CMN)
CASE(ORR)
CASE(MUL)
CASE(BIC)
CASE(MVN)
}
#undef CASE
return "";
}
struct HiRegisterOperations {
enum class OpCode {
ADD = 0b00,
CMP = 0b01,
MOV = 0b10,
BX = 0b11
};
uint8_t rd;
uint8_t rs;
OpCode opcode;
};
constexpr auto
stringify(HiRegisterOperations::OpCode opcode) {
#define CASE(opcode) \
case HiRegisterOperations::OpCode::opcode: \
return #opcode;
switch (opcode) {
CASE(ADD)
CASE(CMP)
CASE(MOV)
CASE(BX)
}
#undef CASE
return "";
}
struct PcRelativeLoad {
uint16_t word;
uint8_t rd;
};
struct LoadStoreRegisterOffset {
uint8_t rd;
uint8_t rb;
uint8_t ro;
bool byte;
bool load;
};
struct LoadStoreSignExtendedHalfword {
uint8_t rd;
uint8_t rb;
uint8_t ro;
bool s;
bool h;
};
struct LoadStoreImmediateOffset {
uint8_t rd;
uint8_t rb;
uint8_t offset;
bool load;
bool byte;
};
struct LoadStoreHalfword {
uint8_t rd;
uint8_t rb;
uint8_t offset;
bool load;
};
struct SpRelativeLoad {
uint16_t word;
uint8_t rd;
bool load;
};
struct LoadAddress {
uint16_t word;
uint8_t rd;
bool sp;
};
struct AddOffsetStackPointer {
int16_t word;
};
struct PushPopRegister {
uint8_t regs;
bool pclr;
bool load;
};
struct MultipleLoad {
uint8_t regs;
uint8_t rb;
bool load;
};
struct ConditionalBranch {
int32_t offset;
Condition condition;
};
struct SoftwareInterrupt {
uint8_t vector;
};
struct UnconditionalBranch {
int32_t offset;
};
struct LongBranchWithLink {
uint16_t offset;
bool high;
};
using InstructionData = std::variant<MoveShiftedRegister,
AddSubtract,
MovCmpAddSubImmediate,
AluOperations,
HiRegisterOperations,
PcRelativeLoad,
LoadStoreRegisterOffset,
LoadStoreSignExtendedHalfword,
LoadStoreImmediateOffset,
LoadStoreHalfword,
SpRelativeLoad,
LoadAddress,
AddOffsetStackPointer,
PushPopRegister,
MultipleLoad,
ConditionalBranch,
SoftwareInterrupt,
UnconditionalBranch,
LongBranchWithLink>;
struct Instruction {
Instruction(uint16_t insn);
Instruction(InstructionData data)
: data(data) {}
void exec(Cpu& cpu);
#ifdef DISASSEMBLER
std::string disassemble();
#endif
InstructionData data;
};
}
}

View File

@@ -0,0 +1,3 @@
headers += files(
'instruction.hh'
)

32
include/io/io.hh Normal file
View File

@@ -0,0 +1,32 @@
#pragma once
#include "lcd.hh"
#include "sound.hh"
#include <cstdint>
namespace matar {
class IoDevices {
public:
uint8_t read_byte(uint32_t) const;
void write_byte(uint32_t, uint8_t);
uint32_t read_word(uint32_t) const;
void write_word(uint32_t, uint32_t);
uint16_t read_halfword(uint32_t) const;
void write_halfword(uint32_t, uint16_t);
private:
struct {
using u16 = uint16_t;
bool post_boot_flag;
bool interrupt_master_enabler;
u16 interrupt_enable;
u16 interrupt_request_flags;
u16 waitstate_control;
bool low_power_mode;
} system = {};
struct lcd lcd = {};
struct sound sound = {};
};
}

84
include/io/lcd.hh Normal file
View File

@@ -0,0 +1,84 @@
#include <cstdint>
// NOLINTBEGIN(cppcoreguidelines-avoid-c-arrays)
/*
4000000h 2 R/W DISPCNT LCD Control
4000002h 2 R/W - Undocumented - Green Swap
4000004h 2 R/W DISPSTAT General LCD Status (STAT,LYC)
4000006h 2 R VCOUNT Vertical Counter (LY)
4000008h 2 R/W BG0CNT BG0 Control
400000Ah 2 R/W BG1CNT BG1 Control
400000Ch 2 R/W BG2CNT BG2 Control
400000Eh 2 R/W BG3CNT BG3 Control
4000010h 2 W BG0HOFS BG0 X-Offset
4000012h 2 W BG0VOFS BG0 Y-Offset
4000014h 2 W BG1HOFS BG1 X-Offset
4000016h 2 W BG1VOFS BG1 Y-Offset
4000018h 2 W BG2HOFS BG2 X-Offset
400001Ah 2 W BG2VOFS BG2 Y-Offset
400001Ch 2 W BG3HOFS BG3 X-Offset
400001Eh 2 W BG3VOFS BG3 Y-Offset
4000020h 2 W BG2PA BG2 Rotation/Scaling Parameter A (dx)
4000022h 2 W BG2PB BG2 Rotation/Scaling Parameter B (dmx)
4000024h 2 W BG2PC BG2 Rotation/Scaling Parameter C (dy)
4000026h 2 W BG2PD BG2 Rotation/Scaling Parameter D (dmy)
4000028h 4 W BG2X BG2 Reference Point X-Coordinate
400002Ch 4 W BG2Y BG2 Reference Point Y-Coordinate
4000030h 2 W BG3PA BG3 Rotation/Scaling Parameter A (dx)
4000032h 2 W BG3PB BG3 Rotation/Scaling Parameter B (dmx)
4000034h 2 W BG3PC BG3 Rotation/Scaling Parameter C (dy)
4000036h 2 W BG3PD BG3 Rotation/Scaling Parameter D (dmy)
4000038h 4 W BG3X BG3 Reference Point X-Coordinate
400003Ch 4 W BG3Y BG3 Reference Point Y-Coordinate
4000040h 2 W WIN0H Window 0 Horizontal Dimensions
4000042h 2 W WIN1H Window 1 Horizontal Dimensions
4000044h 2 W WIN0V Window 0 Vertical Dimensions
4000046h 2 W WIN1V Window 1 Vertical Dimensions
4000048h 2 R/W WININ Inside of Window 0 and 1
400004Ah 2 R/W WINOUT Inside of OBJ Window & Outside of Windows
400004Ch 2 W MOSAIC Mosaic Size
400004Eh - - Not used
4000050h 2 R/W BLDCNT Color Special Effects Selection
4000052h 2 R/W BLDALPHA Alpha Blending Coefficients
4000054h 2 W BLDY Brightness (Fade-In/Out) Coefficient
4000056h - - Not used
*/
struct lcd {
using u16 = uint16_t;
u16 lcd_control;
u16 general_lcd_status;
u16 vertical_counter;
u16 bg0_control;
u16 bg1_control;
u16 bg2_control;
u16 bg3_control;
u16 bg0_x_offset;
u16 bg0_y_offset;
u16 bg1_x_offset;
u16 bg1_y_offset;
u16 bg2_x_offset;
u16 bg2_y_offset;
u16 bg3_x_offset;
u16 bg3_y_offset;
u16 bg2_rot_scaling_parameters[4];
u16 bg2_reference_x[2];
u16 bg2_reference_y[2];
u16 bg3_rot_scaling_parameters[4];
u16 bg3_reference_x[2];
u16 bg3_reference_y[2];
u16 win0_horizontal_dimensions;
u16 win1_horizontal_dimensions;
u16 win0_vertical_dimensions;
u16 win1_vertical_dimensions;
u16 inside_win_0_1;
u16 outside_win;
u16 mosaic_size;
u16 color_special_effects_selection;
u16 alpha_blending_coefficients;
u16 brightness_coefficient;
};
// NOLINTEND(cppcoreguidelines-avoid-c-arrays)

3
include/io/meson.build Normal file
View File

@@ -0,0 +1,3 @@
headers += files(
'io.hh'
)

66
include/io/sound.hh Normal file
View File

@@ -0,0 +1,66 @@
#include <cstdint>
// NOLINTBEGIN(cppcoreguidelines-avoid-c-arrays)
/*
4000060h 2 R/W SOUND1CNT_L Channel 1 Sweep register (NR10)
4000062h 2 R/W SOUND1CNT_H Channel 1 Duty/Length/Envelope (NR11, NR12)
4000064h 2 R/W SOUND1CNT_X Channel 1 Frequency/Control (NR13, NR14)
4000066h - - Not used
4000068h 2 R/W SOUND2CNT_L Channel 2 Duty/Length/Envelope (NR21, NR22)
400006Ah - - Not used
400006Ch 2 R/W SOUND2CNT_H Channel 2 Frequency/Control (NR23, NR24)
400006Eh - - Not used
4000070h 2 R/W SOUND3CNT_L Channel 3 Stop/Wave RAM select (NR30)
4000072h 2 R/W SOUND3CNT_H Channel 3 Length/Volume (NR31, NR32)
4000074h 2 R/W SOUND3CNT_X Channel 3 Frequency/Control (NR33, NR34)
4000076h - - Not used
4000078h 2 R/W SOUND4CNT_L Channel 4 Length/Envelope (NR41, NR42)
400007Ah - - Not used
400007Ch 2 R/W SOUND4CNT_H Channel 4 Frequency/Control (NR43, NR44)
400007Eh - - Not used
4000080h 2 R/W SOUNDCNT_L Control Stereo/Volume/Enable (NR50, NR51)
4000082h 2 R/W SOUNDCNT_H Control Mixing/DMA Control
4000084h 2 R/W SOUNDCNT_X Control Sound on/off (NR52)
4000086h - - Not used
4000088h 2 BIOS SOUNDBIAS Sound PWM Control
400008Ah .. - - Not used
4000090h 2x10h R/W WAVE_RAM Channel 3 Wave Pattern RAM (2 banks!!)
40000A0h 4 W FIFO_A Channel A FIFO, Data 0-3
40000A4h 4 W FIFO_B Channel B FIFO, Data 0-3
*/
struct sound{
using u16 = uint16_t;
// channel 1
u16 ch1_sweep;
u16 ch1_duty_length_env;
u16 ch1_freq_control;
// channel 2
u16 ch2_duty_length_env;
u16 ch2_freq_control;
// channel 3
u16 ch3_stop_wave_ram_select;
u16 ch3_length_volume;
u16 ch3_freq_control;
u16 ch3_wave_pattern[8];
// channel 4
u16 ch4_length_env;
u16 ch4_freq_control;
// control
u16 ctrl_stereo_volume;
u16 ctrl_mixing;
u16 ctrl_sound_on_off;
u16 pwm_control;
// fifo
u16 fifo_a[2];
u16 fifo_b[2];
};
// NOLINTEND(cppcoreguidelines-avoid-c-arrays)

View File

@@ -10,25 +10,23 @@
namespace matar { namespace matar {
class Memory { class Memory {
public: public:
static constexpr size_t BIOS_SIZE = 1024 * 16; static constexpr uint32_t BIOS_SIZE = 1024 * 16;
Memory(std::array<uint8_t, BIOS_SIZE>&& bios, std::vector<uint8_t>&& rom); Memory(std::array<uint8_t, BIOS_SIZE>&& bios, std::vector<uint8_t>&& rom);
uint8_t read(size_t address) const; uint8_t read(uint32_t address) const;
void write(size_t address, uint8_t byte); void write(uint32_t address, uint8_t byte);
private: private:
#define MEMORY_REGION(name, start, end) \ #define MEMORY_REGION(name, start) \
static constexpr size_t name##_START = start; \ static constexpr uint32_t name##_START = start;
static constexpr size_t name##_END = end;
#define DECL_MEMORY(name, ident, start, end) \ #define DECL_MEMORY(name, ident, start, end) \
MEMORY_REGION(name, start, end) \ MEMORY_REGION(name, start) \
std::array<uint8_t, name##_END - name##_START + 1> ident; std::array<uint8_t, end - start + 1> ident;
MEMORY_REGION(BIOS, 0x00000000, 0x00003FFF) MEMORY_REGION(BIOS, 0x00000000)
std::array<uint8_t, BIOS_SIZE> bios; std::array<uint8_t, BIOS_SIZE> bios;
static_assert(BIOS_END - BIOS_START + 1 == BIOS_SIZE);
// board working RAM // board working RAM
DECL_MEMORY(BOARD_WRAM, board_wram, 0x02000000, 0x0203FFFF) DECL_MEMORY(BOARD_WRAM, board_wram, 0x02000000, 0x0203FFFF)
@@ -47,13 +45,12 @@ class Memory {
#undef DECL_MEMORY #undef DECL_MEMORY
MEMORY_REGION(ROM_0, 0x08000000, 0x09FFFFFF) MEMORY_REGION(ROM_0, 0x08000000)
MEMORY_REGION(ROM_1, 0x0A000000, 0x0BFFFFFF) MEMORY_REGION(ROM_1, 0x0A000000)
MEMORY_REGION(ROM_2, 0x0C000000, 0x0DFFFFFF) MEMORY_REGION(ROM_2, 0x0C000000)
#undef MEMORY_REGION #undef MEMORY_REGION
std::unordered_map<uint32_t, uint8_t> invalid_mem;
std::unordered_map<size_t, uint8_t> invalid_mem;
std::vector<uint8_t> rom; std::vector<uint8_t> rom;
Header header; Header header;
void parse_header(); void parse_header();

View File

@@ -8,5 +8,6 @@ inc = include_directories('.')
subdir('cpu') subdir('cpu')
subdir('util') subdir('util')
subdir('io')
install_headers(headers, subdir: meson.project_name(), preserve_path: true) install_headers(headers, subdir: meson.project_name(), preserve_path: true)

View File

@@ -4,33 +4,11 @@ project('matar', 'cpp',
default_options : ['warning_level=3', default_options : ['warning_level=3',
'werror=true', 'werror=true',
'optimization=3', 'optimization=3',
'cpp_std=c++20', 'cpp_std=c++23',
'default_library=static']) 'default_library=static'])
compiler = meson.get_compiler('cpp') compiler = meson.get_compiler('cpp')
'''
TODO: use <print> and <format> instead of libfmt once LLVM 17 is out
if compiler.has_argument('-std=c++2c')
add_global_arguments('-std=c++2c', language: 'cpp')
elif compiler.has_argument('-std=c++23')
add_global_arguments('-std=c++23', language: 'cpp')
elif compiler.has_argument('-std=c++2b')
add_global_arguments('-std=c++2b', language: 'cpp')
elif compiler.has_argument('-std=c++20')
add_global_arguments('-std=c++20', language: 'cpp')
else
error(compiler.get_id() + ' ' + compiler.version() + 'does not meet the compiler requirements')
endif
if compiler.has_argument('-fexperimental-library')
add_global_arguments('-fexperimental-library', language: 'cpp')
else
error(compiler.get_id() + ' ' + compiler.version() + 'does not support -fexperimental-library')
endif
'''
subdir('include') subdir('include')
subdir('src') subdir('src')
subdir('apps') subdir('apps')

2
meson.options Normal file
View File

@@ -0,0 +1,2 @@
option('tests', type : 'boolean', value : true, description: 'enable tests')
option('disassembler', type: 'boolean', value: true, description: 'enable disassembler')

View File

@@ -1 +0,0 @@
option('tests', type : 'boolean', value : true, description: 'enable tests')

1248
nix/Cargo.lock generated Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,17 +1,10 @@
{ ... }: { { ... }: {
perSystem = { pkgs, src, ... }: perSystem = { pkgs, src, ... }:
let let
llvm = pkgs.llvmPackages_16; llvm = pkgs.llvmPackages_18;
stdenv = llvm.libcxxStdenv; stdenv = llvm.libcxxStdenv;
libraries = with pkgs; [ libraries = with pkgs; [
((pkgs.fmt.override {
inherit stdenv;
enableShared = false;
}).overrideAttrs (oa: {
cmakeFlags = oa.cmakeFlags ++ [ "-DFMT_TEST=off" ];
})).dev
(catch2_3.override { inherit stdenv; }).out (catch2_3.override { inherit stdenv; }).out
]; ];
in in
@@ -19,7 +12,7 @@
packages.matar-clang = pkgs.callPackage ./build.nix { inherit src libraries stdenv; }; packages.matar-clang = pkgs.callPackage ./build.nix { inherit src libraries stdenv; };
devShells.matar-clang = pkgs.callPackage ./shell.nix { devShells.matar-clang = pkgs.callPackage ./shell.nix {
inherit libraries stdenv; inherit libraries stdenv;
tools = with pkgs; [ clang-tools_16 ]; tools = with pkgs; [ (clang-tools_18.override { enableLibcxx = true; }) ];
}; };
}; };
} }

View File

@@ -1,13 +1,14 @@
{ ... }: { { ... }: {
perSystem = { pkgs, src, ... }: perSystem = { pkgs, src, ... }:
let let
stdenv = pkgs.gcc14Stdenv;
libraries = with pkgs; [ libraries = with pkgs; [
(pkgs.fmt.override { enableShared = false; }).dev (catch2_3.override { inherit stdenv; }).out
catch2_3.out
]; ];
in in
{ {
packages.matar = pkgs.callPackage ./build.nix { inherit src libraries; }; packages.matar = pkgs.callPackage ./build.nix { inherit src libraries stdenv; };
devShells.matar = pkgs.callPackage ./shell.nix { inherit libraries; }; devShells.matar = pkgs.callPackage ./shell.nix { inherit libraries stdenv; };
}; };
} }

View File

@@ -3,53 +3,81 @@
#include <memory> #include <memory>
namespace matar { namespace matar {
static constexpr uint32_t IO_START = 0x4000000;
static constexpr uint32_t IO_END = 0x40003FE;
Bus::Bus(const Memory& memory) Bus::Bus(const Memory& memory)
: memory(std::make_shared<Memory>(memory)) {} : memory(std::make_shared<Memory>(memory)) {}
uint8_t uint8_t
Bus::read_byte(size_t address) { Bus::read_byte(uint32_t address) {
if (address >= IO_START && address <= IO_END)
return io.read_byte(address);
return memory->read(address); return memory->read(address);
} }
void void
Bus::write_byte(size_t address, uint8_t byte) { Bus::write_byte(uint32_t address, uint8_t byte) {
if (address >= IO_START && address <= IO_END) {
io.write_byte(address, byte);
return;
}
memory->write(address, byte); memory->write(address, byte);
} }
uint16_t uint16_t
Bus::read_halfword(size_t address) { Bus::read_halfword(uint32_t address) {
if (address & 0b01) if (address & 0b01)
glogger.warn("Reading a non aligned halfword address"); glogger.warn("Reading a non aligned halfword address");
return memory->read(address) | memory->read(address + 1) << 8; if (address >= IO_START && address <= IO_END)
return io.read_halfword(address);
return read_byte(address) | read_byte(address + 1) << 8;
} }
void void
Bus::write_halfword(size_t address, uint16_t halfword) { Bus::write_halfword(uint32_t address, uint16_t halfword) {
if (address & 0b01) if (address & 0b01)
glogger.warn("Writing to a non aligned halfword address"); glogger.warn("Writing to a non aligned halfword address");
memory->write(address, halfword & 0xFF); if (address >= IO_START && address <= IO_END) {
memory->write(address + 1, halfword >> 8 & 0xFF); io.write_halfword(address, halfword);
return;
}
write_byte(address, halfword & 0xFF);
write_byte(address + 1, halfword >> 8 & 0xFF);
} }
uint32_t uint32_t
Bus::read_word(size_t address) { Bus::read_word(uint32_t address) {
if (address & 0b11) if (address & 0b11)
glogger.warn("Reading a non aligned word address"); glogger.warn("Reading a non aligned word address");
return memory->read(address) | memory->read(address + 1) << 8 | if (address >= IO_START && address <= IO_END)
memory->read(address + 2) << 16 | memory->read(address + 3) << 24; return io.read_word(address);
return read_byte(address) | read_byte(address + 1) << 8 |
read_byte(address + 2) << 16 | read_byte(address + 3) << 24;
} }
void void
Bus::write_word(size_t address, uint32_t word) { Bus::write_word(uint32_t address, uint32_t word) {
if (address & 0b11) if (address & 0b11)
glogger.warn("Writing to a non aligned word address"); glogger.warn("Writing to a non aligned word address");
memory->write(address, word & 0xFF); if (address >= IO_START && address <= IO_END) {
memory->write(address + 1, word >> 8 & 0xFF); io.write_word(address, word);
memory->write(address + 2, word >> 16 & 0xFF); return;
memory->write(address + 3, word >> 24 & 0xFF); }
write_byte(address, word & 0xFF);
write_byte(address + 1, word >> 8 & 0xFF);
write_byte(address + 2, word >> 16 & 0xFF);
write_byte(address + 3, word >> 24 & 0xFF);
} }
} }

View File

@@ -1,9 +1,10 @@
#include "alu.hh" #include "cpu/alu.hh"
#include "util/bits.hh" #include "util/bits.hh"
#include <bit>
namespace matar { namespace matar {
uint32_t uint32_t
eval_shift(ShiftType shift_type, uint32_t value, uint8_t amount, bool& carry) { eval_shift(ShiftType shift_type, uint32_t value, uint32_t amount, bool& carry) {
uint32_t eval = 0; uint32_t eval = 0;
switch (shift_type) { switch (shift_type) {
@@ -49,23 +50,42 @@ eval_shift(ShiftType shift_type, uint32_t value, uint8_t amount, bool& carry) {
return eval; return eval;
} }
std::ostream& uint32_t
operator<<(std::ostream& os, const ShiftType shift_type) { sub(uint32_t a, uint32_t b, bool& carry, bool& overflow) {
bool s1 = get_bit(a, 31);
bool s2 = get_bit(b, 31);
#define CASE(type) \ uint32_t result = a - b;
case ShiftType::type: \
os << #type; \
break;
switch (shift_type) { carry = a >= b;
CASE(LSL) overflow = s1 != s2 && s2 == get_bit(result, 31);
CASE(LSR)
CASE(ASR)
CASE(ROR)
}
#undef CASE return result;
}
return os; uint32_t
add(uint32_t a, uint32_t b, bool& carry, bool& overflow, bool c) {
bool s1 = get_bit(a, 31);
bool s2 = get_bit(b, 31);
uint64_t result = a + b + c;
carry = get_bit(result, 32);
overflow = s1 == s2 && s2 != get_bit(result, 31);
return result & 0xFFFFFFFF;
}
uint32_t
sbc(uint32_t a, uint32_t b, bool& carry, bool& overflow, bool c) {
bool s1 = get_bit(a, 31);
bool s2 = get_bit(b, 31);
uint64_t result = a - b - !c;
carry = get_bit(result, 32);
overflow = s1 != s2 && s2 == get_bit(result, 31);
return result & 0xFFFFFFFF;
} }
} }

View File

@@ -1,35 +0,0 @@
#pragma once
#include <cstdint>
#include <fmt/ostream.h>
namespace matar {
enum class ShiftType {
LSL = 0b00,
LSR = 0b01,
ASR = 0b10,
ROR = 0b11
};
struct ShiftData {
ShiftType type;
bool immediate;
uint8_t operand;
};
struct Shift {
uint8_t rm;
ShiftData data;
};
uint32_t
eval_shift(ShiftType shift_type, uint32_t value, uint8_t amount, bool& carry);
// https://fmt.dev/dev/api.html#std-ostream-support
std::ostream&
operator<<(std::ostream& os, const ShiftType cond);
}
namespace fmt {
template<>
struct formatter<matar::ShiftType> : ostream_formatter {};
}

237
src/cpu/arm/disassembler.cc Normal file
View File

@@ -0,0 +1,237 @@
#include "cpu/arm/instruction.hh"
#include "util/bits.hh"
#include <format>
namespace matar::arm {
std::string
Instruction::disassemble() {
auto condition = stringify(this->condition);
return std::visit(
overloaded{
[condition](BranchAndExchange& data) {
return std::format("BX{} R{:d}", condition, data.rn);
},
[condition](Branch& data) {
return std::format(
"B{}{} {:#06x}",
(data.link ? "L" : ""),
condition,
static_cast<int32_t>(data.offset + 2 * INSTRUCTION_SIZE));
},
[condition](Multiply& data) {
if (data.acc) {
return std::format("MLA{}{} R{:d},R{:d},R{:d},R{:d}",
condition,
(data.set ? "S" : ""),
data.rd,
data.rm,
data.rs,
data.rn);
} else {
return std::format("MUL{}{} R{:d},R{:d},R{:d}",
condition,
(data.set ? "S" : ""),
data.rd,
data.rm,
data.rs);
}
},
[condition](MultiplyLong& data) {
return std::format("{}{}{}{} R{:d},R{:d},R{:d},R{:d}",
(data.uns ? 'U' : 'S'),
(data.acc ? "MLAL" : "MULL"),
condition,
(data.set ? "S" : ""),
data.rdlo,
data.rdhi,
data.rm,
data.rs);
},
[](Undefined) { return std::string("UND"); },
[condition](SingleDataSwap& data) {
return std::format("SWP{}{} R{:d},R{:d},[R{:d}]",
condition,
(data.byte ? "B" : ""),
data.rd,
data.rm,
data.rn);
},
[condition](SingleDataTransfer& data) {
std::string expression;
std::string address;
if (const uint16_t* offset = std::get_if<uint16_t>(&data.offset)) {
if (*offset == 0) {
expression = "";
} else {
expression =
std::format(",{}#{:d}", (data.up ? '+' : '-'), *offset);
}
} else if (const Shift* shift = std::get_if<Shift>(&data.offset)) {
// Shifts are always immediate in single data transfer
expression = std::format(",{}R{:d},{} #{:d}",
(data.up ? '+' : '-'),
shift->rm,
stringify(shift->data.type),
shift->data.operand);
}
return std::format(
"{}{}{}{} R{:d},[R{:d}{}]{}",
(data.load ? "LDR" : "STR"),
condition,
(data.byte ? "B" : ""),
(!data.pre && data.write ? "T" : ""),
data.rd,
data.rn,
(data.pre ? expression : ""),
(data.pre ? (data.write ? "!" : "") : expression));
},
[condition](HalfwordTransfer& data) {
std::string expression;
if (data.imm) {
if (data.offset == 0) {
expression = "";
} else {
expression = std::format(
",{}#{:d}", (data.up ? '+' : '-'), data.offset);
}
} else {
expression =
std::format(",{}R{:d}", (data.up ? '+' : '-'), data.offset);
}
return std::format(
"{}{}{}{} R{:d},[R{:d}{}]{}",
(data.load ? "LDR" : "STR"),
condition,
(data.sign ? "S" : ""),
(data.half ? 'H' : 'B'),
data.rd,
data.rn,
(data.pre ? expression : ""),
(data.pre ? (data.write ? "!" : "") : expression));
},
[condition](BlockDataTransfer& data) {
std::string regs;
for (uint8_t i = 0; i < 16; i++) {
if (get_bit(data.regs, i))
std::format_to(std::back_inserter(regs), "R{:d},", i);
};
regs.pop_back();
return std::format("{}{}{}{} R{:d}{},{{{}}}{}",
(data.load ? "LDM" : "STM"),
condition,
(data.up ? 'I' : 'D'),
(data.pre ? 'B' : 'A'),
data.rn,
(data.write ? "!" : ""),
regs,
(data.s ? "^" : ""));
},
[condition](PsrTransfer& data) {
if (data.type == PsrTransfer::Type::Mrs) {
return std::format("MRS{} R{:d},{}",
condition,
data.operand,
(data.spsr ? "SPSR_all" : "CPSR_all"));
} else {
return std::format(
"MSR{} {}_{},{}{}",
condition,
(data.spsr ? "SPSR" : "CPSR"),
(data.type == PsrTransfer::Type::Msr_flg ? "flg" : "all"),
(data.imm ? '#' : 'R'),
data.operand);
}
},
[condition](DataProcessing& data) {
using OpCode = DataProcessing::OpCode;
std::string op_2;
if (const uint32_t* operand =
std::get_if<uint32_t>(&data.operand)) {
op_2 = std::format("#{:d}", *operand);
} else if (const Shift* shift = std::get_if<Shift>(&data.operand)) {
op_2 = std::format("R{:d},{} {}{:d}",
shift->rm,
stringify(shift->data.type),
(shift->data.immediate ? '#' : 'R'),
shift->data.operand);
}
switch (data.opcode) {
case OpCode::MOV:
case OpCode::MVN:
return std::format("{}{}{} R{:d},{}",
stringify(data.opcode),
condition,
(data.set ? "S" : ""),
data.rd,
op_2);
case OpCode::TST:
case OpCode::TEQ:
case OpCode::CMP:
case OpCode::CMN:
return std::format("{}{} R{:d},{}",
stringify(data.opcode),
condition,
data.rn,
op_2);
default:
return std::format("{}{}{} R{:d},R{:d},{}",
stringify(data.opcode),
condition,
(data.set ? "S" : ""),
data.rd,
data.rn,
op_2);
}
},
[condition](SoftwareInterrupt) {
return std::format("SWI{}", condition);
},
[condition](CoprocessorDataTransfer& data) {
std::string expression = std::format(",#{:d}", data.offset);
return std::format(
"{}{}{} p{:d},c{:d},[R{:d}{}]{}",
(data.load ? "LDC" : "STC"),
condition,
(data.len ? "L" : ""),
data.cpn,
data.crd,
data.rn,
(data.pre ? expression : ""),
(data.pre ? (data.write ? "!" : "") : expression));
},
[condition](CoprocessorDataOperation& data) {
return std::format("CDP{} p{},{},c{},c{},c{},{}",
condition,
data.cpn,
data.cp_opc,
data.crd,
data.crn,
data.crm,
data.cp);
},
[condition](CoprocessorRegisterTransfer& data) {
return std::format("{}{} p{},{},R{},c{},c{},{}",
(data.load ? "MRC" : "MCR"),
condition,
data.cpn,
data.cp_opc,
data.rd,
data.crn,
data.crm,
data.cp);
},
[](auto) { return std::string("unknown instruction"); } },
data);
}
}

View File

@@ -1,24 +1,21 @@
#include "cpu/cpu-impl.hh" #include "cpu/cpu.hh"
#include "util/bits.hh" #include "util/bits.hh"
#include "util/log.hh" #include "util/log.hh"
namespace matar { namespace matar::arm {
void void
CpuImpl::exec_arm(const arm::Instruction instruction) { Instruction::exec(Cpu& cpu) {
Condition cond = instruction.condition; if (!cpu.cpsr.condition(condition)) {
arm::InstructionData data = instruction.data;
if (!cpsr.condition(cond)) {
return; return;
} }
auto pc_error = [](uint8_t r) { auto pc_error = [cpu](uint8_t r) {
if (r == PC_INDEX) if (r == cpu.PC_INDEX)
glogger.error("Using PC (R15) as operand register"); glogger.error("Using PC (R15) as operand register");
}; };
auto pc_warn = [](uint8_t r) { auto pc_warn = [cpu](uint8_t r) {
if (r == PC_INDEX) if (r == cpu.PC_INDEX)
glogger.warn("Using PC (R15) as operand register"); glogger.warn("Using PC (R15) as operand register");
}; };
@@ -26,38 +23,40 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
std::visit( std::visit(
overloaded{ overloaded{
[this, pc_warn](BranchAndExchange& data) { [&cpu, pc_warn](BranchAndExchange& data) {
State state = static_cast<State>(data.rn & 1); uint32_t addr = cpu.gpr[data.rn];
State state = static_cast<State>(get_bit(addr, 0));
pc_warn(data.rn); pc_warn(data.rn);
if (state != cpu.cpsr.state())
glogger.info_bold("State changed");
// set state // set state
cpsr.set_state(state); cpu.cpsr.set_state(state);
// copy to PC // copy to PC
pc = gpr[data.rn]; cpu.pc = addr;
// ignore [1:0] bits for arm and 0 bit for thumb // ignore [1:0] bits for arm and 0 bit for thumb
rst_bit(pc, 0); rst_bit(cpu.pc, 0);
if (state == State::Arm) if (state == State::Arm)
rst_bit(pc, 1); rst_bit(cpu.pc, 1);
// pc is affected so flush the pipeline // PC is affected so flush the pipeline
is_flushed = true; cpu.is_flushed = true;
}, },
[this](Branch& data) { [&cpu](Branch& data) {
if (data.link) if (data.link)
gpr[14] = pc - INSTRUCTION_SIZE; cpu.gpr[14] = cpu.pc - INSTRUCTION_SIZE;
// data.offset accounts for two instructions ahead when cpu.pc += data.offset;
// disassembling, so need to adjust
pc = static_cast<int32_t>(pc) - 2 * INSTRUCTION_SIZE + data.offset;
// pc is affected so flush the pipeline // pc is affected so flush the pipeline
is_flushed = true; cpu.is_flushed = true;
}, },
[this, pc_error](Multiply& data) { [&cpu, pc_error](Multiply& data) {
if (data.rd == data.rm) if (data.rd == data.rm)
glogger.error("rd and rm are not distinct in {}", glogger.error("rd and rm are not distinct in {}",
typeid(data).name()); typeid(data).name());
@@ -66,16 +65,16 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
pc_error(data.rd); pc_error(data.rd);
pc_error(data.rd); pc_error(data.rd);
gpr[data.rd] = cpu.gpr[data.rd] = cpu.gpr[data.rm] * cpu.gpr[data.rs] +
gpr[data.rm] * gpr[data.rs] + (data.acc ? gpr[data.rn] : 0); (data.acc ? cpu.gpr[data.rn] : 0);
if (data.set) { if (data.set) {
cpsr.set_z(gpr[data.rd] == 0); cpu.cpsr.set_z(cpu.gpr[data.rd] == 0);
cpsr.set_n(get_bit(gpr[data.rd], 31)); cpu.cpsr.set_n(get_bit(cpu.gpr[data.rd], 31));
cpsr.set_c(0); cpu.cpsr.set_c(0);
} }
}, },
[this, pc_error](MultiplyLong& data) { [&cpu, pc_error](MultiplyLong& data) {
if (data.rdhi == data.rdlo || data.rdhi == data.rm || if (data.rdhi == data.rdlo || data.rdhi == data.rm ||
data.rdlo == data.rm) data.rdlo == data.rm)
glogger.error("rdhi, rdlo and rm are not distinct in {}", glogger.error("rdhi, rdlo and rm are not distinct in {}",
@@ -91,58 +90,60 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
return static_cast<uint64_t>(x); return static_cast<uint64_t>(x);
}; };
uint64_t eval = cast(gpr[data.rm]) * cast(gpr[data.rs]) + uint64_t eval =
(data.acc ? (cast(gpr[data.rdhi]) << 32) | cast(cpu.gpr[data.rm]) * cast(cpu.gpr[data.rs]) +
cast(gpr[data.rdlo]) (data.acc ? (cast(cpu.gpr[data.rdhi]) << 32) |
: 0); cast(cpu.gpr[data.rdlo])
: 0);
gpr[data.rdlo] = bit_range(eval, 0, 31); cpu.gpr[data.rdlo] = bit_range(eval, 0, 31);
gpr[data.rdhi] = bit_range(eval, 32, 63); cpu.gpr[data.rdhi] = bit_range(eval, 32, 63);
} else { } else {
auto cast = [](uint32_t x) -> int64_t { auto cast = [](uint32_t x) -> int64_t {
return static_cast<int64_t>(static_cast<int32_t>(x)); return static_cast<int64_t>(static_cast<int32_t>(x));
}; };
int64_t eval = cast(gpr[data.rm]) * cast(gpr[data.rs]) + int64_t eval = cast(cpu.gpr[data.rm]) * cast(cpu.gpr[data.rs]) +
(data.acc ? (cast(gpr[data.rdhi]) << 32) | (data.acc ? (cast(cpu.gpr[data.rdhi]) << 32) |
cast(gpr[data.rdlo]) cast(cpu.gpr[data.rdlo])
: 0); : 0);
gpr[data.rdlo] = bit_range(eval, 0, 31); cpu.gpr[data.rdlo] = bit_range(eval, 0, 31);
gpr[data.rdhi] = bit_range(eval, 32, 63); cpu.gpr[data.rdhi] = bit_range(eval, 32, 63);
} }
if (data.set) { if (data.set) {
cpsr.set_z(gpr[data.rdhi] == 0 && gpr[data.rdlo] == 0); cpu.cpsr.set_z(cpu.gpr[data.rdhi] == 0 &&
cpsr.set_n(get_bit(gpr[data.rdhi], 31)); cpu.gpr[data.rdlo] == 0);
cpsr.set_c(0); cpu.cpsr.set_n(get_bit(cpu.gpr[data.rdhi], 31));
cpsr.set_v(0); cpu.cpsr.set_c(0);
cpu.cpsr.set_v(0);
} }
}, },
[](Undefined) { glogger.warn("Undefined instruction"); }, [](Undefined) { glogger.warn("Undefined instruction"); },
[this, pc_error](SingleDataSwap& data) { [&cpu, pc_error](SingleDataSwap& data) {
pc_error(data.rm); pc_error(data.rm);
pc_error(data.rn); pc_error(data.rn);
pc_error(data.rd); pc_error(data.rd);
if (data.byte) { if (data.byte) {
gpr[data.rd] = bus->read_byte(gpr[data.rn]); cpu.gpr[data.rd] = cpu.bus->read_byte(cpu.gpr[data.rn]);
bus->write_byte(gpr[data.rn], gpr[data.rm] & 0xFF); cpu.bus->write_byte(cpu.gpr[data.rn], cpu.gpr[data.rm] & 0xFF);
} else { } else {
gpr[data.rd] = bus->read_word(gpr[data.rn]); cpu.gpr[data.rd] = cpu.bus->read_word(cpu.gpr[data.rn]);
bus->write_word(gpr[data.rn], gpr[data.rm]); cpu.bus->write_word(cpu.gpr[data.rn], cpu.gpr[data.rm]);
} }
}, },
[this, pc_warn, pc_error](SingleDataTransfer& data) { [&cpu, pc_warn, pc_error](SingleDataTransfer& data) {
uint32_t offset = 0; uint32_t offset = 0;
uint32_t address = gpr[data.rn]; uint32_t address = cpu.gpr[data.rn];
if (!data.pre && data.write) if (!data.pre && data.write)
glogger.warn("Write-back enabled with post-indexing in {}", glogger.warn("Write-back enabled with post-indexing in {}",
typeid(data).name()); typeid(data).name());
if (data.rn == PC_INDEX && data.write) if (data.rn == cpu.PC_INDEX && data.write)
glogger.warn("Write-back enabled with base register as PC {}", glogger.warn("Write-back enabled with base register as PC {}",
typeid(data).name()); typeid(data).name());
@@ -156,24 +157,20 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
} else if (const Shift* shift = std::get_if<Shift>(&data.offset)) { } else if (const Shift* shift = std::get_if<Shift>(&data.offset)) {
uint8_t amount = uint8_t amount =
(shift->data.immediate ? shift->data.operand (shift->data.immediate ? shift->data.operand
: gpr[shift->data.operand] & 0xFF); : cpu.gpr[shift->data.operand] & 0xFF);
bool carry = cpsr.c(); bool carry = cpu.cpsr.c();
if (!shift->data.immediate) if (!shift->data.immediate)
pc_error(shift->data.operand); pc_error(shift->data.operand);
pc_error(shift->rm); pc_error(shift->rm);
offset = offset = eval_shift(
eval_shift(shift->data.type, gpr[shift->rm], amount, carry); shift->data.type, cpu.gpr[shift->rm], amount, carry);
cpsr.set_c(carry); cpu.cpsr.set_c(carry);
} }
// PC is always two instructions ahead
if (data.rn == PC_INDEX)
address -= 2 * INSTRUCTION_SIZE;
if (data.pre) if (data.pre)
address += (data.up ? offset : -offset); address += (data.up ? offset : -offset);
@@ -181,35 +178,35 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
if (data.load) { if (data.load) {
// byte // byte
if (data.byte) if (data.byte)
gpr[data.rd] = bus->read_byte(address); cpu.gpr[data.rd] = cpu.bus->read_byte(address);
// word // word
else else
gpr[data.rd] = bus->read_word(address); cpu.gpr[data.rd] = cpu.bus->read_word(address);
// store // store
} else { } else {
// take PC into consideration // take PC into consideration
if (data.rd == PC_INDEX) if (data.rd == cpu.PC_INDEX)
address += INSTRUCTION_SIZE; address += INSTRUCTION_SIZE;
// byte // byte
if (data.byte) if (data.byte)
bus->write_byte(address, gpr[data.rd] & 0xFF); cpu.bus->write_byte(address, cpu.gpr[data.rd] & 0xFF);
// word // word
else else
bus->write_word(address, gpr[data.rd]); cpu.bus->write_word(address, cpu.gpr[data.rd]);
} }
if (!data.pre) if (!data.pre)
address += (data.up ? offset : -offset); address += (data.up ? offset : -offset);
if (!data.pre || data.write) if (!data.pre || data.write)
gpr[data.rn] = address; cpu.gpr[data.rn] = address;
if (data.rd == PC_INDEX && data.load) if (data.rd == cpu.PC_INDEX && data.load)
is_flushed = true; cpu.is_flushed = true;
}, },
[this, pc_warn, pc_error](HalfwordTransfer& data) { [&cpu, pc_warn, pc_error](HalfwordTransfer& data) {
uint32_t address = gpr[data.rn]; uint32_t address = cpu.gpr[data.rn];
uint32_t offset = 0; uint32_t offset = 0;
if (!data.pre && data.write) if (!data.pre && data.write)
@@ -225,13 +222,13 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
// offset is register number (4 bits) when not an immediate // offset is register number (4 bits) when not an immediate
if (!data.imm) { if (!data.imm) {
pc_error(data.offset); pc_error(data.offset);
offset = gpr[data.offset]; offset = cpu.gpr[data.offset];
} else { } else {
offset = data.offset; offset = data.offset;
} }
// PC is always two instructions ahead // PC is always two instructions ahead
if (data.rn == PC_INDEX) if (data.rn == cpu.PC_INDEX)
address -= 2 * INSTRUCTION_SIZE; address -= 2 * INSTRUCTION_SIZE;
if (data.pre) if (data.pre)
@@ -243,140 +240,154 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
if (data.sign) { if (data.sign) {
// halfword // halfword
if (data.half) { if (data.half) {
gpr[data.rd] = bus->read_halfword(address); cpu.gpr[data.rd] = cpu.bus->read_halfword(address);
// sign extend the halfword // sign extend the halfword
gpr[data.rd] = cpu.gpr[data.rd] =
(static_cast<int32_t>(gpr[data.rd]) << 16) >> 16; (static_cast<int32_t>(cpu.gpr[data.rd]) << 16) >> 16;
// byte // byte
} else { } else {
gpr[data.rd] = bus->read_byte(address); cpu.gpr[data.rd] = cpu.bus->read_byte(address);
// sign extend the byte // sign extend the byte
gpr[data.rd] = cpu.gpr[data.rd] =
(static_cast<int32_t>(gpr[data.rd]) << 24) >> 24; (static_cast<int32_t>(cpu.gpr[data.rd]) << 24) >> 24;
} }
// unsigned halfword // unsigned halfword
} else if (data.half) { } else if (data.half) {
gpr[data.rd] = bus->read_halfword(address); cpu.gpr[data.rd] = cpu.bus->read_halfword(address);
} }
// store // store
} else { } else {
// take PC into consideration // take PC into consideration
if (data.rd == PC_INDEX) if (data.rd == cpu.PC_INDEX)
address += INSTRUCTION_SIZE; address += INSTRUCTION_SIZE;
// halfword // halfword
if (data.half) if (data.half)
bus->write_halfword(address, gpr[data.rd]); cpu.bus->write_halfword(address, cpu.gpr[data.rd]);
} }
if (!data.pre) if (!data.pre)
address += (data.up ? offset : -offset); address += (data.up ? offset : -offset);
if (!data.pre || data.write) if (!data.pre || data.write)
gpr[data.rn] = address; cpu.gpr[data.rn] = address;
if (data.rd == PC_INDEX && data.load) if (data.rd == cpu.PC_INDEX && data.load)
is_flushed = true; cpu.is_flushed = true;
}, },
[this, pc_error](BlockDataTransfer& data) { [&cpu, pc_error](BlockDataTransfer& data) {
uint32_t address = gpr[data.rn]; static constexpr uint8_t alignment = 4; // word
Mode mode = cpsr.mode();
uint8_t alignment = 4; // word uint32_t address = cpu.gpr[data.rn];
uint8_t i = 0; Mode mode = cpu.cpsr.mode();
uint8_t n_regs = std::popcount(data.regs); int8_t i = 0;
pc_error(data.rn); pc_error(data.rn);
if (cpsr.mode() == Mode::User && data.s) { if (cpu.cpsr.mode() == Mode::User && data.s) {
glogger.error("Bit S is set outside priviliged modes in {}", glogger.error("Bit S is set outside priviliged modes in block "
typeid(data).name()); "data transfer");
} }
// we just change modes to load user registers // we just change modes to load user registers
if ((!get_bit(data.regs, PC_INDEX) && data.s) || if ((!get_bit(data.regs, cpu.PC_INDEX) && data.s) ||
(!data.load && data.s)) { (!data.load && data.s)) {
chg_mode(Mode::User); cpu.chg_mode(Mode::User);
if (data.write) { if (data.write) {
glogger.error( glogger.error("Write-back enable for user bank registers "
"Write-back enable for user bank registers in {}", "in block data transfer");
typeid(data).name());
} }
} }
// account for decrement // increment beforehand
if (!data.up)
address -= (n_regs - 1) * alignment;
if (data.pre) if (data.pre)
address += (data.up ? alignment : -alignment); address += (data.up ? alignment : -alignment);
if (data.load) { if (data.load) {
if (get_bit(data.regs, PC_INDEX) && data.s && data.load) { if (get_bit(data.regs, cpu.PC_INDEX) && data.s && data.load) {
// current mode's spsr is already loaded when it was // current mode's cpu.spsr is already loaded when it was
// switched // switched
spsr = cpsr; cpu.spsr = cpu.cpsr;
} }
for (i = 0; i < GPR_COUNT; i++) { if (data.up) {
if (get_bit(data.regs, i)) { for (i = 0; i < cpu.GPR_COUNT; i++) {
gpr[i] = bus->read_word(address); if (get_bit(data.regs, i)) {
address += alignment; cpu.gpr[i] = cpu.bus->read_word(address);
address += alignment;
}
}
} else {
for (i = cpu.GPR_COUNT - 1; i >= 0; i--) {
if (get_bit(data.regs, i)) {
cpu.gpr[i] = cpu.bus->read_word(address);
address -= alignment;
}
} }
} }
} else { } else {
for (i = 0; i < GPR_COUNT; i++) { if (data.up) {
if (get_bit(data.regs, i)) { for (i = 0; i < cpu.GPR_COUNT; i++) {
bus->write_word(address, gpr[i]); if (get_bit(data.regs, i)) {
address += alignment; cpu.bus->write_word(address, cpu.gpr[i]);
address += alignment;
}
}
} else {
for (i = cpu.GPR_COUNT - 1; i >= 0; i--) {
if (get_bit(data.regs, i)) {
cpu.bus->write_word(address, cpu.gpr[i]);
address -= alignment;
}
} }
} }
} }
if (!data.pre) // fix increment
address += (data.up ? alignment : -alignment); if (data.pre)
address += (data.up ? -alignment : alignment);
// reset back to original address + offset if incremented earlier
if (data.up)
address -= n_regs * alignment;
else
address -= alignment;
if (!data.pre || data.write) if (!data.pre || data.write)
gpr[data.rn] = address; cpu.gpr[data.rn] = address;
if (data.load && get_bit(data.regs, PC_INDEX)) if (data.load && get_bit(data.regs, cpu.PC_INDEX))
is_flushed = true; cpu.is_flushed = true;
// load back the original mode registers // load back the original mode registers
chg_mode(mode); cpu.chg_mode(mode);
}, },
[this, pc_error](PsrTransfer& data) { [&cpu, pc_error](PsrTransfer& data) {
if (data.spsr && cpsr.mode() == Mode::User) { if (data.spsr && cpu.cpsr.mode() == Mode::User) {
glogger.error("Accessing SPSR in User mode in {}", glogger.error("Accessing CPU.SPSR in User mode in {}",
typeid(data).name()); typeid(data).name());
} }
Psr& psr = data.spsr ? spsr : cpsr; Psr& psr = data.spsr ? cpu.spsr : cpu.cpsr;
switch (data.type) { switch (data.type) {
case PsrTransfer::Type::Mrs: case PsrTransfer::Type::Mrs:
pc_error(data.operand); pc_error(data.operand);
gpr[data.operand] = psr.raw(); cpu.gpr[data.operand] = psr.raw();
break; break;
case PsrTransfer::Type::Msr: case PsrTransfer::Type::Msr:
pc_error(data.operand); pc_error(data.operand);
if (cpsr.mode() != Mode::User) { if (cpu.cpsr.mode() != Mode::User) {
psr.set_all(gpr[data.operand]); if (!data.spsr) {
Psr tmp = Psr(cpu.gpr[data.operand]);
cpu.chg_mode(tmp.mode());
}
psr.set_all(cpu.gpr[data.operand]);
} }
break; break;
case PsrTransfer::Type::Msr_flg: case PsrTransfer::Type::Msr_flg:
uint32_t operand = uint32_t operand =
(data.imm ? data.operand : gpr[data.operand]); (data.imm ? data.operand : cpu.gpr[data.operand]);
psr.set_n(get_bit(operand, 31)); psr.set_n(get_bit(operand, 31));
psr.set_z(get_bit(operand, 30)); psr.set_z(get_bit(operand, 30));
psr.set_c(get_bit(operand, 29)); psr.set_c(get_bit(operand, 29));
@@ -384,10 +395,10 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
break; break;
} }
}, },
[this, pc_error](DataProcessing& data) { [&cpu, pc_error](DataProcessing& data) {
using OpCode = DataProcessing::OpCode; using OpCode = DataProcessing::OpCode;
uint32_t op_1 = gpr[data.rn]; uint32_t op_1 = cpu.gpr[data.rn];
uint32_t op_2 = 0; uint32_t op_2 = 0;
uint32_t result = 0; uint32_t result = 0;
@@ -398,64 +409,26 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
} else if (const Shift* shift = std::get_if<Shift>(&data.operand)) { } else if (const Shift* shift = std::get_if<Shift>(&data.operand)) {
uint8_t amount = uint8_t amount =
(shift->data.immediate ? shift->data.operand (shift->data.immediate ? shift->data.operand
: gpr[shift->data.operand] & 0xFF); : cpu.gpr[shift->data.operand] & 0xFF);
bool carry = cpsr.c(); bool carry = cpu.cpsr.c();
if (!shift->data.immediate) if (!shift->data.immediate)
pc_error(shift->data.operand); pc_error(shift->data.operand);
pc_error(shift->rm); pc_error(shift->rm);
op_2 = op_2 = eval_shift(
eval_shift(shift->data.type, gpr[shift->rm], amount, carry); shift->data.type, cpu.gpr[shift->rm], amount, carry);
cpsr.set_c(carry); cpu.cpsr.set_c(carry);
// PC is 12 bytes ahead when shifting // PC is 12 bytes ahead when shifting
if (data.rn == PC_INDEX) if (data.rn == cpu.PC_INDEX)
op_1 += INSTRUCTION_SIZE; op_1 += INSTRUCTION_SIZE;
} }
bool overflow = cpsr.v(); bool overflow = cpu.cpsr.v();
bool carry = cpsr.c(); bool carry = cpu.cpsr.c();
auto sub = [&carry, &overflow](uint32_t a, uint32_t b) -> uint32_t {
bool s1 = get_bit(a, 31);
bool s2 = get_bit(b, 31);
uint32_t result = a - b;
carry = b <= a;
overflow = s1 != s2 && s2 == get_bit(result, 31);
return result;
};
auto add = [&carry, &overflow](
uint32_t a, uint32_t b, bool c = 0) -> uint32_t {
bool s1 = get_bit(a, 31);
bool s2 = get_bit(b, 31);
// 33 bits
uint64_t result_ = a + b + c;
uint32_t result = result_ & 0xFFFFFFFF;
carry = get_bit(result_, 32);
overflow = s1 == s2 && s2 != get_bit(result, 31);
return result;
};
auto sbc = [&carry,
&overflow](uint32_t a, uint32_t b, bool c) -> uint32_t {
bool s1 = get_bit(a, 31);
bool s2 = get_bit(b, 31);
uint64_t result_ = a - b + c - 1;
uint32_t result = result_ & 0xFFFFFFFF;
carry = get_bit(result_, 32);
overflow = s1 != s2 && s2 == get_bit(result, 31);
return result;
};
switch (data.opcode) { switch (data.opcode) {
case OpCode::AND: case OpCode::AND:
@@ -469,23 +442,23 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
break; break;
case OpCode::SUB: case OpCode::SUB:
case OpCode::CMP: case OpCode::CMP:
result = sub(op_1, op_2); result = sub(op_1, op_2, carry, overflow);
break; break;
case OpCode::RSB: case OpCode::RSB:
result = sub(op_2, op_1); result = sub(op_2, op_1, carry, overflow);
break; break;
case OpCode::ADD: case OpCode::ADD:
case OpCode::CMN: case OpCode::CMN:
result = add(op_1, op_2); result = add(op_1, op_2, carry, overflow);
break; break;
case OpCode::ADC: case OpCode::ADC:
result = add(op_1, op_2, carry); result = add(op_1, op_2, carry, overflow, carry);
break; break;
case OpCode::SBC: case OpCode::SBC:
result = sbc(op_1, op_2, carry); result = sbc(op_1, op_2, carry, overflow, carry);
break; break;
case OpCode::RSC: case OpCode::RSC:
result = sbc(op_2, op_1, carry); result = sbc(op_2, op_1, carry, overflow, carry);
break; break;
case OpCode::ORR: case OpCode::ORR:
result = op_1 | op_2; result = op_1 | op_2;
@@ -501,19 +474,19 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
break; break;
} }
auto set_conditions = [this, carry, overflow, result]() { auto set_conditions = [&cpu, carry, overflow, result]() {
cpsr.set_c(carry); cpu.cpsr.set_c(carry);
cpsr.set_v(overflow); cpu.cpsr.set_v(overflow);
cpsr.set_n(get_bit(result, 31)); cpu.cpsr.set_n(get_bit(result, 31));
cpsr.set_z(result == 0); cpu.cpsr.set_z(result == 0);
}; };
if (data.set) { if (data.set) {
if (data.rd == PC_INDEX) { if (data.rd == cpu.PC_INDEX) {
if (cpsr.mode() == Mode::User) if (cpu.cpsr.mode() == Mode::User)
glogger.error("Running {} in User mode", glogger.error("Running {} in User mode",
typeid(data).name()); typeid(data).name());
spsr = cpsr; cpu.spsr = cpu.cpsr;
} else { } else {
set_conditions(); set_conditions();
} }
@@ -523,15 +496,15 @@ CpuImpl::exec_arm(const arm::Instruction instruction) {
data.opcode == OpCode::CMP || data.opcode == OpCode::CMN) { data.opcode == OpCode::CMP || data.opcode == OpCode::CMN) {
set_conditions(); set_conditions();
} else { } else {
gpr[data.rd] = result; cpu.gpr[data.rd] = result;
if (data.rd == PC_INDEX || data.opcode == OpCode::MVN) if (data.rd == cpu.PC_INDEX || data.opcode == OpCode::MVN)
is_flushed = true; cpu.is_flushed = true;
} }
}, },
[this](SoftwareInterrupt) { [&cpu](SoftwareInterrupt) {
chg_mode(Mode::Supervisor); cpu.chg_mode(Mode::Supervisor);
pc = 0x08; cpu.pc = 0x08;
spsr = cpsr; cpu.spsr = cpu.cpsr;
}, },
[](auto& data) { [](auto& data) {
glogger.error("Unimplemented {} instruction", typeid(data).name()); glogger.error("Unimplemented {} instruction", typeid(data).name());

View File

@@ -1,10 +1,7 @@
#include "instruction.hh" #include "cpu/arm/instruction.hh"
#include "util/bits.hh" #include "util/bits.hh"
#include <iterator>
namespace matar {
namespace arm {
namespace matar::arm {
Instruction::Instruction(uint32_t insn) Instruction::Instruction(uint32_t insn)
: condition(static_cast<Condition>(bit_range(insn, 28, 31))) { : condition(static_cast<Condition>(bit_range(insn, 28, 31))) {
// Branch and exhcange // Branch and exhcange
@@ -15,13 +12,11 @@ Instruction::Instruction(uint32_t insn)
// Branch // Branch
} else if ((insn & 0x0E000000) == 0x0A000000) { } else if ((insn & 0x0E000000) == 0x0A000000) {
bool link = get_bit(insn, 24); bool link = get_bit(insn, 24);
uint32_t offset = bit_range(insn, 0, 23); int32_t offset = static_cast<int32_t>(bit_range(insn, 0, 23));
// lsh 2 and sign extend the 26 bit offset to 32 bits // lsh 2 and sign extend the 26 bit offset to 32 bits
offset = (static_cast<int32_t>(offset) << 8) >> 6; offset = (offset << 8) >> 6;
offset += 2 * INSTRUCTION_SIZE;
data = Branch{ .link = link, .offset = offset }; data = Branch{ .link = link, .offset = offset };
@@ -275,261 +270,4 @@ Instruction::Instruction(uint32_t insn)
data = Undefined{}; data = Undefined{};
} }
} }
std::string
Instruction::disassemble() {
// goddamn this is gore
// TODO: make this less ugly
return std::visit(
overloaded{
[this](BranchAndExchange& data) {
return fmt::format("BX{} R{:d}", condition, data.rn);
},
[this](Branch& data) {
return fmt::format(
"B{}{} 0x{:06X}", (data.link ? "L" : ""), condition, data.offset);
},
[this](Multiply& data) {
if (data.acc) {
return fmt::format("MLA{}{} R{:d},R{:d},R{:d},R{:d}",
condition,
(data.set ? "S" : ""),
data.rd,
data.rm,
data.rs,
data.rn);
} else {
return fmt::format("MUL{}{} R{:d},R{:d},R{:d}",
condition,
(data.set ? "S" : ""),
data.rd,
data.rm,
data.rs);
}
},
[this](MultiplyLong& data) {
return fmt::format("{}{}{}{} R{:d},R{:d},R{:d},R{:d}",
(data.uns ? 'U' : 'S'),
(data.acc ? "MLAL" : "MULL"),
condition,
(data.set ? "S" : ""),
data.rdlo,
data.rdhi,
data.rm,
data.rs);
},
[](Undefined) { return std::string("UND"); },
[this](SingleDataSwap& data) {
return fmt::format("SWP{}{} R{:d},R{:d},[R{:d}]",
condition,
(data.byte ? "B" : ""),
data.rd,
data.rm,
data.rn);
},
[this](SingleDataTransfer& data) {
std::string expression;
std::string address;
if (const uint16_t* offset = std::get_if<uint16_t>(&data.offset)) {
if (*offset == 0) {
expression = "";
} else {
expression =
fmt::format(",{}#{:d}", (data.up ? '+' : '-'), *offset);
}
} else if (const Shift* shift = std::get_if<Shift>(&data.offset)) {
// Shifts are always immediate in single data transfer
expression = fmt::format(",{}R{:d},{} #{:d}",
(data.up ? '+' : '-'),
shift->rm,
shift->data.type,
shift->data.operand);
}
return fmt::format(
"{}{}{}{} R{:d},[R{:d}{}]{}",
(data.load ? "LDR" : "STR"),
condition,
(data.byte ? "B" : ""),
(!data.pre && data.write ? "T" : ""),
data.rd,
data.rn,
(data.pre ? expression : ""),
(data.pre ? (data.write ? "!" : "") : expression));
},
[this](HalfwordTransfer& data) {
std::string expression;
if (data.imm) {
if (data.offset == 0) {
expression = "";
} else {
expression = fmt::format(
",{}#{:d}", (data.up ? '+' : '-'), data.offset);
}
} else {
expression =
fmt::format(",{}R{:d}", (data.up ? '+' : '-'), data.offset);
}
return fmt::format(
"{}{}{}{} R{:d},[R{:d}{}]{}",
(data.load ? "LDR" : "STR"),
condition,
(data.sign ? "S" : ""),
(data.half ? 'H' : 'B'),
data.rd,
data.rn,
(data.pre ? expression : ""),
(data.pre ? (data.write ? "!" : "") : expression));
},
[this](BlockDataTransfer& data) {
std::string regs;
for (uint8_t i = 0; i < 16; i++) {
if (get_bit(data.regs, i))
fmt::format_to(std::back_inserter(regs), "R{:d},", i);
};
regs.pop_back();
return fmt::format("{}{}{}{} R{:d}{},{{{}}}{}",
(data.load ? "LDM" : "STM"),
condition,
(data.up ? 'I' : 'D'),
(data.pre ? 'B' : 'A'),
data.rn,
(data.write ? "!" : ""),
regs,
(data.s ? "^" : ""));
},
[this](PsrTransfer& data) {
if (data.type == PsrTransfer::Type::Mrs) {
return fmt::format("MRS{} R{:d},{}",
condition,
data.operand,
(data.spsr ? "SPSR_all" : "CPSR_all"));
} else {
return fmt::format(
"MSR{} {}_{},{}{}",
condition,
(data.spsr ? "SPSR" : "CPSR"),
(data.type == PsrTransfer::Type::Msr_flg ? "flg" : "all"),
(data.imm ? '#' : 'R'),
data.operand);
}
},
[this](DataProcessing& data) {
using OpCode = DataProcessing::OpCode;
std::string op_2;
if (const uint32_t* operand =
std::get_if<uint32_t>(&data.operand)) {
op_2 = fmt::format("#{:d}", *operand);
} else if (const Shift* shift = std::get_if<Shift>(&data.operand)) {
op_2 = fmt::format("R{:d},{} {}{:d}",
shift->rm,
shift->data.type,
(shift->data.immediate ? '#' : 'R'),
shift->data.operand);
}
switch (data.opcode) {
case OpCode::MOV:
case OpCode::MVN:
return fmt::format("{}{}{} R{:d},{}",
data.opcode,
condition,
(data.set ? "S" : ""),
data.rd,
op_2);
case OpCode::TST:
case OpCode::TEQ:
case OpCode::CMP:
case OpCode::CMN:
return fmt::format(
"{}{} R{:d},{}", data.opcode, condition, data.rn, op_2);
default:
return fmt::format("{}{}{} R{:d},R{:d},{}",
data.opcode,
condition,
(data.set ? "S" : ""),
data.rd,
data.rn,
op_2);
}
},
[this](SoftwareInterrupt) { return fmt::format("SWI{}", condition); },
[this](CoprocessorDataTransfer& data) {
std::string expression = fmt::format(",#{:d}", data.offset);
return fmt::format(
"{}{}{} p{:d},c{:d},[R{:d}{}]{}",
(data.load ? "LDC" : "STC"),
condition,
(data.len ? "L" : ""),
data.cpn,
data.crd,
data.rn,
(data.pre ? expression : ""),
(data.pre ? (data.write ? "!" : "") : expression));
},
[this](CoprocessorDataOperation& data) {
return fmt::format("CDP{} p{},{},c{},c{},c{},{}",
condition,
data.cpn,
data.cp_opc,
data.crd,
data.crn,
data.crm,
data.cp);
},
[this](CoprocessorRegisterTransfer& data) {
return fmt::format("{}{} p{},{},R{},c{},c{},{}",
(data.load ? "MRC" : "MCR"),
condition,
data.cpn,
data.cp_opc,
data.rd,
data.crn,
data.crm,
data.cp);
},
[](auto) { return std::string("unknown instruction"); } },
data);
}
std::ostream&
operator<<(std::ostream& os, const DataProcessing::OpCode opcode) {
#define CASE(opcode) \
case DataProcessing::OpCode::opcode: \
os << #opcode; \
break;
switch (opcode) {
CASE(AND)
CASE(EOR)
CASE(SUB)
CASE(RSB)
CASE(ADD)
CASE(ADC)
CASE(SBC)
CASE(RSC)
CASE(TST)
CASE(TEQ)
CASE(CMP)
CASE(CMN)
CASE(ORR)
CASE(MOV)
CASE(BIC)
CASE(MVN)
}
#undef CASE
return os;
}
}
} }

View File

@@ -2,3 +2,7 @@ lib_sources += files(
'instruction.cc', 'instruction.cc',
'exec.cc' 'exec.cc'
) )
if get_option('disassembler')
lib_sources += files('disassembler.cc')
endif

View File

@@ -1,142 +0,0 @@
#include "cpu-impl.hh"
#include "util/bits.hh"
#include "util/log.hh"
#include <algorithm>
#include <cstdio>
namespace matar {
CpuImpl::CpuImpl(const Bus& bus) noexcept
: bus(std::make_shared<Bus>(bus))
, gpr({ 0 })
, cpsr(0)
, spsr(0)
, is_flushed(false)
, gpr_banked({ { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 } })
, spsr_banked({ 0, 0, 0, 0, 0 }) {
cpsr.set_mode(Mode::Supervisor);
cpsr.set_irq_disabled(true);
cpsr.set_fiq_disabled(true);
cpsr.set_state(State::Arm);
glogger.info("CPU successfully initialised");
// PC always points to two instructions ahead
// PC - 2 is the instruction being executed
pc += 2 * arm::INSTRUCTION_SIZE;
}
/* change modes */
void
CpuImpl::chg_mode(const Mode to) {
Mode from = cpsr.mode();
if (from == to)
return;
/* TODO: replace visible registers with view once I understand how to
* concatenate views */
#define STORE_BANKED(mode, MODE) \
std::copy(gpr.begin() + GPR_##MODE##_FIRST, \
gpr.begin() + gpr.size() - 1, \
gpr_banked.mode.begin())
switch (from) {
case Mode::Fiq:
STORE_BANKED(fiq, FIQ);
spsr_banked.fiq = spsr;
break;
case Mode::Supervisor:
STORE_BANKED(svc, SVC);
spsr_banked.svc = spsr;
break;
case Mode::Abort:
STORE_BANKED(abt, ABT);
spsr_banked.abt = spsr;
break;
case Mode::Irq:
STORE_BANKED(irq, IRQ);
spsr_banked.irq = spsr;
break;
case Mode::Undefined:
STORE_BANKED(und, UND);
spsr_banked.und = spsr;
break;
case Mode::User:
case Mode::System:
STORE_BANKED(old, SYS_USR);
break;
}
#define RESTORE_BANKED(mode, MODE) \
std::copy(gpr_banked.mode.begin(), \
gpr_banked.mode.end(), \
gpr.begin() + GPR_##MODE##_FIRST)
switch (to) {
case Mode::Fiq:
RESTORE_BANKED(fiq, FIQ);
spsr = spsr_banked.fiq;
break;
case Mode::Supervisor:
RESTORE_BANKED(svc, SVC);
spsr = spsr_banked.svc;
break;
case Mode::Abort:
RESTORE_BANKED(abt, ABT);
spsr = spsr_banked.abt;
break;
case Mode::Irq:
RESTORE_BANKED(irq, IRQ);
spsr = spsr_banked.irq;
break;
case Mode::Undefined:
RESTORE_BANKED(und, UND);
spsr = spsr_banked.und;
break;
case Mode::User:
case Mode::System:
STORE_BANKED(old, SYS_USR);
break;
}
#undef RESTORE_BANKED
cpsr.set_mode(to);
}
void
CpuImpl::step() {
// Current instruction is two instructions behind PC
uint32_t cur_pc = pc - 2 * arm::INSTRUCTION_SIZE;
if (cpsr.state() == State::Arm) {
uint32_t x = bus->read_word(cur_pc);
arm::Instruction instruction(x);
glogger.info("{:#034b}", x);
exec_arm(instruction);
glogger.info("0x{:08X} : {}", cur_pc, instruction.disassemble());
if (is_flushed) {
// if flushed, do not increment the PC, instead set it to two
// instructions ahead to account for flushed "fetch" and "decode"
// instructions
pc += 2 * arm::INSTRUCTION_SIZE;
is_flushed = false;
} else {
// if not flushed continue like normal
pc += arm::INSTRUCTION_SIZE;
}
}
}
}

View File

@@ -1,59 +0,0 @@
#pragma once
#include "bus.hh"
#include "cpu/arm/instruction.hh"
#include "cpu/psr.hh"
#include <cstdint>
namespace matar {
class CpuImpl {
public:
CpuImpl(const Bus& bus) noexcept;
void step();
void chg_mode(const Mode to);
void exec_arm(const arm::Instruction instruction);
static constexpr uint8_t GPR_COUNT = 16;
static constexpr uint8_t GPR_FIQ_FIRST = 8;
static constexpr uint8_t GPR_SVC_FIRST = 13;
static constexpr uint8_t GPR_ABT_FIRST = 13;
static constexpr uint8_t GPR_IRQ_FIRST = 13;
static constexpr uint8_t GPR_UND_FIRST = 13;
static constexpr uint8_t GPR_SYS_USR_FIRST = 8;
std::shared_ptr<Bus> bus;
std::array<uint32_t, GPR_COUNT> gpr; // general purpose registers
Psr cpsr; // current program status register
Psr spsr; // status program status register
static constexpr uint8_t PC_INDEX = 15;
static_assert(PC_INDEX < GPR_COUNT);
uint32_t& pc = gpr[PC_INDEX];
bool is_flushed;
struct {
std::array<uint32_t, GPR_COUNT - GPR_FIQ_FIRST - 1> fiq;
std::array<uint32_t, GPR_COUNT - GPR_SVC_FIRST - 1> svc;
std::array<uint32_t, GPR_COUNT - GPR_ABT_FIRST - 1> abt;
std::array<uint32_t, GPR_COUNT - GPR_IRQ_FIRST - 1> irq;
std::array<uint32_t, GPR_COUNT - GPR_UND_FIRST - 1> und;
// visible registers before the mode switch
std::array<uint32_t, GPR_COUNT - GPR_SYS_USR_FIRST> old;
} gpr_banked; // banked general purpose registers
struct {
Psr fiq;
Psr svc;
Psr abt;
Psr irq;
Psr und;
} spsr_banked; // banked saved program status registers
};
}

View File

@@ -1,14 +1,177 @@
#include "cpu/cpu.hh" #include "cpu/cpu.hh"
#include "cpu-impl.hh" #include "cpu/arm/instruction.hh"
#include "cpu/thumb/instruction.hh"
#include "util/bits.hh"
#include "util/log.hh"
#include <algorithm>
#include <cstdio>
namespace matar { namespace matar {
Cpu::Cpu(const Bus& bus) noexcept Cpu::Cpu(const Bus& bus) noexcept
: impl(std::make_unique<CpuImpl>(bus)){}; : bus(std::make_shared<Bus>(bus))
, gpr({ 0 })
, cpsr(0)
, spsr(0)
, gpr_banked({ { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 } })
, spsr_banked({ 0, 0, 0, 0, 0 })
, is_flushed(false) {
cpsr.set_mode(Mode::Supervisor);
cpsr.set_irq_disabled(true);
cpsr.set_fiq_disabled(true);
cpsr.set_state(State::Arm);
glogger.info("CPU successfully initialised");
Cpu::~Cpu() = default; // PC always points to two instructions ahead
// PC - 2 is the instruction being executed
pc += 2 * arm::INSTRUCTION_SIZE;
}
/* change modes */
void
Cpu::chg_mode(const Mode to) {
Mode from = cpsr.mode();
if (from == to)
return;
/* TODO: replace visible registers with view once I understand how to
* concatenate views */
#define STORE_BANKED(mode, MODE) \
std::copy(gpr.begin() + GPR_##MODE##_FIRST, \
gpr.end() - 1, \
gpr_banked.mode.begin())
switch (from) {
case Mode::Fiq:
STORE_BANKED(fiq, FIQ);
spsr_banked.fiq = spsr;
std::copy(gpr_banked.old.begin(),
gpr_banked.old.end() - 2, // dont copy R13 and R14
gpr.begin() + GPR_OLD_FIRST);
break;
case Mode::Supervisor:
STORE_BANKED(svc, SVC);
spsr_banked.svc = spsr;
break;
case Mode::Abort:
STORE_BANKED(abt, ABT);
spsr_banked.abt = spsr;
break;
case Mode::Irq:
STORE_BANKED(irq, IRQ);
spsr_banked.irq = spsr;
break;
case Mode::Undefined:
STORE_BANKED(und, UND);
spsr_banked.und = spsr;
break;
case Mode::User:
case Mode::System:
// we only take care of r13 and r14, because FIQ takes care of the
// rest
gpr_banked.old[5] = gpr[13];
gpr_banked.old[6] = gpr[14];
break;
}
#undef STORE_BANKED
#define RESTORE_BANKED(mode, MODE) \
std::copy(gpr_banked.mode.begin(), \
gpr_banked.mode.end(), \
gpr.begin() + GPR_##MODE##_FIRST)
switch (to) {
case Mode::Fiq:
RESTORE_BANKED(fiq, FIQ);
spsr = spsr_banked.fiq;
std::copy(gpr.begin() + GPR_FIQ_FIRST,
gpr.end() - 2, // dont copy R13 and R14
gpr_banked.old.begin());
break;
case Mode::Supervisor:
RESTORE_BANKED(svc, SVC);
spsr = spsr_banked.svc;
break;
case Mode::Abort:
RESTORE_BANKED(abt, ABT);
spsr = spsr_banked.abt;
break;
case Mode::Irq:
RESTORE_BANKED(irq, IRQ);
spsr = spsr_banked.irq;
break;
case Mode::Undefined:
RESTORE_BANKED(und, UND);
spsr = spsr_banked.und;
break;
case Mode::User:
case Mode::System:
gpr[13] = gpr_banked.old[5];
gpr[14] = gpr_banked.old[6];
break;
}
#undef RESTORE_BANKED
cpsr.set_mode(to);
glogger.info_bold("Mode changed from {:b} to {:b}",
static_cast<uint32_t>(from),
static_cast<uint32_t>(to));
}
void void
Cpu::step() { Cpu::step() {
impl->step(); // halfword align
}; rst_bit(pc, 0);
if (cpsr.state() == State::Arm) {
// word align
rst_bit(pc, 1);
// Current instruction is two instructions behind PC
uint32_t cur_pc = pc - 2 * arm::INSTRUCTION_SIZE;
arm::Instruction instruction(bus->read_word(cur_pc));
#ifdef DISASSEMBLER
glogger.info("0x{:08X} : {}", cur_pc, instruction.disassemble());
#endif
instruction.exec(*this);
} else {
uint32_t cur_pc = pc - 2 * thumb::INSTRUCTION_SIZE;
thumb::Instruction instruction(bus->read_halfword(cur_pc));
#ifdef DISASSEMBLER
glogger.info("0x{:08X} : {}", cur_pc, instruction.disassemble());
#endif
instruction.exec(*this);
}
// advance PC
{
size_t size = cpsr.state() == State::Arm ? arm::INSTRUCTION_SIZE
: thumb::INSTRUCTION_SIZE;
if (is_flushed) {
// if flushed, do not increment the PC, instead set it to two
// instructions ahead to account for flushed "fetch" and "decode"
// instructions
pc += 2 * size;
is_flushed = false;
} else {
// if not flushed continue like normal
pc += size;
}
}
}
} }

View File

@@ -1,8 +1,8 @@
lib_sources += files( lib_sources += files(
'cpu-impl.cc',
'cpu.cc', 'cpu.cc',
'psr.cc', 'psr.cc',
'alu.cc' 'alu.cc'
) )
subdir('arm') subdir('arm')
subdir('thumb')

View File

@@ -1,6 +1,5 @@
#include "psr.hh" #include "cpu/psr.hh"
#include "util/bits.hh" #include "util/bits.hh"
#include "util/log.hh"
namespace matar { namespace matar {
Psr::Psr(uint32_t raw) Psr::Psr(uint32_t raw)
@@ -13,17 +12,17 @@ Psr::raw() const {
void void
Psr::set_all(uint32_t raw) { Psr::set_all(uint32_t raw) {
psr = raw & ~PSR_CLEAR_RESERVED; psr = raw;
} }
Mode Mode
Psr::mode() const { Psr::mode() const {
return static_cast<Mode>(psr & ~PSR_CLEAR_MODE); return static_cast<Mode>(psr & 0b11111);
} }
void void
Psr::set_mode(Mode mode) { Psr::set_mode(Mode mode) {
psr &= PSR_CLEAR_MODE; psr &= 0b00000;
psr |= static_cast<uint32_t>(mode); psr |= static_cast<uint32_t>(mode);
} }
@@ -91,42 +90,9 @@ Psr::condition(Condition cond) const {
case Condition::LE: case Condition::LE:
return z() || (n() != v()); return z() || (n() != v());
case Condition::AL: case Condition::AL:
return true && state() == State::Arm; return true;
} }
return false; return false;
} }
std::ostream&
operator<<(std::ostream& os, const Condition cond) {
#define CASE(cond) \
case Condition::cond: \
os << #cond; \
break;
switch (cond) {
CASE(EQ)
CASE(NE)
CASE(CS)
CASE(CC)
CASE(MI)
CASE(PL)
CASE(VS)
CASE(VC)
CASE(HI)
CASE(LS)
CASE(GE)
CASE(LT)
CASE(GT)
CASE(LE)
case Condition::AL: {
// empty
}
}
#undef CASE
return os;
}
} }

View File

@@ -0,0 +1,155 @@
#include "cpu/thumb/instruction.hh"
#include "util/bits.hh"
#include <format>
namespace matar::thumb {
std::string
Instruction::disassemble() {
return std::visit(
overloaded{
[](MoveShiftedRegister& data) {
return std::format("{} R{:d},R{:d},#{:d}",
stringify(data.opcode),
data.rd,
data.rs,
data.offset);
},
[](AddSubtract& data) {
return std::format("{} R{:d},R{:d},{}{:d}",
stringify(data.opcode),
data.rd,
data.rs,
(data.imm ? '#' : 'R'),
data.offset);
},
[](MovCmpAddSubImmediate& data) {
return std::format(
"{} R{:d},#{:d}", stringify(data.opcode), data.rd, data.offset);
},
[](AluOperations& data) {
return std::format(
"{} R{:d},R{:d}", stringify(data.opcode), data.rd, data.rs);
},
[](HiRegisterOperations& data) {
if (data.opcode == HiRegisterOperations::OpCode::BX) {
return std::format("{} R{:d}", stringify(data.opcode), data.rs);
}
return std::format(
"{} R{:d},R{:d}", stringify(data.opcode), data.rd, data.rs);
},
[](PcRelativeLoad& data) {
return std::format("LDR R{:d},[PC,#{:d}]", data.rd, data.word);
},
[](LoadStoreRegisterOffset& data) {
return std::format("{}{} R{:d},[R{:d},R{:d}]",
(data.load ? "LDR" : "STR"),
(data.byte ? "B" : ""),
data.rd,
data.rb,
data.ro);
},
[](LoadStoreSignExtendedHalfword& data) {
if (!data.s && !data.h) {
return std::format(
"STRH R{:d},[R{:d},R{:d}]", data.rd, data.rb, data.ro);
}
return std::format("{}{} R{:d},[R{:d},R{:d}]",
(data.s ? "LDS" : "LDR"),
(data.h ? 'H' : 'B'),
data.rd,
data.rb,
data.ro);
},
[](LoadStoreImmediateOffset& data) {
return std::format("{}{} R{:d},[R{:d},#{:d}]",
(data.load ? "LDR" : "STR"),
(data.byte ? "B" : ""),
data.rd,
data.rb,
data.offset);
},
[](LoadStoreHalfword& data) {
return std::format("{} R{:d},[R{:d},#{:d}]",
(data.load ? "LDRH" : "STRH"),
data.rd,
data.rb,
data.offset);
},
[](SpRelativeLoad& data) {
return std::format("{} R{:d},[SP,#{:d}]",
(data.load ? "LDR" : "STR"),
data.rd,
data.word);
},
[](LoadAddress& data) {
return std::format("ADD R{:d},{},#{:d}",
data.rd,
(data.sp ? "SP" : "PC"),
data.word);
},
[](AddOffsetStackPointer& data) {
return std::format("ADD SP,#{:d}", data.word);
},
[](PushPopRegister& data) {
std::string regs;
for (uint8_t i = 0; i < 16; i++) {
if (get_bit(data.regs, i))
std::format_to(std::back_inserter(regs), "R{:d},", i);
};
if (data.load) {
if (data.pclr)
regs += "PC";
else
regs.pop_back();
return std::format("POP {{{}}}", regs);
} else {
if (data.pclr)
regs += "LR";
else
regs.pop_back();
return std::format("PUSH {{{}}}", regs);
}
},
[](MultipleLoad& data) {
std::string regs;
for (uint8_t i = 0; i < 16; i++) {
if (get_bit(data.regs, i))
std::format_to(std::back_inserter(regs), "R{:d},", i);
};
regs.pop_back();
return std::format(
"{} R{}!,{{{}}}", (data.load ? "LDMIA" : "STMIA"), data.rb, regs);
},
[](SoftwareInterrupt& data) {
return std::format("SWI {:d}", data.vector);
},
[](ConditionalBranch& data) {
return std::format(
"B{} #{:d}",
stringify(data.condition),
static_cast<int32_t>(data.offset + 2 * INSTRUCTION_SIZE));
},
[](UnconditionalBranch& data) {
return std::format(
"B #{:d}",
static_cast<int32_t>(data.offset + 2 * INSTRUCTION_SIZE));
},
[](LongBranchWithLink& data) {
// duh this manual be empty for H = 0
return std::format(
"BL{} #{:d}", (data.high ? "H" : ""), data.offset);
},
[](auto) { return std::string("unknown instruction"); } },
data);
}
}

391
src/cpu/thumb/exec.cc Normal file
View File

@@ -0,0 +1,391 @@
#include "cpu/cpu.hh"
#include "util/bits.hh"
#include "util/log.hh"
namespace matar::thumb {
void
Instruction::exec(Cpu& cpu) {
auto set_cc = [&cpu](bool c, bool v, bool n, bool z) {
cpu.cpsr.set_c(c);
cpu.cpsr.set_v(v);
cpu.cpsr.set_n(n);
cpu.cpsr.set_z(z);
};
std::visit(
overloaded{
[&cpu, set_cc](MoveShiftedRegister& data) {
if (data.opcode == ShiftType::ROR)
glogger.error("Invalid opcode in {}", typeid(data).name());
bool carry = cpu.cpsr.c();
uint32_t shifted =
eval_shift(data.opcode, cpu.gpr[data.rs], data.offset, carry);
cpu.gpr[data.rd] = shifted;
set_cc(carry, cpu.cpsr.v(), get_bit(shifted, 31), shifted == 0);
},
[&cpu, set_cc](AddSubtract& data) {
uint32_t offset =
data.imm ? static_cast<uint32_t>(static_cast<int8_t>(data.offset))
: cpu.gpr[data.offset];
uint32_t result = 0;
bool carry = cpu.cpsr.c();
bool overflow = cpu.cpsr.v();
switch (data.opcode) {
case AddSubtract::OpCode::ADD:
result = add(cpu.gpr[data.rs], offset, carry, overflow);
break;
case AddSubtract::OpCode::SUB:
result = sub(cpu.gpr[data.rs], offset, carry, overflow);
break;
}
cpu.gpr[data.rd] = result;
set_cc(carry, overflow, get_bit(result, 31), result == 0);
},
[&cpu, set_cc](MovCmpAddSubImmediate& data) {
uint32_t result = 0;
bool carry = cpu.cpsr.c();
bool overflow = cpu.cpsr.v();
switch (data.opcode) {
case MovCmpAddSubImmediate::OpCode::MOV:
result = data.offset;
carry = 0;
break;
case MovCmpAddSubImmediate::OpCode::ADD:
result =
add(cpu.gpr[data.rd], data.offset, carry, overflow);
break;
case MovCmpAddSubImmediate::OpCode::SUB:
case MovCmpAddSubImmediate::OpCode::CMP:
result =
sub(cpu.gpr[data.rd], data.offset, carry, overflow);
break;
}
set_cc(carry, overflow, get_bit(result, 31), result == 0);
if (data.opcode != MovCmpAddSubImmediate::OpCode::CMP)
cpu.gpr[data.rd] = result;
},
[&cpu, set_cc](AluOperations& data) {
uint32_t op_1 = cpu.gpr[data.rd];
uint32_t op_2 = cpu.gpr[data.rs];
uint32_t result = 0;
bool carry = cpu.cpsr.c();
bool overflow = cpu.cpsr.v();
switch (data.opcode) {
case AluOperations::OpCode::AND:
case AluOperations::OpCode::TST:
result = op_1 & op_2;
break;
case AluOperations::OpCode::EOR:
result = op_1 ^ op_2;
break;
case AluOperations::OpCode::LSL:
result = eval_shift(ShiftType::LSL, op_1, op_2, carry);
break;
case AluOperations::OpCode::LSR:
result = eval_shift(ShiftType::LSR, op_1, op_2, carry);
break;
case AluOperations::OpCode::ASR:
result = eval_shift(ShiftType::ASR, op_1, op_2, carry);
break;
case AluOperations::OpCode::ADC:
result = add(op_1, op_2, carry, overflow, carry);
break;
case AluOperations::OpCode::SBC:
result = sbc(op_1, op_2, carry, overflow, carry);
break;
case AluOperations::OpCode::ROR:
result = eval_shift(ShiftType::ROR, op_1, op_2, carry);
break;
case AluOperations::OpCode::NEG:
result = -op_2;
break;
case AluOperations::OpCode::CMP:
result = sub(op_1, op_2, carry, overflow);
break;
case AluOperations::OpCode::CMN:
result = add(op_1, op_2, carry, overflow);
break;
case AluOperations::OpCode::ORR:
result = op_1 | op_2;
break;
case AluOperations::OpCode::MUL:
result = op_1 * op_2;
break;
case AluOperations::OpCode::BIC:
result = op_1 & ~op_2;
break;
case AluOperations::OpCode::MVN:
result = ~op_2;
break;
}
if (data.opcode != AluOperations::OpCode::TST &&
data.opcode != AluOperations::OpCode::CMP &&
data.opcode != AluOperations::OpCode::CMN)
cpu.gpr[data.rd] = result;
set_cc(carry, overflow, get_bit(result, 31), result == 0);
},
[&cpu, set_cc](HiRegisterOperations& data) {
uint32_t op_1 = cpu.gpr[data.rd];
uint32_t op_2 = cpu.gpr[data.rs];
bool carry = cpu.cpsr.c();
bool overflow = cpu.cpsr.v();
// PC is already current + 4, so dont need to do that
if (data.rd == cpu.PC_INDEX)
rst_bit(op_1, 0);
if (data.rs == cpu.PC_INDEX)
rst_bit(op_2, 0);
switch (data.opcode) {
case HiRegisterOperations::OpCode::ADD: {
cpu.gpr[data.rd] = add(op_1, op_2, carry, overflow);
if (data.rd == cpu.PC_INDEX)
cpu.is_flushed = true;
} break;
case HiRegisterOperations::OpCode::CMP: {
uint32_t result = sub(op_1, op_2, carry, overflow);
set_cc(carry, overflow, get_bit(result, 31), result == 0);
} break;
case HiRegisterOperations::OpCode::MOV: {
cpu.gpr[data.rd] = op_2;
if (data.rd == cpu.PC_INDEX)
cpu.is_flushed = true;
} break;
case HiRegisterOperations::OpCode::BX: {
State state = static_cast<State>(get_bit(op_2, 0));
if (state != cpu.cpsr.state())
glogger.info_bold("State changed");
// set state
cpu.cpsr.set_state(state);
// copy to PC
cpu.pc = op_2;
// ignore [1:0] bits for arm and 0 bit for thumb
rst_bit(cpu.pc, 0);
if (state == State::Arm)
rst_bit(cpu.pc, 1);
// pc is affected so flush the pipeline
cpu.is_flushed = true;
} break;
}
},
[&cpu](PcRelativeLoad& data) {
uint32_t pc = cpu.pc;
rst_bit(pc, 0);
rst_bit(pc, 1);
cpu.gpr[data.rd] = cpu.bus->read_word(pc + data.word);
},
[&cpu](LoadStoreRegisterOffset& data) {
uint32_t address = cpu.gpr[data.rb] + cpu.gpr[data.ro];
if (data.load) {
if (data.byte) {
cpu.gpr[data.rd] = cpu.bus->read_byte(address);
} else {
cpu.gpr[data.rd] = cpu.bus->read_word(address);
}
} else {
if (data.byte) {
cpu.bus->write_byte(address, cpu.gpr[data.rd] & 0xFF);
} else {
cpu.bus->write_word(address, cpu.gpr[data.rd]);
}
}
},
[&cpu](LoadStoreSignExtendedHalfword& data) {
uint32_t address = cpu.gpr[data.rb] + cpu.gpr[data.ro];
switch (data.s << 1 | data.h) {
case 0b00:
cpu.bus->write_halfword(address, cpu.gpr[data.rd] & 0xFFFF);
break;
case 0b01:
cpu.gpr[data.rd] = cpu.bus->read_halfword(address);
break;
case 0b10:
// sign extend and load the byte
cpu.gpr[data.rd] =
(static_cast<int32_t>(cpu.bus->read_byte(address))
<< 24) >>
24;
break;
case 0b11:
// sign extend the halfword
cpu.gpr[data.rd] =
(static_cast<int32_t>(cpu.bus->read_halfword(address))
<< 16) >>
16;
break;
// unreachable
default: {
}
}
},
[&cpu](LoadStoreImmediateOffset& data) {
uint32_t address = cpu.gpr[data.rb] + data.offset;
if (data.load) {
if (data.byte) {
cpu.gpr[data.rd] = cpu.bus->read_byte(address);
} else {
cpu.gpr[data.rd] = cpu.bus->read_word(address);
}
} else {
if (data.byte) {
cpu.bus->write_byte(address, cpu.gpr[data.rd] & 0xFF);
} else {
cpu.bus->write_word(address, cpu.gpr[data.rd]);
}
}
},
[&cpu](LoadStoreHalfword& data) {
uint32_t address = cpu.gpr[data.rb] + data.offset;
if (data.load) {
cpu.gpr[data.rd] = cpu.bus->read_halfword(address);
} else {
cpu.bus->write_halfword(address, cpu.gpr[data.rd] & 0xFFFF);
}
},
[&cpu](SpRelativeLoad& data) {
uint32_t address = cpu.sp + data.word;
if (data.load) {
cpu.gpr[data.rd] = cpu.bus->read_word(address);
} else {
cpu.bus->write_word(address, cpu.gpr[data.rd]);
}
},
[&cpu](LoadAddress& data) {
if (data.sp) {
cpu.gpr[data.rd] = cpu.sp + data.word;
} else {
// PC is already current + 4, so dont need to do that
// force bit 1 to 0
cpu.gpr[data.rd] = (cpu.pc & ~(1 << 1)) + data.word;
}
},
[&cpu](AddOffsetStackPointer& data) { cpu.sp += data.word; },
[&cpu](PushPopRegister& data) {
static constexpr uint8_t alignment = 4;
if (data.load) {
for (uint8_t i = 0; i < 8; i++) {
if (get_bit(data.regs, i)) {
cpu.gpr[i] = cpu.bus->read_word(cpu.sp);
cpu.sp += alignment;
}
}
if (data.pclr) {
cpu.pc = cpu.bus->read_word(cpu.sp);
cpu.sp += alignment;
cpu.is_flushed = true;
}
} else {
if (data.pclr) {
cpu.sp -= alignment;
cpu.bus->write_word(cpu.sp, cpu.lr);
}
for (int8_t i = 7; i >= 0; i--) {
if (get_bit(data.regs, i)) {
cpu.sp -= alignment;
cpu.bus->write_word(cpu.sp, cpu.gpr[i]);
}
}
}
},
[&cpu](MultipleLoad& data) {
static constexpr uint8_t alignment = 4;
uint32_t rb = cpu.gpr[data.rb];
if (data.load) {
for (uint8_t i = 0; i < 8; i++) {
if (get_bit(data.regs, i)) {
cpu.gpr[i] = cpu.bus->read_word(rb);
rb += alignment;
}
}
} else {
for (int8_t i = 7; i >= 0; i--) {
if (get_bit(data.regs, i)) {
rb -= alignment;
cpu.bus->write_word(rb, cpu.gpr[i]);
}
}
}
cpu.gpr[data.rb] = rb;
},
[&cpu](ConditionalBranch& data) {
if (data.condition == Condition::AL)
glogger.warn("Condition 1110 (AL) is undefined");
if (!cpu.cpsr.condition(data.condition))
return;
cpu.pc += data.offset;
cpu.is_flushed = true;
},
[&cpu](SoftwareInterrupt& data) {
// next instruction is one instruction behind PC
cpu.lr = cpu.pc - INSTRUCTION_SIZE;
cpu.spsr = cpu.cpsr;
cpu.pc = data.vector;
cpu.cpsr.set_state(State::Arm);
cpu.chg_mode(Mode::Supervisor);
cpu.is_flushed = true;
},
[&cpu](UnconditionalBranch& data) {
cpu.pc += data.offset;
cpu.is_flushed = true;
},
[&cpu](LongBranchWithLink& data) {
// 12 bit integer
int32_t offset = data.offset;
if (data.high) {
uint32_t old_pc = cpu.pc;
cpu.pc = cpu.lr + offset;
cpu.lr = (old_pc - INSTRUCTION_SIZE) | 1;
cpu.is_flushed = true;
} else {
// 12 + 11 = 23 bit
offset <<= 11;
// sign extend
offset = (offset << 9) >> 9;
cpu.lr = cpu.pc + offset;
}
},
[](auto& data) {
glogger.error("Unknown thumb format : {}", typeid(data).name());
} },
data);
}
}

View File

@@ -0,0 +1,213 @@
#include "cpu/thumb/instruction.hh"
#include "util/bits.hh"
#include "util/log.hh"
namespace matar::thumb {
Instruction::Instruction(uint16_t insn) {
// Format 2: Add/Subtract
if ((insn & 0xF800) == 0x1800) {
uint8_t rd = bit_range(insn, 0, 2);
uint8_t rs = bit_range(insn, 3, 5);
uint8_t offset = bit_range(insn, 6, 8);
AddSubtract::OpCode opcode =
static_cast<AddSubtract::OpCode>(get_bit(insn, 9));
bool imm = get_bit(insn, 10);
data = AddSubtract{
.rd = rd, .rs = rs, .offset = offset, .opcode = opcode, .imm = imm
};
// Format 1: Move Shifted Register
} else if ((insn & 0xE000) == 0x0000) {
uint8_t rd = bit_range(insn, 0, 2);
uint8_t rs = bit_range(insn, 3, 5);
uint8_t offset = bit_range(insn, 6, 10);
ShiftType opcode = static_cast<ShiftType>(bit_range(insn, 11, 12));
data = MoveShiftedRegister{
.rd = rd, .rs = rs, .offset = offset, .opcode = opcode
};
// Format 3: Move/compare/add/subtract immediate
} else if ((insn & 0xE000) == 0x2000) {
uint8_t offset = bit_range(insn, 0, 7);
uint8_t rd = bit_range(insn, 8, 10);
MovCmpAddSubImmediate::OpCode opcode =
static_cast<MovCmpAddSubImmediate::OpCode>(bit_range(insn, 11, 12));
data =
MovCmpAddSubImmediate{ .offset = offset, .rd = rd, .opcode = opcode };
// Format 4: ALU operations
} else if ((insn & 0xFC00) == 0x4000) {
uint8_t rd = bit_range(insn, 0, 2);
uint8_t rs = bit_range(insn, 3, 5);
AluOperations::OpCode opcode =
static_cast<AluOperations::OpCode>(bit_range(insn, 6, 9));
data = AluOperations{ .rd = rd, .rs = rs, .opcode = opcode };
// Format 5: Hi register operations/branch exchange
} else if ((insn & 0xFC00) == 0x4400) {
uint8_t rd = bit_range(insn, 0, 2);
uint8_t rs = bit_range(insn, 3, 5);
bool hi_2 = get_bit(insn, 6);
bool hi_1 = get_bit(insn, 7);
HiRegisterOperations::OpCode opcode =
static_cast<HiRegisterOperations::OpCode>(bit_range(insn, 8, 9));
if (opcode == HiRegisterOperations::OpCode::BX && hi_1)
glogger.warn("H1 set with BX");
rd += (hi_1 ? LO_GPR_COUNT : 0);
rs += (hi_2 ? LO_GPR_COUNT : 0);
data = HiRegisterOperations{ .rd = rd, .rs = rs, .opcode = opcode };
// Format 6: PC-relative load
} else if ((insn & 0xF800) == 0x4800) {
uint16_t word = bit_range(insn, 0, 7);
uint8_t rd = bit_range(insn, 8, 10);
data =
PcRelativeLoad{ .word = static_cast<uint16_t>(word << 2), .rd = rd };
// Format 7: Load/store with register offset
} else if ((insn & 0xF200) == 0x5000) {
uint8_t rd = bit_range(insn, 0, 2);
uint8_t rb = bit_range(insn, 3, 5);
uint8_t ro = bit_range(insn, 6, 8);
bool byte = get_bit(insn, 10);
bool load = get_bit(insn, 11);
data = LoadStoreRegisterOffset{
.rd = rd, .rb = rb, .ro = ro, .byte = byte, .load = load
};
// Format 8: Load/store sign-extended byte/halfword
} else if ((insn & 0xF200) == 0x5200) {
uint8_t rd = bit_range(insn, 0, 2);
uint8_t rb = bit_range(insn, 3, 5);
uint8_t ro = bit_range(insn, 6, 8);
bool s = get_bit(insn, 10);
bool h = get_bit(insn, 11);
data = LoadStoreSignExtendedHalfword{
.rd = rd, .rb = rb, .ro = ro, .s = s, .h = h
};
// Format 9: Load/store with immediate offset
} else if ((insn & 0xE000) == 0x6000) {
uint8_t rd = bit_range(insn, 0, 2);
uint8_t rb = bit_range(insn, 3, 5);
uint8_t offset = bit_range(insn, 6, 10);
bool load = get_bit(insn, 11);
bool byte = get_bit(insn, 12);
if (!byte)
offset <<= 2;
data = LoadStoreImmediateOffset{
.rd = rd, .rb = rb, .offset = offset, .load = load, .byte = byte
};
// Format 10: Load/store halfword
} else if ((insn & 0xF000) == 0x8000) {
uint8_t rd = bit_range(insn, 0, 2);
uint8_t rb = bit_range(insn, 3, 5);
uint8_t offset = bit_range(insn, 6, 10);
bool load = get_bit(insn, 11);
offset <<= 1;
data = LoadStoreHalfword{
.rd = rd, .rb = rb, .offset = offset, .load = load
};
// Format 11: SP-relative load/store
} else if ((insn & 0xF000) == 0x9000) {
uint16_t word = bit_range(insn, 0, 7);
uint8_t rd = bit_range(insn, 8, 10);
bool load = get_bit(insn, 11);
word <<= 2;
data = SpRelativeLoad{ .word = word, .rd = rd, .load = load };
// Format 12: Load address
} else if ((insn & 0xF000) == 0xA000) {
uint16_t word = bit_range(insn, 0, 7);
uint8_t rd = bit_range(insn, 8, 10);
bool sp = get_bit(insn, 11);
word <<= 2;
data = LoadAddress{ .word = word, .rd = rd, .sp = sp };
// Format 13: Add offset to stack pointer
} else if ((insn & 0xFF00) == 0xB000) {
int16_t word = static_cast<int16_t>(bit_range(insn, 0, 6));
bool sign = get_bit(insn, 7);
word <<= 2;
word = static_cast<int16_t>(word * (sign ? -1 : 1));
data = AddOffsetStackPointer{
.word = word,
};
// Format 14: Push/pop registers
} else if ((insn & 0xF600) == 0xB400) {
uint8_t regs = bit_range(insn, 0, 7);
bool pclr = get_bit(insn, 8);
bool load = get_bit(insn, 11);
data = PushPopRegister{ .regs = regs, .pclr = pclr, .load = load };
// Format 15: Multiple load/store
} else if ((insn & 0xF000) == 0xC000) {
uint8_t regs = bit_range(insn, 0, 7);
uint8_t rb = bit_range(insn, 8, 10);
bool load = get_bit(insn, 11);
data = MultipleLoad{ .regs = regs, .rb = rb, .load = load };
// Format 17: Software interrupt
} else if ((insn & 0xFF00) == 0xDF00) {
uint8_t vector = bit_range(insn, 0, 7);
data = SoftwareInterrupt{ .vector = vector };
// Format 16: Conditional branch
} else if ((insn & 0xF000) == 0xD000) {
int32_t offset = bit_range(insn, 0, 7);
Condition condition = static_cast<Condition>(bit_range(insn, 8, 11));
offset <<= 1;
// sign extend the 9 bit integer
offset = (offset << 23) >> 23;
data = ConditionalBranch{ .offset = offset, .condition = condition };
// Format 18: Unconditional branch
} else if ((insn & 0xF800) == 0xE000) {
int32_t offset = bit_range(insn, 0, 10);
offset <<= 1;
// sign extend the 12 bit integer
offset = (offset << 20) >> 20;
data = UnconditionalBranch{ .offset = offset };
// Format 19: Long branch with link
} else if ((insn & 0xF000) == 0xF000) {
uint16_t offset = bit_range(insn, 0, 10);
bool high = get_bit(insn, 11);
offset <<= 1;
data = LongBranchWithLink{ .offset = offset, .high = high };
}
}
}

View File

@@ -0,0 +1,8 @@
lib_sources += files(
'instruction.cc',
'exec.cc'
)
if get_option('disassembler')
lib_sources += files('disassembler.cc')
endif

279
src/io/io.cc Normal file
View File

@@ -0,0 +1,279 @@
#include "io/io.hh"
#include "util/bits.hh"
#include "util/log.hh"
namespace matar {
#define ADDR static constexpr uint32_t
// lcd
ADDR DISPCNT = 0x4000000;
ADDR DISPSTAT = 0x4000004;
ADDR VCOUNT = 0x4000006;
ADDR BG0CNT = 0x4000008;
ADDR BG1CNT = 0x400000A;
ADDR BG2CNT = 0x400000C;
ADDR BG3CNT = 0x400000E;
ADDR BG0HOFS = 0x4000010;
ADDR BG0VOFS = 0x4000012;
ADDR BG1HOFS = 0x4000014;
ADDR BG1VOFS = 0x4000016;
ADDR BG2HOFS = 0x4000018;
ADDR BG2VOFS = 0x400001A;
ADDR BG3HOFS = 0x400001C;
ADDR BG3VOFS = 0x400001E;
ADDR BG2PA = 0x4000020;
ADDR BG2PB = 0x4000022;
ADDR BG2PC = 0x4000024;
ADDR BG2PD = 0x4000026;
ADDR BG2X_L = 0x4000028;
ADDR BG2X_H = 0x400002A;
ADDR BG2Y_L = 0x400002C;
ADDR BG2Y_H = 0x400002E;
ADDR BG3PA = 0x4000030;
ADDR BG3PB = 0x4000032;
ADDR BG3PC = 0x4000034;
ADDR BG3PD = 0x4000036;
ADDR BG3X_L = 0x4000038;
ADDR BG3X_H = 0x400003A;
ADDR BG3Y_L = 0x400003C;
ADDR BG3Y_H = 0x400003E;
ADDR WIN0H = 0x4000040;
ADDR WIN1H = 0x4000042;
ADDR WIN0V = 0x4000044;
ADDR WIN1V = 0x4000046;
ADDR WININ = 0x4000048;
ADDR WINOUT = 0x400004A;
ADDR MOSAIC = 0x400004C;
ADDR BLDCNT = 0x4000050;
ADDR BLDALPHA = 0x4000052;
ADDR BLDY = 0x4000054;
// sound
ADDR SOUND1CNT_L = 0x4000060;
ADDR SOUND1CNT_H = 0x4000062;
ADDR SOUND1CNT_X = 0x4000064;
ADDR SOUND2CNT_L = 0x4000068;
ADDR SOUND2CNT_H = 0x400006C;
ADDR SOUND3CNT_L = 0x4000070;
ADDR SOUND3CNT_H = 0x4000072;
ADDR SOUND3CNT_X = 0x4000074;
ADDR SOUND4CNT_L = 0x4000078;
ADDR SOUND4CNT_H = 0x400007C;
ADDR SOUNDCNT_L = 0x4000080;
ADDR SOUNDCNT_H = 0x4000082;
ADDR SOUNDCNT_X = 0x4000084;
ADDR SOUNDBIAS = 0x4000088;
ADDR WAVE_RAM0_L = 0x4000090;
ADDR WAVE_RAM0_H = 0x4000092;
ADDR WAVE_RAM1_L = 0x4000094;
ADDR WAVE_RAM1_H = 0x4000096;
ADDR WAVE_RAM2_L = 0x4000098;
ADDR WAVE_RAM2_H = 0x400009A;
ADDR WAVE_RAM3_L = 0x400009C;
ADDR WAVE_RAM3_H = 0x400009E;
ADDR FIFO_A_L = 0x40000A0;
ADDR FIFO_A_H = 0x40000A2;
ADDR FIFO_B_L = 0x40000A4;
ADDR FIFO_B_H = 0x40000A6;
// system
ADDR POSTFLG = 0x4000300;
ADDR IME = 0x4000208;
ADDR IE = 0x4000200;
ADDR IF = 0x4000202;
ADDR WAITCNT = 0x4000204;
ADDR HALTCNT = 0x4000301;
#undef ADDR
uint8_t
IoDevices::read_byte(uint32_t address) const {
uint16_t halfword = read_halfword(address & ~1);
if (address & 1)
halfword >>= 8;
return halfword & 0xFF;
}
void
IoDevices::write_byte(uint32_t address, uint8_t byte) {
uint16_t halfword = read_halfword(address & ~1);
if (address & 1)
write_halfword(address & ~1,
(static_cast<uint16_t>(byte) << 8) | (halfword & 0xFF));
else
write_halfword(address & ~1,
(static_cast<uint16_t>(byte) | (halfword & 0xFF00)));
}
uint32_t
IoDevices::read_word(uint32_t address) const {
return read_halfword(address) | read_halfword(address + 2) << 16;
}
void
IoDevices::write_word(uint32_t address, uint32_t word) {
write_halfword(address, word & 0xFFFF);
write_halfword(address + 2, (word >> 16) & 0xFFFF);
}
uint16_t
IoDevices::read_halfword(uint32_t address) const {
switch (address) {
#define READ(name, var) \
case name: \
return var;
// lcd
READ(DISPCNT, lcd.lcd_control)
READ(DISPSTAT, lcd.general_lcd_status)
READ(VCOUNT, lcd.vertical_counter)
READ(WININ, lcd.inside_win_0_1)
READ(WINOUT, lcd.outside_win)
READ(BLDCNT, lcd.color_special_effects_selection)
READ(BLDALPHA, lcd.alpha_blending_coefficients)
// sound
READ(SOUND1CNT_L, sound.ch1_sweep)
READ(SOUND1CNT_H, sound.ch1_duty_length_env)
READ(SOUND1CNT_X, sound.ch1_freq_control)
READ(SOUND2CNT_L, sound.ch2_duty_length_env)
READ(SOUND2CNT_H, sound.ch2_freq_control)
READ(SOUND3CNT_L, sound.ch3_stop_wave_ram_select)
READ(SOUND3CNT_H, sound.ch3_length_volume)
READ(SOUND3CNT_X, sound.ch3_freq_control)
READ(WAVE_RAM0_L, sound.ch3_wave_pattern[0]);
READ(WAVE_RAM0_H, sound.ch3_wave_pattern[1]);
READ(WAVE_RAM1_L, sound.ch3_wave_pattern[2]);
READ(WAVE_RAM1_H, sound.ch3_wave_pattern[3]);
READ(WAVE_RAM2_L, sound.ch3_wave_pattern[4]);
READ(WAVE_RAM2_H, sound.ch3_wave_pattern[5]);
READ(WAVE_RAM3_L, sound.ch3_wave_pattern[6]);
READ(WAVE_RAM3_H, sound.ch3_wave_pattern[7]);
READ(SOUND4CNT_L, sound.ch4_length_env);
READ(SOUND4CNT_H, sound.ch4_freq_control);
READ(SOUNDCNT_L, sound.ctrl_stereo_volume);
READ(SOUNDCNT_H, sound.ctrl_mixing);
READ(SOUNDCNT_X, sound.ctrl_sound_on_off);
READ(SOUNDBIAS, sound.pwm_control);
// system
READ(POSTFLG, system.post_boot_flag)
READ(IME, system.interrupt_master_enabler)
READ(IE, system.interrupt_enable);
READ(IF, system.interrupt_request_flags);
READ(WAITCNT, system.waitstate_control);
#undef READ
default:
glogger.warn("Unused IO address read at 0x{:08X}", address);
}
return 0xFF;
}
void
IoDevices::write_halfword(uint32_t address, uint16_t halfword) {
switch (address) {
#define WRITE(name, var) \
case name: \
var = halfword; \
break;
#define WRITE_2(name, var, val) \
case name: \
var = val; \
break;
// lcd
WRITE(DISPCNT, lcd.lcd_control)
WRITE(DISPSTAT, lcd.general_lcd_status)
WRITE(BG0CNT, lcd.bg0_control)
WRITE(BG1CNT, lcd.bg1_control)
WRITE(BG2CNT, lcd.bg2_control)
WRITE(BG3CNT, lcd.bg3_control)
WRITE(BG0HOFS, lcd.bg0_x_offset)
WRITE(BG0VOFS, lcd.bg0_y_offset)
WRITE(BG1HOFS, lcd.bg1_x_offset)
WRITE(BG1VOFS, lcd.bg1_y_offset)
WRITE(BG2HOFS, lcd.bg2_x_offset)
WRITE(BG2VOFS, lcd.bg2_y_offset)
WRITE(BG3HOFS, lcd.bg3_x_offset)
WRITE(BG3VOFS, lcd.bg3_y_offset)
WRITE(BG2PA, lcd.bg2_rot_scaling_parameters[0])
WRITE(BG2PB, lcd.bg2_rot_scaling_parameters[1])
WRITE(BG2PC, lcd.bg2_rot_scaling_parameters[2])
WRITE(BG2PD, lcd.bg2_rot_scaling_parameters[3])
WRITE(BG2X_L, lcd.bg2_reference_x[0])
WRITE(BG2X_H, lcd.bg2_reference_x[1])
WRITE(BG2Y_L, lcd.bg2_reference_y[0])
WRITE(BG2Y_H, lcd.bg2_reference_y[1])
WRITE(BG3PA, lcd.bg3_rot_scaling_parameters[0])
WRITE(BG3PB, lcd.bg3_rot_scaling_parameters[1])
WRITE(BG3PC, lcd.bg3_rot_scaling_parameters[2])
WRITE(BG3PD, lcd.bg3_rot_scaling_parameters[3])
WRITE(BG3X_L, lcd.bg3_reference_x[0])
WRITE(BG3X_H, lcd.bg3_reference_x[1])
WRITE(BG3Y_L, lcd.bg3_reference_y[0])
WRITE(BG3Y_H, lcd.bg3_reference_y[1])
WRITE(WIN0H, lcd.win0_horizontal_dimensions)
WRITE(WIN1H, lcd.win1_horizontal_dimensions)
WRITE(WIN0V, lcd.win0_vertical_dimensions)
WRITE(WIN1V, lcd.win1_vertical_dimensions)
WRITE(WININ, lcd.inside_win_0_1)
WRITE(WINOUT, lcd.outside_win)
WRITE(MOSAIC, lcd.mosaic_size)
WRITE(BLDCNT, lcd.color_special_effects_selection)
WRITE(BLDALPHA, lcd.alpha_blending_coefficients)
WRITE(BLDY, lcd.brightness_coefficient)
// sound
WRITE(SOUND1CNT_L, sound.ch1_sweep)
WRITE(SOUND1CNT_H, sound.ch1_duty_length_env)
WRITE(SOUND1CNT_X, sound.ch1_freq_control)
WRITE(SOUND2CNT_L, sound.ch2_duty_length_env)
WRITE(SOUND2CNT_H, sound.ch2_freq_control)
WRITE(SOUND3CNT_L, sound.ch3_stop_wave_ram_select)
WRITE(SOUND3CNT_H, sound.ch3_length_volume)
WRITE(SOUND3CNT_X, sound.ch3_freq_control)
WRITE(WAVE_RAM0_L, sound.ch3_wave_pattern[0]);
WRITE(WAVE_RAM0_H, sound.ch3_wave_pattern[1]);
WRITE(WAVE_RAM1_L, sound.ch3_wave_pattern[2]);
WRITE(WAVE_RAM1_H, sound.ch3_wave_pattern[3]);
WRITE(WAVE_RAM2_L, sound.ch3_wave_pattern[4]);
WRITE(WAVE_RAM2_H, sound.ch3_wave_pattern[5]);
WRITE(WAVE_RAM3_L, sound.ch3_wave_pattern[6]);
WRITE(WAVE_RAM3_H, sound.ch3_wave_pattern[7]);
WRITE(SOUND4CNT_L, sound.ch4_length_env);
WRITE(SOUND4CNT_H, sound.ch4_freq_control);
WRITE(SOUNDCNT_L, sound.ctrl_stereo_volume);
WRITE(SOUNDCNT_H, sound.ctrl_mixing);
WRITE(SOUNDCNT_X, sound.ctrl_sound_on_off);
WRITE(SOUNDBIAS, sound.pwm_control);
WRITE(FIFO_A_L, sound.fifo_a[0]);
WRITE(FIFO_A_H, sound.fifo_a[1]);
WRITE(FIFO_B_L, sound.fifo_b[0]);
WRITE(FIFO_B_H, sound.fifo_b[1]);
// system
WRITE_2(POSTFLG, system.post_boot_flag, halfword & 1)
WRITE_2(IME, system.interrupt_master_enabler, halfword & 1)
WRITE(IE, system.interrupt_enable);
WRITE(IF, system.interrupt_request_flags);
WRITE(WAITCNT, system.waitstate_control);
WRITE_2(HALTCNT, system.low_power_mode, get_bit(halfword, 7));
#undef WRITE
#undef WRITE_2
default:
glogger.warn("Unused IO address written at 0x{:08X}", address);
}
return;
}
}

3
src/io/meson.build Normal file
View File

@@ -0,0 +1,3 @@
lib_sources += files(
'io.cc',
)

View File

@@ -1,9 +1,7 @@
#include "memory.hh" #include "memory.hh"
#include "header.hh" #include "header.hh"
#include "util/bits.hh"
#include "util/crypto.hh" #include "util/crypto.hh"
#include "util/log.hh" #include "util/log.hh"
#include <bitset>
#include <stdexcept> #include <stdexcept>
namespace matar { namespace matar {
@@ -34,64 +32,49 @@ Memory::Memory(std::array<uint8_t, BIOS_SIZE>&& bios,
glogger.info("Cartridge Title: {}", header.title); glogger.info("Cartridge Title: {}", header.title);
}; };
#define MATCHES(area) address >= area##_START&& address <= area##_END
uint8_t uint8_t
Memory::read(size_t address) const { Memory::read(uint32_t address) const {
if (MATCHES(BIOS)) { #define MATCHES(AREA, area) \
return bios[address]; if (address >= AREA##_START && address < AREA##_START + area.size()) \
} else if (MATCHES(BOARD_WRAM)) { return area[address - AREA##_START];
return board_wram[address - BOARD_WRAM_START];
} else if (MATCHES(CHIP_WRAM)) { MATCHES(BIOS, bios)
return chip_wram[address - CHIP_WRAM_START]; MATCHES(BOARD_WRAM, board_wram)
} else if (MATCHES(PALETTE_RAM)) { MATCHES(CHIP_WRAM, chip_wram)
return palette_ram[address - PALETTE_RAM_START]; MATCHES(PALETTE_RAM, palette_ram)
} else if (MATCHES(VRAM)) { MATCHES(VRAM, vram)
return vram[address - VRAM_START]; MATCHES(OAM_OBJ_ATTR, oam_obj_attr)
} else if (MATCHES(OAM_OBJ_ATTR)) { MATCHES(ROM_0, rom)
return oam_obj_attr[address - OAM_OBJ_ATTR_START]; MATCHES(ROM_1, rom)
} else if (MATCHES(ROM_0)) { MATCHES(ROM_2, rom)
return rom[address - ROM_0_START];
} else if (MATCHES(ROM_1)) { glogger.error("Invalid memory region accessed");
return rom[address - ROM_1_START]; return 0xFF;
} else if (MATCHES(ROM_2)) {
return rom[address - ROM_2_START]; #undef MATCHES
} else {
glogger.error("Invalid memory region accessed");
return 0xFF;
}
} }
void void
Memory::write(size_t address, uint8_t byte) { Memory::write(uint32_t address, uint8_t byte) {
if (MATCHES(BIOS)) { #define MATCHES(AREA, area) \
bios[address] = byte; if (address >= AREA##_START && address < AREA##_START + area.size()) { \
} else if (MATCHES(BOARD_WRAM)) { area[address - AREA##_START] = byte; \
board_wram[address - BOARD_WRAM_START] = byte; return; \
} else if (MATCHES(CHIP_WRAM)) {
chip_wram[address - CHIP_WRAM_START] = byte;
} else if (MATCHES(PALETTE_RAM)) {
palette_ram[address - PALETTE_RAM_START] = byte;
} else if (MATCHES(VRAM)) {
vram[address - VRAM_START] = byte;
} else if (MATCHES(OAM_OBJ_ATTR)) {
oam_obj_attr[address - OAM_OBJ_ATTR_START] = byte;
} else if (MATCHES(ROM_0)) {
rom[address - ROM_0_START] = byte;
} else if (MATCHES(ROM_1)) {
rom[address - ROM_1_START] = byte;
} else if (MATCHES(ROM_2)) {
rom[address - ROM_2_START] = byte;
} else {
glogger.error("Invalid memory region accessed");
} }
}
MATCHES(BOARD_WRAM, board_wram)
MATCHES(CHIP_WRAM, chip_wram)
MATCHES(PALETTE_RAM, palette_ram)
MATCHES(VRAM, vram)
MATCHES(OAM_OBJ_ATTR, oam_obj_attr)
glogger.error("Invalid memory region accessed");
#undef MATCHES #undef MATCHES
}
void void
Memory::parse_header() { Memory::parse_header() {
if (rom.size() < header.HEADER_SIZE) { if (rom.size() < header.HEADER_SIZE) {
throw std::out_of_range( throw std::out_of_range(
"ROM is not large enough to even have a header"); "ROM is not large enough to even have a header");
@@ -174,7 +157,7 @@ Memory::parse_header() {
if (rom[0xB2] != 0x96) if (rom[0xB2] != 0x96)
glogger.error("HEADER: invalid fixed byte at 0xB2"); glogger.error("HEADER: invalid fixed byte at 0xB2");
for (size_t i = 0xB5; i < 0xBC; i++) { for (uint32_t i = 0xB5; i < 0xBC; i++) {
if (rom[i] != 0x00) if (rom[i] != 0x00)
glogger.error("HEADER: invalid fixed bytes at 0xB5"); glogger.error("HEADER: invalid fixed bytes at 0xB5");
} }
@@ -183,7 +166,7 @@ Memory::parse_header() {
// checksum // checksum
{ {
size_t i = 0xA0, chk = 0; uint32_t i = 0xA0, chk = 0;
while (i <= 0xBC) while (i <= 0xBC)
chk -= rom[i++]; chk -= rom[i++];
chk -= 0x19; chk -= 0x19;

View File

@@ -1,23 +1,21 @@
lib_sources = files( lib_sources = files(
'memory.cc', 'memory.cc',
'bus.cc' 'bus.cc',
) )
subdir('util') subdir('util')
subdir('cpu') subdir('cpu')
subdir('io')
lib_cpp_args = [ ] lib_cpp_args = []
fmt = dependency('fmt', version : '>=10.1.0', static: true) if get_option('disassembler')
if not fmt.found() lib_cpp_args += '-DDISASSEMBLER'
fmt = dependency('fmt', version : '>=10.1.0', static: false)
lib_cpp_args += 'DFMT_HEADER_ONLY'
endif endif
lib = library( lib = library(
meson.project_name(), meson.project_name(),
lib_sources, lib_sources,
dependencies: [fmt],
include_directories: inc, include_directories: inc,
install: true, install: true,
cpp_args: lib_cpp_args cpp_args: lib_cpp_args

View File

@@ -35,6 +35,6 @@ inline Int
bit_range(Int num, size_t start, size_t end) { bit_range(Int num, size_t start, size_t end) {
// NOTE: we do not require -1 if it is a signed integral // NOTE: we do not require -1 if it is a signed integral
Int left = Int left =
std::numeric_limits<Int>::digits - (std::is_unsigned<Int>::value) - end; std::numeric_limits<Int>::digits - (!std::is_signed<Int>::value) - end;
return static_cast<Int>(num << left) >> (left + start); return static_cast<Int>(num << left) >> (left + start);
} }

View File

@@ -2,7 +2,7 @@
#include <array> #include <array>
#include <bit> #include <bit>
#include <fmt/core.h> #include <format>
#include <string> #include <string>
// Why I wrote this myself? I do not know // Why I wrote this myself? I do not know
@@ -110,7 +110,7 @@ sha256(std::array<uint8_t, N>& data) {
for (j = 0; j < 8; j++) for (j = 0; j < 8; j++)
for (i = 0; i < 4; i++) for (i = 0; i < 4; i++)
fmt::format_to(std::back_inserter(string), std::format_to(std::back_inserter(string),
"{:02x}", "{:02x}",
((h[j] >> (24 - i * 8)) & 0xFF)); ((h[j] >> (24 - i * 8)) & 0xFF));

View File

@@ -1,8 +1,7 @@
#pragma once #pragma once
#include "util/loglevel.hh" #include "util/loglevel.hh"
#include <fmt/ostream.h> #include <print>
#include <iostream>
namespace logging { namespace logging {
namespace ansi { namespace ansi {
@@ -14,25 +13,25 @@ static constexpr auto BOLD = "\033[1m";
static constexpr auto RESET = "\033[0m"; static constexpr auto RESET = "\033[0m";
} }
using fmt::print; using std::print;
class Logger { class Logger {
using LogLevel = matar::LogLevel; using LogLevel = matar::LogLevel;
public: public:
Logger(LogLevel level = LogLevel::Debug, FILE* stream = stderr) Logger(LogLevel level = LogLevel::Debug, FILE* stream = stdout)
: level(0) : level(0)
, stream(stream) { , stream(stream) {
set_level(level); set_level(level);
} }
template<typename... Args> template<typename... Args>
void log(const fmt::format_string<Args...>& fmt, Args&&... args) { void log(const std::format_string<Args...>& fmt, Args&&... args) {
fmt::println(stream, fmt, std::forward<Args>(args)...); std::println(stream, fmt, std::forward<Args>(args)...);
} }
template<typename... Args> template<typename... Args>
void debug(const fmt::format_string<Args...>& fmt, Args&&... args) { void debug(const std::format_string<Args...>& fmt, Args&&... args) {
if (level & static_cast<uint8_t>(LogLevel::Debug)) { if (level & static_cast<uint8_t>(LogLevel::Debug)) {
print(stream, "{}{}[DEBUG] ", ansi::MAGENTA, ansi::BOLD); print(stream, "{}{}[DEBUG] ", ansi::MAGENTA, ansi::BOLD);
log(fmt, std::forward<Args>(args)...); log(fmt, std::forward<Args>(args)...);
@@ -41,7 +40,7 @@ class Logger {
} }
template<typename... Args> template<typename... Args>
void info(const fmt::format_string<Args...>& fmt, Args&&... args) { void info(const std::format_string<Args...>& fmt, Args&&... args) {
if (level & static_cast<uint8_t>(LogLevel::Info)) { if (level & static_cast<uint8_t>(LogLevel::Info)) {
print(stream, "{}[INFO] ", ansi::WHITE); print(stream, "{}[INFO] ", ansi::WHITE);
log(fmt, std::forward<Args>(args)...); log(fmt, std::forward<Args>(args)...);
@@ -50,7 +49,16 @@ class Logger {
} }
template<typename... Args> template<typename... Args>
void warn(const fmt::format_string<Args...>& fmt, Args&&... args) { void info_bold(const std::format_string<Args...>& fmt, Args&&... args) {
if (level & static_cast<uint8_t>(LogLevel::Info)) {
print(stream, "{}{}[INFO] ", ansi::WHITE, ansi::BOLD);
log(fmt, std::forward<Args>(args)...);
print(stream, ansi::RESET);
}
}
template<typename... Args>
void warn(const std::format_string<Args...>& fmt, Args&&... args) {
if (level & static_cast<uint8_t>(LogLevel::Warn)) { if (level & static_cast<uint8_t>(LogLevel::Warn)) {
print(stream, "{}[WARN] ", ansi::YELLOW); print(stream, "{}[WARN] ", ansi::YELLOW);
log(fmt, std::forward<Args>(args)...); log(fmt, std::forward<Args>(args)...);
@@ -59,7 +67,7 @@ class Logger {
} }
template<typename... Args> template<typename... Args>
void error(const fmt::format_string<Args...>& fmt, Args&&... args) { void error(const std::format_string<Args...>& fmt, Args&&... args) {
if (level & static_cast<uint8_t>(LogLevel::Error)) { if (level & static_cast<uint8_t>(LogLevel::Error)) {
print(stream, "{}{}[ERROR] ", ansi::RED, ansi::BOLD); print(stream, "{}{}[ERROR] ", ansi::RED, ansi::BOLD);
log(fmt, std::forward<Args>(args)...); log(fmt, std::forward<Args>(args)...);
@@ -80,4 +88,4 @@ class Logger {
extern logging::Logger glogger; extern logging::Logger glogger;
#define debug(x) glogger.debug("{} = {}", #x, x); #define dbg(x) glogger.debug("{} = {}", #x, x);

View File

@@ -1,7 +1,7 @@
#include "bus.hh" #include "bus.hh"
#include <catch2/catch_test_macros.hpp> #include <catch2/catch_test_macros.hpp>
static constexpr auto TAG = "[bus]"; #define TAG "[bus]"
using namespace matar; using namespace matar;
@@ -16,28 +16,30 @@ class BusFixture {
}; };
TEST_CASE_METHOD(BusFixture, "Byte", TAG) { TEST_CASE_METHOD(BusFixture, "Byte", TAG) {
CHECK(bus.read_byte(3349) == 0); CHECK(bus.read_byte(0x30001A9) == 0);
bus.write_byte(3349, 0xEC); bus.write_byte(0x30001A9, 0xEC);
CHECK(bus.read_byte(3349) == 0xEC); CHECK(bus.read_byte(0x30001A9) == 0xEC);
CHECK(bus.read_word(3349) == 0xEC); CHECK(bus.read_word(0x30001A9) == 0xEC);
CHECK(bus.read_halfword(3349) == 0xEC); CHECK(bus.read_halfword(0x30001A9) == 0xEC);
} }
TEST_CASE_METHOD(BusFixture, "Halfword", TAG) { TEST_CASE_METHOD(BusFixture, "Halfword", TAG) {
CHECK(bus.read_halfword(33750745) == 0); CHECK(bus.read_halfword(0x202FED9) == 0);
bus.write_halfword(33750745, 0x1A4A); bus.write_halfword(0x202FED9, 0x1A4A);
CHECK(bus.read_halfword(33750745) == 0x1A4A); CHECK(bus.read_halfword(0x202FED9) == 0x1A4A);
CHECK(bus.read_word(33750745) == 0x1A4A); CHECK(bus.read_word(0x202FED9) == 0x1A4A);
CHECK(bus.read_byte(33750745) == 0x4A); CHECK(bus.read_byte(0x202FED9) == 0x4A);
} }
TEST_CASE_METHOD(BusFixture, "Word", TAG) { TEST_CASE_METHOD(BusFixture, "Word", TAG) {
CHECK(bus.read_word(100724276) == 0); CHECK(bus.read_word(0x600EE34) == 0);
bus.write_word(100724276, 0x3ACC491D); bus.write_word(0x600EE34, 0x3ACC491D);
CHECK(bus.read_word(100724276) == 0x3ACC491D); CHECK(bus.read_word(0x600EE34) == 0x3ACC491D);
CHECK(bus.read_halfword(100724276) == 0x491D); CHECK(bus.read_halfword(0x600EE34) == 0x491D);
CHECK(bus.read_byte(100724276) == 0x1D); CHECK(bus.read_byte(0x600EE34) == 0x1D);
} }
#undef TAG

File diff suppressed because it is too large Load Diff

View File

@@ -1,7 +1,7 @@
#include "cpu/arm/instruction.hh" #include "cpu/arm/instruction.hh"
#include <catch2/catch_test_macros.hpp> #include <catch2/catch_test_macros.hpp>
static constexpr auto TAG = "[arm][disassembly]"; #define TAG "[arm][disassembly]"
using namespace matar; using namespace matar;
using namespace arm; using namespace arm;
@@ -16,7 +16,9 @@ TEST_CASE("Branch and Exchange", TAG) {
CHECK(bx->rn == 10); CHECK(bx->rn == 10);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "BXGT R10"); CHECK(instruction.disassemble() == "BXGT R10");
#endif
} }
TEST_CASE("Branch", TAG) { TEST_CASE("Branch", TAG) {
@@ -29,14 +31,17 @@ TEST_CASE("Branch", TAG) {
// last 24 bits = 8748995 // last 24 bits = 8748995
// (8748995 << 8) >> 6 sign extended = 0xFE15FF0C // (8748995 << 8) >> 6 sign extended = 0xFE15FF0C
// Also +8 since PC is two instructions ahead CHECK(b->offset == static_cast<int32_t>(0xfe15ff0c));
CHECK(b->offset == 0xFE15FF14);
CHECK(b->link == true); CHECK(b->link == true);
CHECK(instruction.disassemble() == "BL 0xFE15FF14"); #ifdef DISASSEMBLER
// take prefetch into account
// offset + 8 = 0xfe15ff0c + 8 = -0x1ea00e4 + 8
CHECK(instruction.disassemble() == "BL -0x1ea00ec");
b->link = false; b->link = false;
CHECK(instruction.disassemble() == "B 0xFE15FF14"); CHECK(instruction.disassemble() == "B -0x1ea00ec");
#endif
} }
TEST_CASE("Multiply", TAG) { TEST_CASE("Multiply", TAG) {
@@ -54,11 +59,13 @@ TEST_CASE("Multiply", TAG) {
CHECK(mul->acc == true); CHECK(mul->acc == true);
CHECK(mul->set == true); CHECK(mul->set == true);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "MLAEQS R10,R0,R15,R14"); CHECK(instruction.disassemble() == "MLAEQS R10,R0,R15,R14");
mul->acc = false; mul->acc = false;
mul->set = false; mul->set = false;
CHECK(instruction.disassemble() == "MULEQ R10,R0,R15"); CHECK(instruction.disassemble() == "MULEQ R10,R0,R15");
#endif
} }
TEST_CASE("Multiply Long", TAG) { TEST_CASE("Multiply Long", TAG) {
@@ -77,6 +84,7 @@ TEST_CASE("Multiply Long", TAG) {
CHECK(mull->set == true); CHECK(mull->set == true);
CHECK(mull->uns == true); CHECK(mull->uns == true);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "UMULLNES R7,R14,R2,R6"); CHECK(instruction.disassemble() == "UMULLNES R7,R14,R2,R6");
mull->acc = true; mull->acc = true;
@@ -85,6 +93,7 @@ TEST_CASE("Multiply Long", TAG) {
mull->uns = false; mull->uns = false;
mull->set = false; mull->set = false;
CHECK(instruction.disassemble() == "SMLALNE R7,R14,R2,R6"); CHECK(instruction.disassemble() == "SMLALNE R7,R14,R2,R6");
#endif
} }
TEST_CASE("Undefined", TAG) { TEST_CASE("Undefined", TAG) {
@@ -94,7 +103,10 @@ TEST_CASE("Undefined", TAG) {
Instruction instruction(raw); Instruction instruction(raw);
CHECK(instruction.condition == Condition::AL); CHECK(instruction.condition == Condition::AL);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "UND"); CHECK(instruction.disassemble() == "UND");
#endif
} }
TEST_CASE("Single Data Swap", TAG) { TEST_CASE("Single Data Swap", TAG) {
@@ -110,10 +122,12 @@ TEST_CASE("Single Data Swap", TAG) {
CHECK(swp->rn == 9); CHECK(swp->rn == 9);
CHECK(swp->byte == false); CHECK(swp->byte == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "SWPGE R5,R6,[R9]"); CHECK(instruction.disassemble() == "SWPGE R5,R6,[R9]");
swp->byte = true; swp->byte = true;
CHECK(instruction.disassemble() == "SWPGEB R5,R6,[R9]"); CHECK(instruction.disassemble() == "SWPGEB R5,R6,[R9]");
#endif
} }
TEST_CASE("Single Data Transfer", TAG) { TEST_CASE("Single Data Transfer", TAG) {
@@ -138,6 +152,7 @@ TEST_CASE("Single Data Transfer", TAG) {
CHECK(ldr->up == true); CHECK(ldr->up == true);
CHECK(ldr->pre == true); CHECK(ldr->pre == true);
#ifdef DISASSEMBLER
ldr->load = true; ldr->load = true;
ldr->byte = true; ldr->byte = true;
ldr->write = false; ldr->write = false;
@@ -153,6 +168,7 @@ TEST_CASE("Single Data Transfer", TAG) {
ldr->pre = true; ldr->pre = true;
CHECK(instruction.disassemble() == "LDRB R10,[R2,-#9023]"); CHECK(instruction.disassemble() == "LDRB R10,[R2,-#9023]");
#endif
} }
TEST_CASE("Halfword Transfer", TAG) { TEST_CASE("Halfword Transfer", TAG) {
@@ -176,6 +192,7 @@ TEST_CASE("Halfword Transfer", TAG) {
CHECK(ldr->up == true); CHECK(ldr->up == true);
CHECK(ldr->pre == true); CHECK(ldr->pre == true);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "STRCCH R2,[R15,+R6]!"); CHECK(instruction.disassemble() == "STRCCH R2,[R15,+R6]!");
ldr->pre = false; ldr->pre = false;
@@ -193,6 +210,7 @@ TEST_CASE("Halfword Transfer", TAG) {
ldr->imm = 1; ldr->imm = 1;
ldr->offset = 90; ldr->offset = 90;
CHECK(instruction.disassemble() == "STRCCSB R2,[R15],-#90"); CHECK(instruction.disassemble() == "STRCCSB R2,[R15],-#90");
#endif
} }
TEST_CASE("Block Data Transfer", TAG) { TEST_CASE("Block Data Transfer", TAG) {
@@ -223,6 +241,7 @@ TEST_CASE("Block Data Transfer", TAG) {
CHECK(ldm->up == false); CHECK(ldm->up == false);
CHECK(ldm->pre == true); CHECK(ldm->pre == true);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "LDMLSDB R7,{R0,R2,R3,R5,R6,R8,R14}^"); CHECK(instruction.disassemble() == "LDMLSDB R7,{R0,R2,R3,R5,R6,R8,R14}^");
ldm->write = true; ldm->write = true;
@@ -238,6 +257,7 @@ TEST_CASE("Block Data Transfer", TAG) {
ldm->pre = false; ldm->pre = false;
CHECK(instruction.disassemble() == "STMLSIA R7!,{R0,R2,R5,R14}"); CHECK(instruction.disassemble() == "STMLSIA R7!,{R0,R2,R5,R14}");
#endif
} }
TEST_CASE("PSR Transfer", TAG) { TEST_CASE("PSR Transfer", TAG) {
@@ -256,7 +276,9 @@ TEST_CASE("PSR Transfer", TAG) {
CHECK(mrs->operand == 10); CHECK(mrs->operand == 10);
CHECK(mrs->spsr == true); CHECK(mrs->spsr == true);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "MRSMI R10,SPSR_all"); CHECK(instruction.disassemble() == "MRSMI R10,SPSR_all");
#endif
} }
SECTION("MSR") { SECTION("MSR") {
@@ -272,7 +294,9 @@ TEST_CASE("PSR Transfer", TAG) {
CHECK(msr->operand == 8); CHECK(msr->operand == 8);
CHECK(msr->spsr == false); CHECK(msr->spsr == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "MSR CPSR_all,R8"); CHECK(instruction.disassemble() == "MSR CPSR_all,R8");
#endif
} }
SECTION("MSR_flg with register operand") { SECTION("MSR_flg with register operand") {
@@ -287,7 +311,9 @@ TEST_CASE("PSR Transfer", TAG) {
CHECK(msr->operand == 8); CHECK(msr->operand == 8);
CHECK(msr->spsr == false); CHECK(msr->spsr == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "MSRVS CPSR_flg,R8"); CHECK(instruction.disassemble() == "MSRVS CPSR_flg,R8");
#endif
} }
SECTION("MSR_flg with immediate operand") { SECTION("MSR_flg with immediate operand") {
@@ -304,7 +330,9 @@ TEST_CASE("PSR Transfer", TAG) {
CHECK(msr->operand == 27262976); CHECK(msr->operand == 27262976);
CHECK(msr->spsr == true); CHECK(msr->spsr == true);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "MSR SPSR_flg,#27262976"); CHECK(instruction.disassemble() == "MSR SPSR_flg,#27262976");
#endif
} }
} }
@@ -331,6 +359,7 @@ TEST_CASE("Data Processing", TAG) {
CHECK(alu->set == true); CHECK(alu->set == true);
CHECK(alu->opcode == OpCode::AND); CHECK(alu->opcode == OpCode::AND);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "ANDS R7,R14,R1,ROR #22"); CHECK(instruction.disassemble() == "ANDS R7,R14,R1,ROR #22");
shift->data.immediate = false; shift->data.immediate = false;
@@ -392,6 +421,7 @@ TEST_CASE("Data Processing", TAG) {
alu->opcode = OpCode::MVN; alu->opcode = OpCode::MVN;
CHECK(instruction.disassemble() == "MVN R7,#3300012"); CHECK(instruction.disassemble() == "MVN R7,#3300012");
} }
#endif
} }
TEST_CASE("Coprocessor Data Transfer", TAG) { TEST_CASE("Coprocessor Data Transfer", TAG) {
@@ -412,6 +442,7 @@ TEST_CASE("Coprocessor Data Transfer", TAG) {
CHECK(ldc->up == true); CHECK(ldc->up == true);
CHECK(ldc->pre == true); CHECK(ldc->pre == true);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "STCGE p1,c15,[R5,#70]!"); CHECK(instruction.disassemble() == "STCGE p1,c15,[R5,#70]!");
ldc->load = true; ldc->load = true;
@@ -420,6 +451,7 @@ TEST_CASE("Coprocessor Data Transfer", TAG) {
ldc->len = true; ldc->len = true;
CHECK(instruction.disassemble() == "LDCGEL p1,c15,[R5],#70"); CHECK(instruction.disassemble() == "LDCGEL p1,c15,[R5],#70");
#endif
} }
TEST_CASE("Coprocessor Operand Operation", TAG) { TEST_CASE("Coprocessor Operand Operation", TAG) {
@@ -437,7 +469,9 @@ TEST_CASE("Coprocessor Operand Operation", TAG) {
CHECK(cdp->crn == 5); CHECK(cdp->crn == 5);
CHECK(cdp->cp_opc == 10); CHECK(cdp->cp_opc == 10);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "CDP p1,10,c15,c5,c6,2"); CHECK(instruction.disassemble() == "CDP p1,10,c15,c5,c6,2");
#endif
} }
TEST_CASE("Coprocessor Register Transfer", TAG) { TEST_CASE("Coprocessor Register Transfer", TAG) {
@@ -457,7 +491,9 @@ TEST_CASE("Coprocessor Register Transfer", TAG) {
CHECK(mrc->load == false); CHECK(mrc->load == false);
CHECK(mrc->cp_opc == 5); CHECK(mrc->cp_opc == 5);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "MCR p1,5,R15,c5,c6,2"); CHECK(instruction.disassemble() == "MCR p1,5,R15,c5,c6,2");
#endif
} }
TEST_CASE("Software Interrupt", TAG) { TEST_CASE("Software Interrupt", TAG) {
@@ -465,5 +501,10 @@ TEST_CASE("Software Interrupt", TAG) {
Instruction instruction(raw); Instruction instruction(raw);
CHECK(instruction.condition == Condition::EQ); CHECK(instruction.condition == Condition::EQ);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "SWIEQ"); CHECK(instruction.disassemble() == "SWIEQ");
#endif
} }
#undef TAG

96
tests/cpu/cpu-fixture.cc Normal file
View File

@@ -0,0 +1,96 @@
#include "cpu-fixture.hh"
Psr
CpuFixture::psr(bool spsr) {
Psr psr(0);
Cpu tmp = cpu;
arm::Instruction instruction(
Condition::AL,
arm::PsrTransfer{ .operand = 0,
.spsr = spsr,
.type = arm::PsrTransfer::Type::Mrs,
.imm = false });
instruction.exec(tmp);
psr.set_all(getr_(0, tmp));
return psr;
}
void
CpuFixture::set_psr(Psr psr, bool spsr) {
// R0
uint32_t old = getr(0);
setr(0, psr.raw());
arm::Instruction instruction(
Condition::AL,
arm::PsrTransfer{ .operand = 0,
.spsr = spsr,
.type = arm::PsrTransfer::Type::Msr,
.imm = false });
instruction.exec(cpu);
setr(0, old);
}
// We need these workarounds to just use the public API and not private
// fields. Assuming that these work correctly is necessary. Besides, all that
// matters is that the public API is correct.
uint32_t
CpuFixture::getr_(uint8_t r, Cpu& cpu) {
uint32_t addr = 0x02000000;
uint8_t offset = r == 15 ? 4 : 0;
uint32_t word = bus.read_word(addr + offset);
Cpu tmp = cpu;
uint32_t ret = 0xFFFFFFFF;
uint8_t base = r ? 0 : 1;
// set R0/R1 = addr
arm::Instruction zero(
Condition::AL,
arm::DataProcessing{ .operand = addr,
.rd = base,
.rn = 0,
.set = false,
.opcode = arm::DataProcessing::OpCode::MOV });
// get register
arm::Instruction get(
Condition::AL,
arm::SingleDataTransfer{ .offset = static_cast<uint16_t>(0),
.rd = r,
.rn = base,
.load = false,
.write = false,
.byte = false,
.up = true,
.pre = true });
zero.exec(tmp);
get.exec(tmp);
addr += offset;
ret = bus.read_word(addr);
bus.write_word(addr, word);
return ret;
}
void
CpuFixture::setr_(uint8_t r, uint32_t value, Cpu& cpu) {
// set register
arm::Instruction set(
Condition::AL,
arm::DataProcessing{ .operand = value,
.rd = r,
.rn = 0,
.set = false,
.opcode = arm::DataProcessing::OpCode::MOV });
set.exec(cpu);
}

42
tests/cpu/cpu-fixture.hh Normal file
View File

@@ -0,0 +1,42 @@
#include "cpu/cpu.hh"
using namespace matar;
class CpuFixture {
public:
CpuFixture()
: bus(Memory(std::array<uint8_t, Memory::BIOS_SIZE>(),
std::vector<uint8_t>(Header::HEADER_SIZE)))
, cpu(bus) {}
protected:
void exec(arm::InstructionData data, Condition condition = Condition::AL) {
arm::Instruction instruction(condition, data);
instruction.exec(cpu);
}
void exec(thumb::InstructionData data) {
thumb::Instruction instruction(data);
instruction.exec(cpu);
}
void reset(uint32_t value = 0) { setr(15, value + 8); }
uint32_t getr(uint8_t r) { return getr_(r, cpu); }
void setr(uint8_t r, uint32_t value) { setr_(r, value, cpu); }
Psr psr(bool spsr = false);
void set_psr(Psr psr, bool spsr = false);
Bus bus;
Cpu cpu;
private:
// hack to get a register
uint32_t getr_(uint8_t r, Cpu& cpu);
// hack to set a register
void setr_(uint8_t r, uint32_t value, Cpu& cpu);
};

View File

@@ -1 +1,6 @@
tests_sources += files(
'cpu-fixture.cc'
)
subdir('arm') subdir('arm')
subdir('thumb')

995
tests/cpu/thumb/exec.cc Normal file
View File

@@ -0,0 +1,995 @@
#include "cpu/cpu-fixture.hh"
#include "cpu/thumb/instruction.hh"
#include <catch2/catch_test_macros.hpp>
using namespace matar;
#define TAG "[thumb][execution]"
using namespace thumb;
TEST_CASE_METHOD(CpuFixture, "Move Shifted Register", TAG) {
InstructionData data = MoveShiftedRegister{
.rd = 3, .rs = 5, .offset = 15, .opcode = ShiftType::LSL
};
MoveShiftedRegister* move = std::get_if<MoveShiftedRegister>(&data);
SECTION("LSL") {
setr(3, 0);
setr(5, 6687);
// LSL
exec(data);
CHECK(getr(3) == 219119616);
setr(5, 0);
// zero
exec(data);
CHECK(getr(3) == 0);
CHECK(psr().z());
}
SECTION("LSR") {
move->opcode = ShiftType::LSR;
setr(5, -1827489745);
// LSR
exec(data);
CHECK(getr(3) == 75301);
CHECK(!psr().n());
setr(5, 4444);
// zero flag
exec(data);
CHECK(getr(3) == 0);
CHECK(psr().z());
}
SECTION("ASR") {
setr(5, -1827489745);
move->opcode = ShiftType::ASR;
// ASR
exec(data);
CHECK(psr().n());
CHECK(getr(3) == 4294911525);
setr(5, 500);
// zero flag
exec(data);
CHECK(getr(3) == 0);
CHECK(psr().z());
}
}
TEST_CASE_METHOD(CpuFixture, "Add/Subtract", TAG) {
InstructionData data = AddSubtract{ .rd = 5,
.rs = 2,
.offset = 7,
.opcode = AddSubtract::OpCode::ADD,
.imm = false };
AddSubtract* add = std::get_if<AddSubtract>(&data);
setr(2, 378427891);
setr(7, -666666);
SECTION("ADD") {
// register
exec(data);
CHECK(getr(5) == 377761225);
add->imm = true;
setr(2, (1u << 31) - 1);
// immediate and overflow
exec(data);
CHECK(getr(5) == 2147483654);
CHECK(psr().v());
setr(2, -7);
// zero
exec(data);
CHECK(getr(5) == 0);
CHECK(psr().z());
}
add->imm = true;
SECTION("SUB") {
add->opcode = AddSubtract::OpCode::SUB;
setr(2, -((1u << 31) - 1));
add->offset = 4;
exec(data);
CHECK(getr(5) == 2147483645);
CHECK(psr().v());
setr(2, ~0u);
add->offset = -4;
// carry
exec(data);
CHECK(getr(5) == 3);
CHECK(psr().c());
setr(2, 0);
add->offset = 0;
// zero
exec(data);
CHECK(getr(5) == 0);
CHECK(psr().z());
}
}
TEST_CASE_METHOD(CpuFixture, "Move/Compare/Add/Subtract Immediate", TAG) {
InstructionData data = MovCmpAddSubImmediate{
.offset = 251, .rd = 5, .opcode = MovCmpAddSubImmediate::OpCode::MOV
};
MovCmpAddSubImmediate* move = std::get_if<MovCmpAddSubImmediate>(&data);
SECTION("MOV") {
exec(data);
CHECK(getr(5) == 251);
move->offset = 0;
// zero
exec(data);
CHECK(getr(5) == 0);
CHECK(psr().z());
}
SECTION("CMP") {
setr(5, 251);
move->opcode = MovCmpAddSubImmediate::OpCode::CMP;
CHECK(!psr().z());
exec(data);
CHECK(getr(5) == 251);
CHECK(psr().z());
// overflow
setr(5, -((1u << 31) - 1));
CHECK(!psr().v());
exec(data);
CHECK(getr(5) == 2147483649);
CHECK(psr().v());
}
SECTION("ADD") {
move->opcode = MovCmpAddSubImmediate::OpCode::ADD;
setr(5, (1u << 31) - 1);
// immediate and overflow
exec(data);
CHECK(getr(5) == 2147483898);
CHECK(psr().v());
setr(5, -251);
// zero
exec(data);
CHECK(getr(5) == 0);
CHECK(psr().z());
}
SECTION("SUB") {
// same as CMP but loaded
setr(5, 251);
move->opcode = MovCmpAddSubImmediate::OpCode::SUB;
CHECK(!psr().z());
exec(data);
CHECK(getr(5) == 0);
CHECK(psr().z());
// overflow
setr(5, -((1u << 31) - 1));
CHECK(!psr().v());
exec(data);
CHECK(getr(5) == 2147483398);
CHECK(psr().v());
}
}
TEST_CASE_METHOD(CpuFixture, "ALU Operations", TAG) {
InstructionData data =
AluOperations{ .rd = 1, .rs = 3, .opcode = AluOperations::OpCode::AND };
AluOperations* alu = std::get_if<AluOperations>(&data);
setr(1, 328940001);
setr(3, -991);
SECTION("AND") {
// 328940001 & -991
exec(data);
CHECK(getr(1) == 328939553);
CHECK(!psr().n());
setr(3, 0);
CHECK(!psr().z());
// zero
exec(data);
CHECK(getr(1) == 0);
CHECK(psr().z());
}
SECTION("EOR") {
alu->opcode = AluOperations::OpCode::EOR;
// 328940001 ^ -991
exec(data);
CHECK(getr(1) == 3966027200);
CHECK(psr().n());
setr(3, 3966027200);
// zero
exec(data);
CHECK(getr(1) == 0);
CHECK(psr().z());
CHECK(!psr().n());
}
SECTION("LSL") {
setr(3, 3);
alu->opcode = AluOperations::OpCode::LSL;
// 328940001 << 3
exec(data);
CHECK(getr(1) == 2631520008);
CHECK(psr().n());
setr(1, 0);
// zero
exec(data);
CHECK(getr(1) == 0);
CHECK(psr().z());
}
SECTION("LSR") {
alu->opcode = AluOperations::OpCode::LSR;
setr(3, 991);
// 328940001 >> 991
exec(data);
CHECK(getr(1) == 0);
CHECK(psr().z());
setr(1, -83885328);
setr(3, 5);
// -83885328 >> 5
exec(data);
CHECK(getr(1) == 131596311);
CHECK(!psr().z());
CHECK(!psr().n());
}
SECTION("ASR") {
alu->opcode = AluOperations::OpCode::ASR;
setr(3, 991);
// 328940001 >> 991
exec(data);
CHECK(getr(1) == 0);
CHECK(psr().z());
setr(1, -83885328);
setr(3, 5);
// -83885328 >> 5
exec(data);
CHECK(getr(1) == 4292345879);
CHECK(!psr().z());
CHECK(psr().n());
}
SECTION("ADC") {
alu->opcode = AluOperations::OpCode::ADC;
setr(3, (1u << 31) - 1);
Psr cpsr = psr();
cpsr.set_c(true);
set_psr(cpsr);
// 2147483647 + 328940001 + 1
exec(data);
CHECK(getr(1) == 2476423649);
CHECK(psr().v());
CHECK(psr().n());
CHECK(!psr().c());
setr(3, -328940001);
setr(1, 328940001);
// zero
exec(data);
CHECK(getr(1) == 0);
CHECK(psr().z());
}
SECTION("SBC") {
alu->opcode = AluOperations::OpCode::SBC;
setr(3, -((1u << 31) - 1));
Psr cpsr = psr();
cpsr.set_c(false);
set_psr(cpsr);
// 328940001 - -2147483647 - 1
exec(data);
CHECK(getr(1) == 2476423647);
CHECK(psr().v());
CHECK(psr().n());
CHECK(!psr().c());
setr(1, -34892);
setr(3, -34893);
// zero
exec(data);
CHECK(getr(1) == 0);
CHECK(psr().z());
}
SECTION("ROR") {
setr(3, 993);
alu->opcode = AluOperations::OpCode::ROR;
// 328940001 ROR 993
exec(data);
CHECK(getr(1) == 2311953648);
CHECK(psr().n());
CHECK(psr().c());
setr(1, 0);
// zero
exec(data);
CHECK(getr(1) == 0);
CHECK(psr().z());
}
SECTION("TST") {
alu->opcode = AluOperations::OpCode::TST;
// 328940001 & -991
exec(data);
// no change
CHECK(getr(1) == 328940001);
setr(3, 0);
CHECK(!psr().z());
// zero
exec(data);
CHECK(getr(1) == 328940001);
CHECK(psr().z());
}
SECTION("NEG") {
alu->opcode = AluOperations::OpCode::NEG;
// -(-991)
exec(data);
CHECK(getr(1) == 991);
setr(3, 0);
// zero
exec(data);
CHECK(getr(1) == 0);
CHECK(psr().z());
}
SECTION("CMP") {
alu->opcode = AluOperations::OpCode::CMP;
setr(3, -((1u << 31) - 1));
// 328940001 - -2147483647
exec(data);
// no change
CHECK(getr(1) == 328940001);
CHECK(psr().v());
CHECK(psr().n());
CHECK(!psr().c());
setr(1, -34892);
setr(3, -34892);
// zero
exec(data);
// no change (-34892)
CHECK(getr(1) == 4294932404);
CHECK(psr().z());
}
SECTION("CMN") {
alu->opcode = AluOperations::OpCode::CMN;
setr(3, (1u << 31) - 1);
// 2147483647 + 328940001
exec(data);
CHECK(getr(1) == 328940001);
CHECK(psr().v());
CHECK(psr().n());
CHECK(!psr().c());
setr(3, -328940001);
setr(1, 328940001);
// zero
exec(data);
CHECK(getr(1) == 328940001);
CHECK(psr().z());
}
SECTION("ORR") {
alu->opcode = AluOperations::OpCode::ORR;
// 328940001 | -991
exec(data);
CHECK(getr(1) == 4294966753);
CHECK(psr().n());
setr(1, 0);
setr(3, 0);
// zero
exec(data);
CHECK(getr(1) == 0);
CHECK(psr().z());
}
SECTION("MUL") {
alu->opcode = AluOperations::OpCode::MUL;
// 328940001 * -991 (lower 32 bits) (-325979540991 & 0xFFFFFFFF)
exec(data);
CHECK(getr(1) == 437973505);
setr(3, 0);
// zero
exec(data);
CHECK(getr(1) == 0);
CHECK(psr().z());
}
SECTION("BIC") {
alu->opcode = AluOperations::OpCode::BIC;
// 328940001 & ~ -991
exec(data);
CHECK(getr(1) == 448);
CHECK(!psr().n());
setr(3, ~0u);
// zero
exec(data);
CHECK(getr(1) == 0);
CHECK(psr().z());
}
SECTION("MVN") {
alu->opcode = AluOperations::OpCode::MVN;
//~ -991
exec(data);
CHECK(getr(1) == 990);
CHECK(!psr().n());
setr(3, 24358);
// negative
exec(data);
CHECK(getr(1) == 4294942937);
CHECK(psr().n());
setr(3, ~0u);
// zero
exec(data);
CHECK(getr(1) == 0);
CHECK(psr().z());
}
}
TEST_CASE_METHOD(CpuFixture, "Hi Register Operations/Branch Exchange", TAG) {
InstructionData data = HiRegisterOperations{
.rd = 5, .rs = 15, .opcode = HiRegisterOperations::OpCode::ADD
};
HiRegisterOperations* hi = std::get_if<HiRegisterOperations>(&data);
setr(15, 3452948950);
setr(5, 958656720);
SECTION("ADD") {
exec(data);
CHECK(getr(5) == 116638374);
// hi + hi
hi->rd = 14;
hi->rs = 15;
setr(14, 42589);
exec(data);
CHECK(getr(14) == 3452991539);
}
SECTION("CMP") {
hi->opcode = HiRegisterOperations::OpCode::CMP;
exec(data);
// no change
CHECK(getr(5) == 958656720);
CHECK(!psr().n());
CHECK(!psr().c());
CHECK(!psr().v());
CHECK(!psr().z());
setr(15, 958656720);
// zero
exec(data);
// no change
CHECK(getr(5) == 958656720);
CHECK(psr().z());
}
SECTION("MOV") {
hi->opcode = HiRegisterOperations::OpCode::MOV;
exec(data);
CHECK(getr(5) == 3452948950);
}
SECTION("BX") {
hi->opcode = HiRegisterOperations::OpCode::BX;
hi->rs = 10;
SECTION("Arm") {
setr(10, 2189988);
exec(data);
CHECK(getr(15) == 2189988);
// switched to arm
CHECK(psr().state() == State::Arm);
}
SECTION("Thumb") {
setr(10, 2189989);
exec(data);
CHECK(getr(15) == 2189988);
// switched to thumb
CHECK(psr().state() == State::Thumb);
}
}
}
TEST_CASE_METHOD(CpuFixture, "PC Relative Load", TAG) {
InstructionData data = PcRelativeLoad{ .word = 0x578, .rd = 0 };
setr(15, 0x3003FD5);
// resetting bit 0 for 0x3003FD5, we get 0x3003FD4
// 0x3003FD4 + 0x578
bus.write_word(0x300454C, 489753492);
CHECK(getr(0) == 0);
exec(data);
CHECK(getr(0) == 489753492);
}
TEST_CASE_METHOD(CpuFixture, "Load/Store with Register Offset", TAG) {
InstructionData data = LoadStoreRegisterOffset{
.rd = 3, .rb = 0, .ro = 7, .byte = false, .load = false
};
LoadStoreRegisterOffset* load = std::get_if<LoadStoreRegisterOffset>(&data);
setr(7, 0x3003000);
setr(0, 0x332);
setr(3, 389524259);
SECTION("store") {
// 0x3003000 + 0x332
CHECK(bus.read_word(0x3003332) == 0);
exec(data);
CHECK(bus.read_word(0x3003332) == 389524259);
// byte
load->byte = true;
bus.write_word(0x3003332, 0);
exec(data);
CHECK(bus.read_word(0x3003332) == 35);
}
SECTION("load") {
load->load = true;
bus.write_word(0x3003332, 11123489);
exec(data);
CHECK(getr(3) == 11123489);
// byte
load->byte = true;
exec(data);
CHECK(getr(3) == 33);
}
}
TEST_CASE_METHOD(CpuFixture, "Load/Store Sign Extended Byte/Halfword", TAG) {
InstructionData data = LoadStoreSignExtendedHalfword{
.rd = 3, .rb = 0, .ro = 7, .s = false, .h = false
};
LoadStoreSignExtendedHalfword* load =
std::get_if<LoadStoreSignExtendedHalfword>(&data);
setr(7, 0x3003000);
setr(0, 0x332);
setr(3, 389524259);
SECTION("SH = 00") {
// 0x3003000 + 0x332
CHECK(bus.read_word(0x3003332) == 0);
exec(data);
CHECK(bus.read_word(0x3003332) == 43811);
}
SECTION("SH = 01") {
load->h = true;
bus.write_word(0x3003332, 11123489);
exec(data);
CHECK(getr(3) == 47905);
}
SECTION("SH = 10") {
load->s = true;
bus.write_word(0x3003332, 34521594);
exec(data);
// sign extended 250 byte (0xFA)
CHECK(getr(3) == 4294967290);
}
SECTION("SH = 11") {
load->s = true;
load->h = true;
bus.write_word(0x3003332, 11123489);
// sign extended 47905 halfword (0xBB21)
exec(data);
CHECK(getr(3) == 4294949665);
}
}
TEST_CASE_METHOD(CpuFixture, "Load/Store with Immediate Offset", TAG) {
InstructionData data = LoadStoreImmediateOffset{
.rd = 3, .rb = 0, .offset = 0x6E, .load = false, .byte = false
};
LoadStoreImmediateOffset* load =
std::get_if<LoadStoreImmediateOffset>(&data);
setr(0, 0x300666A);
setr(3, 389524259);
SECTION("store") {
// 0x30066A + 0x6E
CHECK(bus.read_word(0x30066D8) == 0);
exec(data);
CHECK(bus.read_word(0x30066D8) == 389524259);
// byte
load->byte = true;
bus.write_word(0x30066D8, 0);
exec(data);
CHECK(bus.read_word(0x30066D8) == 35);
}
SECTION("load") {
load->load = true;
bus.write_word(0x30066D8, 11123489);
exec(data);
CHECK(getr(3) == 11123489);
// byte
load->byte = true;
exec(data);
CHECK(getr(3) == 33);
}
}
TEST_CASE_METHOD(CpuFixture, "Load/Store Halfword", TAG) {
InstructionData data =
LoadStoreHalfword{ .rd = 3, .rb = 0, .offset = 0x6E, .load = false };
LoadStoreHalfword* load = std::get_if<LoadStoreHalfword>(&data);
setr(0, 0x300666A);
setr(3, 389524259);
SECTION("store") {
// 0x300666A + 0x6E
CHECK(bus.read_word(0x30066D8) == 0);
exec(data);
CHECK(bus.read_word(0x30066D8) == 43811);
}
SECTION("load") {
load->load = true;
bus.write_word(0x30066D8, 11123489);
exec(data);
CHECK(getr(3) == 47905);
}
}
TEST_CASE_METHOD(CpuFixture, "SP Relative Load", TAG) {
InstructionData data =
SpRelativeLoad{ .word = 0x328, .rd = 1, .load = false };
SpRelativeLoad* load = std::get_if<SpRelativeLoad>(&data);
setr(1, 2349505744);
// sp
setr(13, 0x3004A8A);
SECTION("store") {
// 0x3004A8A + 0x328
CHECK(bus.read_word(0x3004DB2) == 0);
exec(data);
CHECK(bus.read_word(0x3004DB2) == 2349505744);
}
SECTION("load") {
load->load = true;
bus.write_word(0x3004DB2, 11123489);
exec(data);
CHECK(getr(1) == 11123489);
}
}
TEST_CASE_METHOD(CpuFixture, "Load Address", TAG) {
InstructionData data = LoadAddress{ .word = 808, .rd = 1, .sp = false };
LoadAddress* load = std::get_if<LoadAddress>(&data);
// pc
setr(15, 336485);
// sp
setr(13, 69879977);
SECTION("PC") {
exec(data);
CHECK(getr(1) == 337293);
}
SECTION("SP") {
load->sp = true;
exec(data);
CHECK(getr(1) == 69880785);
}
}
TEST_CASE_METHOD(CpuFixture, "Add Offset to Stack Pointer", TAG) {
InstructionData data = AddOffsetStackPointer{ .word = 473 };
AddOffsetStackPointer* add = std::get_if<AddOffsetStackPointer>(&data);
// sp
setr(13, 69879977);
SECTION("positive") {
exec(data);
CHECK(getr(13) == 69880450);
}
SECTION("negative") {
add->word = -473;
exec(data);
CHECK(getr(13) == 69879504);
}
}
TEST_CASE_METHOD(CpuFixture, "Push/Pop Registers", TAG) {
InstructionData data =
PushPopRegister{ .regs = 0b11010011, .pclr = false, .load = false };
PushPopRegister* push = std::get_if<PushPopRegister>(&data);
static constexpr uint8_t alignment = 4;
static constexpr uint32_t address = 0x30015AC;
// registers = 0, 1, 4, 6, 7
SECTION("push (store)") {
// populate registers
setr(0, 237164);
setr(1, 679785111);
setr(4, 905895898);
setr(6, 131313333);
setr(7, 131);
auto checker = [this]() {
// address
CHECK(bus.read_word(address) == 237164);
CHECK(bus.read_word(address + alignment) == 679785111);
CHECK(bus.read_word(address + alignment * 2) == 905895898);
CHECK(bus.read_word(address + alignment * 3) == 131313333);
CHECK(bus.read_word(address + alignment * 4) == 131);
};
// set stack pointer to top of stack
setr(13, address + alignment * 5);
SECTION("without LR") {
exec(data);
checker();
CHECK(getr(13) == address);
}
SECTION("with LR") {
push->pclr = true;
// populate lr
setr(14, 999304);
// add another word on stack (top + 4)
setr(13, address + alignment * 6);
exec(data);
CHECK(bus.read_word(address + alignment * 5) == 999304);
checker();
CHECK(getr(13) == address);
}
}
SECTION("pop (load)") {
push->load = true;
// populate memory
bus.write_word(address, 237164);
bus.write_word(address + alignment, 679785111);
bus.write_word(address + alignment * 2, 905895898);
bus.write_word(address + alignment * 3, 131313333);
bus.write_word(address + alignment * 4, 131);
auto checker = [this]() {
CHECK(getr(0) == 237164);
CHECK(getr(1) == 679785111);
CHECK(getr(2) == 0);
CHECK(getr(3) == 0);
CHECK(getr(4) == 905895898);
CHECK(getr(5) == 0);
CHECK(getr(6) == 131313333);
CHECK(getr(7) == 131);
for (uint8_t i = 0; i < 8; i++) {
setr(i, 0);
}
};
// set stack pointer to bottom of stack
setr(13, address);
SECTION("without SP") {
exec(data);
checker();
CHECK(getr(13) == address + alignment * 5);
}
SECTION("with SP") {
push->pclr = true;
// populate next address
bus.write_word(address + alignment * 5, 93333912);
exec(data);
CHECK(getr(15) == 93333912);
checker();
CHECK(getr(13) == address + alignment * 6);
}
}
}
TEST_CASE_METHOD(CpuFixture, "Multiple Load/Store", TAG) {
InstructionData data =
MultipleLoad{ .regs = 0b11010101, .rb = 2, .load = false };
MultipleLoad* push = std::get_if<MultipleLoad>(&data);
// registers = 0, 1, 4, 6, 7
static constexpr uint8_t alignment = 4;
static constexpr uint32_t address = 0x30015AC;
SECTION("store") {
// populate registers
setr(0, 237164);
setr(4, 905895898);
setr(6, 131313333);
setr(7, 131);
// set R2 (base) to top of stack
setr(2, address + alignment * 5);
exec(data);
CHECK(bus.read_word(address) == 237164);
CHECK(bus.read_word(address + alignment) == address + alignment * 5);
CHECK(bus.read_word(address + alignment * 2) == 905895898);
CHECK(bus.read_word(address + alignment * 3) == 131313333);
CHECK(bus.read_word(address + alignment * 4) == 131);
// write back
CHECK(getr(2) == address);
}
SECTION("load") {
push->load = true;
// populate memory
bus.write_word(address, 237164);
bus.write_word(address + alignment, 679785111);
bus.write_word(address + alignment * 2, 905895898);
bus.write_word(address + alignment * 3, 131313333);
bus.write_word(address + alignment * 4, 131);
// base
setr(2, address);
exec(data);
CHECK(getr(0) == 237164);
CHECK(getr(1) == 0);
CHECK(getr(2) == address + alignment * 5); // write back
CHECK(getr(3) == 0);
CHECK(getr(4) == 905895898);
CHECK(getr(5) == 0);
CHECK(getr(6) == 131313333);
CHECK(getr(7) == 131);
}
}
TEST_CASE_METHOD(CpuFixture, "Conditional Branch", TAG) {
InstructionData data =
ConditionalBranch{ .offset = -192, .condition = Condition::EQ };
ConditionalBranch* branch = std::get_if<ConditionalBranch>(&data);
setr(15, 4589344);
SECTION("z") {
Psr cpsr = psr();
// condition is false
exec(data);
CHECK(getr(15) == 4589344);
cpsr.set_z(true);
set_psr(cpsr);
// condition is true
exec(data);
CHECK(getr(15) == 4589152);
}
SECTION("c") {
branch->condition = Condition::CS;
Psr cpsr = psr();
// condition is false
exec(data);
CHECK(getr(15) == 4589344);
cpsr.set_c(true);
set_psr(cpsr);
// condition is true
exec(data);
CHECK(getr(15) == 4589152);
}
SECTION("n") {
branch->condition = Condition::MI;
Psr cpsr = psr();
// condition is false
exec(data);
CHECK(getr(15) == 4589344);
cpsr.set_n(true);
set_psr(cpsr);
// condition is true
exec(data);
CHECK(getr(15) == 4589152);
}
SECTION("v") {
branch->condition = Condition::VS;
Psr cpsr = psr();
// condition is false
exec(data);
CHECK(getr(15) == 4589344);
cpsr.set_v(true);
set_psr(cpsr);
// condition is true
exec(data);
CHECK(getr(15) == 4589152);
}
}
TEST_CASE_METHOD(CpuFixture, "Software Interrupt", TAG) {
InstructionData data = SoftwareInterrupt{ .vector = 33 };
setr(15, 4492);
exec(data);
CHECK(psr().raw() == psr(true).raw());
CHECK(getr(14) == 4490);
CHECK(getr(15) == 33);
CHECK(psr().state() == State::Arm);
CHECK(psr().mode() == Mode::Supervisor);
}
TEST_CASE_METHOD(CpuFixture, "Unconditional Branch", TAG) {
InstructionData data = UnconditionalBranch{ .offset = -920 };
setr(15, 4589344);
exec(data);
CHECK(getr(15) == 4588424);
}
TEST_CASE_METHOD(CpuFixture, "Long Branch With Link", TAG) {
InstructionData data = LongBranchWithLink{ .offset = 3262, .high = false };
LongBranchWithLink* branch = std::get_if<LongBranchWithLink>(&data);
// high
setr(15, 4589344);
exec(data);
CHECK(getr(14) == 2881312);
// low
branch->high = true;
exec(data);
CHECK(getr(14) == 4589343);
CHECK(getr(15) == 2884574);
}

View File

@@ -0,0 +1,467 @@
#include "cpu/thumb/instruction.hh"
#include <catch2/catch_test_macros.hpp>
#define TAG "[thumb][disassembly]"
using namespace matar;
using namespace thumb;
TEST_CASE("Move Shifted Register", TAG) {
uint16_t raw = 0b0001001101100011;
Instruction instruction(raw);
MoveShiftedRegister* lsl = nullptr;
REQUIRE((lsl = std::get_if<MoveShiftedRegister>(&instruction.data)));
CHECK(lsl->rd == 3);
CHECK(lsl->rs == 4);
CHECK(lsl->offset == 13);
CHECK(lsl->opcode == ShiftType::ASR);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "ASR R3,R4,#13");
lsl->opcode = ShiftType::LSR;
CHECK(instruction.disassemble() == "LSR R3,R4,#13");
lsl->opcode = ShiftType::LSL;
CHECK(instruction.disassemble() == "LSL R3,R4,#13");
#endif
}
TEST_CASE("Add/Subtract", TAG) {
uint16_t raw = 0b0001111101001111;
Instruction instruction(raw);
AddSubtract* add = nullptr;
REQUIRE((add = std::get_if<AddSubtract>(&instruction.data)));
CHECK(add->rd == 7);
CHECK(add->rs == 1);
CHECK(add->offset == 5);
CHECK(add->opcode == AddSubtract::OpCode::SUB);
CHECK(add->imm == true);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "SUB R7,R1,#5");
add->imm = false;
CHECK(instruction.disassemble() == "SUB R7,R1,R5");
add->opcode = AddSubtract::OpCode::ADD;
CHECK(instruction.disassemble() == "ADD R7,R1,R5");
#endif
}
TEST_CASE("Move/Compare/Add/Subtract Immediate", TAG) {
uint16_t raw = 0b0010111001011011;
Instruction instruction(raw);
MovCmpAddSubImmediate* mov = nullptr;
REQUIRE((mov = std::get_if<MovCmpAddSubImmediate>(&instruction.data)));
CHECK(mov->offset == 91);
CHECK(mov->rd == 6);
CHECK(mov->opcode == MovCmpAddSubImmediate::OpCode::CMP);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "CMP R6,#91");
mov->opcode = MovCmpAddSubImmediate::OpCode::ADD;
CHECK(instruction.disassemble() == "ADD R6,#91");
mov->opcode = MovCmpAddSubImmediate::OpCode::SUB;
CHECK(instruction.disassemble() == "SUB R6,#91");
mov->opcode = MovCmpAddSubImmediate::OpCode::MOV;
CHECK(instruction.disassemble() == "MOV R6,#91");
#endif
}
TEST_CASE("ALU Operations", TAG) {
uint16_t raw = 0b0100000110011111;
Instruction instruction(raw);
AluOperations* alu = nullptr;
REQUIRE((alu = std::get_if<AluOperations>(&instruction.data)));
CHECK(alu->rd == 7);
CHECK(alu->rs == 3);
CHECK(alu->opcode == AluOperations::OpCode::SBC);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "SBC R7,R3");
#define OPCODE(op) \
alu->opcode = AluOperations::OpCode::op; \
CHECK(instruction.disassemble() == #op " R7,R3");
OPCODE(AND)
OPCODE(EOR)
OPCODE(LSL)
OPCODE(LSR)
OPCODE(ASR)
OPCODE(ADC)
OPCODE(SBC)
OPCODE(ROR)
OPCODE(TST)
OPCODE(NEG)
OPCODE(CMP)
OPCODE(CMN)
OPCODE(ORR)
OPCODE(MUL)
OPCODE(BIC)
OPCODE(MVN)
#undef OPCODE
#endif
}
TEST_CASE("Hi Register Operations/Branch Exchange", TAG) {
HiRegisterOperations* hi = nullptr;
uint16_t raw = 0b0100011000011010;
SECTION("both lo") {
Instruction instruction(raw);
REQUIRE((hi = std::get_if<HiRegisterOperations>(&instruction.data)));
CHECK(hi->rd == 2);
CHECK(hi->rs == 3);
}
SECTION("hi rd") {
raw |= 1 << 7;
Instruction instruction(raw);
REQUIRE((hi = std::get_if<HiRegisterOperations>(&instruction.data)));
CHECK(hi->rd == 10);
CHECK(hi->rs == 3);
}
SECTION("hi rs") {
raw |= 1 << 6;
Instruction instruction(raw);
REQUIRE((hi = std::get_if<HiRegisterOperations>(&instruction.data)));
CHECK(hi->rd == 2);
CHECK(hi->rs == 11);
}
if (hi)
CHECK(hi->opcode == HiRegisterOperations::OpCode::MOV);
SECTION("both hi") {
raw |= 1 << 6;
raw |= 1 << 7;
Instruction instruction(raw);
REQUIRE((hi = std::get_if<HiRegisterOperations>(&instruction.data)));
CHECK(hi->rd == 10);
CHECK(hi->rs == 11);
CHECK(hi->opcode == HiRegisterOperations::OpCode::MOV);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "MOV R10,R11");
hi->opcode = HiRegisterOperations::OpCode::ADD;
CHECK(instruction.disassemble() == "ADD R10,R11");
hi->opcode = HiRegisterOperations::OpCode::CMP;
CHECK(instruction.disassemble() == "CMP R10,R11");
hi->opcode = HiRegisterOperations::OpCode::BX;
CHECK(instruction.disassemble() == "BX R11");
#endif
}
}
TEST_CASE("PC Relative Load", TAG) {
uint16_t raw = 0b0100101011100110;
Instruction instruction(raw);
PcRelativeLoad* ldr = nullptr;
REQUIRE((ldr = std::get_if<PcRelativeLoad>(&instruction.data)));
// 230 << 2
CHECK(ldr->word == 920);
CHECK(ldr->rd == 2);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "LDR R2,[PC,#920]");
#endif
}
TEST_CASE("Load/Store with Register Offset", TAG) {
uint16_t raw = 0b0101000110011101;
Instruction instruction(raw);
LoadStoreRegisterOffset* ldr = nullptr;
REQUIRE((ldr = std::get_if<LoadStoreRegisterOffset>(&instruction.data)));
CHECK(ldr->rd == 5);
CHECK(ldr->rb == 3);
CHECK(ldr->ro == 6);
CHECK(ldr->byte == false);
CHECK(ldr->load == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "STR R5,[R3,R6]");
ldr->byte = true;
CHECK(instruction.disassemble() == "STRB R5,[R3,R6]");
ldr->load = true;
CHECK(instruction.disassemble() == "LDRB R5,[R3,R6]");
ldr->byte = false;
CHECK(instruction.disassemble() == "LDR R5,[R3,R6]");
#endif
}
TEST_CASE("Load/Store Sign-Extended Byte/Halfword", TAG) {
uint16_t raw = 0b0101001110011101;
Instruction instruction(raw);
LoadStoreSignExtendedHalfword* ldr = nullptr;
REQUIRE(
(ldr = std::get_if<LoadStoreSignExtendedHalfword>(&instruction.data)));
CHECK(ldr->rd == 5);
CHECK(ldr->rb == 3);
CHECK(ldr->ro == 6);
CHECK(ldr->s == false);
CHECK(ldr->h == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "STRH R5,[R3,R6]");
ldr->h = true;
CHECK(instruction.disassemble() == "LDRH R5,[R3,R6]");
ldr->s = true;
CHECK(instruction.disassemble() == "LDSH R5,[R3,R6]");
ldr->h = false;
CHECK(instruction.disassemble() == "LDSB R5,[R3,R6]");
#endif
}
TEST_CASE("Load/Store with Immediate Offset", TAG) {
uint16_t raw = 0b0110010110011101;
Instruction instruction(raw);
LoadStoreImmediateOffset* ldr = nullptr;
REQUIRE((ldr = std::get_if<LoadStoreImmediateOffset>(&instruction.data)));
CHECK(ldr->rd == 5);
CHECK(ldr->rb == 3);
// 22 << 4 when byte == false
CHECK(ldr->offset == 88);
CHECK(ldr->byte == false);
CHECK(ldr->load == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "STR R5,[R3,#88]");
ldr->load = true;
CHECK(instruction.disassemble() == "LDR R5,[R3,#88]");
#endif
// byte
raw = 0b0111010110011101;
instruction = Instruction(raw);
INFO(instruction.data.index());
REQUIRE((ldr = std::get_if<LoadStoreImmediateOffset>(&instruction.data)));
CHECK(ldr->byte == true);
CHECK(ldr->offset == 22);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "STRB R5,[R3,#22]");
ldr->load = true;
CHECK(instruction.disassemble() == "LDRB R5,[R3,#22]");
#endif
}
TEST_CASE("Load/Store Halfword", TAG) {
uint16_t raw = 0b1000011010011101;
Instruction instruction(raw);
LoadStoreHalfword* ldr = nullptr;
REQUIRE((ldr = std::get_if<LoadStoreHalfword>(&instruction.data)));
CHECK(ldr->rd == 5);
CHECK(ldr->rb == 3);
// 26 << 1
CHECK(ldr->offset == 52);
CHECK(ldr->load == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "STRH R5,[R3,#52]");
ldr->load = true;
CHECK(instruction.disassemble() == "LDRH R5,[R3,#52]");
#endif
}
TEST_CASE("SP-Relative Load/Store", TAG) {
uint16_t raw = 0b1001010010011101;
Instruction instruction(raw);
SpRelativeLoad* ldr = nullptr;
REQUIRE((ldr = std::get_if<SpRelativeLoad>(&instruction.data)));
CHECK(ldr->rd == 4);
// 157 << 2
CHECK(ldr->word == 628);
CHECK(ldr->load == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "STR R4,[SP,#628]");
ldr->load = true;
CHECK(instruction.disassemble() == "LDR R4,[SP,#628]");
#endif
}
TEST_CASE("Load Adress", TAG) {
uint16_t raw = 0b1010000110001111;
Instruction instruction(raw);
LoadAddress* add = nullptr;
REQUIRE((add = std::get_if<LoadAddress>(&instruction.data)));
// 143 << 2
CHECK(add->word == 572);
CHECK(add->rd == 1);
CHECK(add->sp == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "ADD R1,PC,#572");
add->sp = true;
CHECK(instruction.disassemble() == "ADD R1,SP,#572");
#endif
}
TEST_CASE("Add Offset to Stack Pointer", TAG) {
uint16_t raw = 0b1011000000100101;
Instruction instruction(raw);
AddOffsetStackPointer* add = nullptr;
REQUIRE((add = std::get_if<AddOffsetStackPointer>(&instruction.data)));
// 37 << 2
CHECK(add->word == 148);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "ADD SP,#148");
#endif
raw = 0b1011000010100101;
instruction = Instruction(raw);
REQUIRE((add = std::get_if<AddOffsetStackPointer>(&instruction.data)));
CHECK(add->word == -148);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "ADD SP,#-148");
#endif
}
TEST_CASE("Push/Pop Registers", TAG) {
uint16_t raw = 0b1011010000110101;
Instruction instruction(raw);
PushPopRegister* push = nullptr;
REQUIRE((push = std::get_if<PushPopRegister>(&instruction.data)));
CHECK(push->regs == 53);
CHECK(push->pclr == false);
CHECK(push->load == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "PUSH {R0,R2,R4,R5}");
push->pclr = true;
CHECK(instruction.disassemble() == "PUSH {R0,R2,R4,R5,LR}");
push->load = true;
CHECK(instruction.disassemble() == "POP {R0,R2,R4,R5,PC}");
push->pclr = false;
CHECK(instruction.disassemble() == "POP {R0,R2,R4,R5}");
#endif
}
TEST_CASE("Multiple Load/Store", TAG) {
uint16_t raw = 0b1100011001100101;
Instruction instruction(raw);
MultipleLoad* ldm = nullptr;
REQUIRE((ldm = std::get_if<MultipleLoad>(&instruction.data)));
CHECK(ldm->regs == 101);
CHECK(ldm->rb == 6);
CHECK(ldm->load == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "STMIA R6!,{R0,R2,R5,R6}");
ldm->load = true;
CHECK(instruction.disassemble() == "LDMIA R6!,{R0,R2,R5,R6}");
#endif
}
TEST_CASE("Conditional Branch", TAG) {
uint16_t raw = 0b1101100110110100;
Instruction instruction(raw);
ConditionalBranch* b = nullptr;
REQUIRE((b = std::get_if<ConditionalBranch>(&instruction.data)));
// (-76 << 1)
CHECK(b->offset == -152);
CHECK(b->condition == Condition::LS);
#ifdef DISASSEMBLER
// take prefetch into account
// offset + 4 = -152 + 4
CHECK(instruction.disassemble() == "BLS #-148");
#endif
}
TEST_CASE("SoftwareInterrupt") {
uint16_t raw = 0b1101111100110011;
Instruction instruction(raw);
SoftwareInterrupt* swi = nullptr;
REQUIRE((swi = std::get_if<SoftwareInterrupt>(&instruction.data)));
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "SWI 51");
#endif
}
TEST_CASE("Unconditional Branch") {
uint16_t raw = 0b1110011100110011;
Instruction instruction(raw);
UnconditionalBranch* b = nullptr;
REQUIRE((b = std::get_if<UnconditionalBranch>(&instruction.data)));
// (2147483443 << 1)
REQUIRE(b->offset == -410);
#ifdef DISASSEMBLER
// take prefetch into account
// offset + 4 = -410 + 4
CHECK(instruction.disassemble() == "B #-406");
#endif
}
TEST_CASE("Long Branch with link") {
uint16_t raw = 0b1111010011101100;
Instruction instruction(raw);
LongBranchWithLink* bl = nullptr;
REQUIRE((bl = std::get_if<LongBranchWithLink>(&instruction.data)));
// 1260 << 1
CHECK(bl->offset == 2520);
CHECK(bl->high == false);
#ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "BL #2520");
bl->high = true;
CHECK(instruction.disassemble() == "BLH #2520");
#endif
}
#undef TAG

View File

@@ -0,0 +1,4 @@
tests_sources += files(
'instruction.cc',
'exec.cc'
)

View File

@@ -1,7 +1,7 @@
#include "memory.hh" #include "memory.hh"
#include <catch2/catch_test_macros.hpp> #include <catch2/catch_test_macros.hpp>
static constexpr auto TAG = "[memory]"; #define TAG "[memory]"
using namespace matar; using namespace matar;
@@ -15,14 +15,18 @@ class MemFixture {
Memory memory; Memory memory;
}; };
TEST_CASE_METHOD(MemFixture, "bios", TAG) { TEST_CASE("bios", TAG) {
memory.write(0, 0xAC); std::array<uint8_t, Memory::BIOS_SIZE> bios = { 0 };
// populate bios
bios[0] = 0xAC;
bios[0x3FFF] = 0x48;
bios[0x2A56] = 0x10;
Memory memory(std::move(bios), std::vector<uint8_t>(Header::HEADER_SIZE));
CHECK(memory.read(0) == 0xAC); CHECK(memory.read(0) == 0xAC);
memory.write(0x3FFF, 0x48);
CHECK(memory.read(0x3FFF) == 0x48); CHECK(memory.read(0x3FFF) == 0x48);
memory.write(0x2A56, 0x10);
CHECK(memory.read(0x2A56) == 0x10); CHECK(memory.read(0x2A56) == 0x10);
} }
@@ -82,40 +86,33 @@ TEST_CASE_METHOD(MemFixture, "oam obj ram", TAG) {
} }
TEST_CASE("rom", TAG) { TEST_CASE("rom", TAG) {
std::vector<uint8_t> rom(32 * 1024 * 1024, 0);
// populate rom
rom[0] = 0xAC;
rom[0x1FFFFFF] = 0x48;
rom[0x0EF0256] = 0x10;
// 32 megabyte ROM // 32 megabyte ROM
Memory memory(std::array<uint8_t, Memory::BIOS_SIZE>(), Memory memory(std::array<uint8_t, Memory::BIOS_SIZE>(), std::move(rom));
std::vector<uint8_t>(32 * 1024 * 1024));
SECTION("ROM1") { SECTION("ROM1") {
memory.write(0x8000000, 0xAC);
CHECK(memory.read(0x8000000) == 0xAC); CHECK(memory.read(0x8000000) == 0xAC);
memory.write(0x9FFFFFF, 0x48);
CHECK(memory.read(0x9FFFFFF) == 0x48); CHECK(memory.read(0x9FFFFFF) == 0x48);
CHECK(memory.read(0x8EF0256) == 0x10);
memory.write(0x8ef0256, 0x10);
CHECK(memory.read(0x8ef0256) == 0x10);
} }
SECTION("ROM2") { SECTION("ROM2") {
memory.write(0xA000000, 0xAC);
CHECK(memory.read(0xA000000) == 0xAC); CHECK(memory.read(0xA000000) == 0xAC);
memory.write(0xBFFFFFF, 0x48);
CHECK(memory.read(0xBFFFFFF) == 0x48); CHECK(memory.read(0xBFFFFFF) == 0x48);
memory.write(0xAEF0256, 0x10);
CHECK(memory.read(0xAEF0256) == 0x10); CHECK(memory.read(0xAEF0256) == 0x10);
} }
SECTION("ROM3") { SECTION("ROM3") {
memory.write(0xC000000, 0xAC);
CHECK(memory.read(0xC000000) == 0xAC); CHECK(memory.read(0xC000000) == 0xAC);
memory.write(0xDFFFFFF, 0x48);
CHECK(memory.read(0xDFFFFFF) == 0x48); CHECK(memory.read(0xDFFFFFF) == 0x48);
memory.write(0xCEF0256, 0x10);
CHECK(memory.read(0xCEF0256) == 0x10); CHECK(memory.read(0xCEF0256) == 0x10);
} }
} }
#undef TAG

View File

@@ -13,6 +13,12 @@ tests_sources = files(
subdir('cpu') subdir('cpu')
subdir('util') subdir('util')
tests_cpp_args = []
if get_option('disassembler')
tests_cpp_args += '-DDISASSEMBLER'
endif
catch2 = dependency('catch2', version: '>=3.4.0', static: true) catch2 = dependency('catch2', version: '>=3.4.0', static: true)
catch2_tests = executable( catch2_tests = executable(
'matar_tests', 'matar_tests',
@@ -21,6 +27,7 @@ catch2_tests = executable(
link_with: tests_deps, link_with: tests_deps,
include_directories: [inc, src], include_directories: [inc, src],
build_by_default: false, build_by_default: false,
cpp_args: tests_cpp_args
) )
test('catch2 tests', catch2_tests) test('catch2 tests', catch2_tests)

View File

@@ -1,7 +1,7 @@
#include "util/bits.hh" #include "util/bits.hh"
#include <catch2/catch_test_macros.hpp> #include <catch2/catch_test_macros.hpp>
static constexpr auto TAG = "[util][bits]"; #define TAG "[util][bits]"
TEST_CASE("8 bits", TAG) { TEST_CASE("8 bits", TAG) {
uint8_t num = 45; uint8_t num = 45;
@@ -104,3 +104,5 @@ TEST_CASE("64 bits", TAG) {
// 0b011010001 // 0b011010001
CHECK(bit_range(num, 39, 47) == 209); CHECK(bit_range(num, 39, 47) == 209);
} }
#undef TAG

View File

@@ -1,7 +1,7 @@
#include "util/crypto.hh" #include "util/crypto.hh"
#include <catch2/catch_test_macros.hpp> #include <catch2/catch_test_macros.hpp>
static constexpr auto TAG = "[util][crypto]"; #define TAG "[util][crypto]"
TEST_CASE("sha256 matar", TAG) { TEST_CASE("sha256 matar", TAG) {
std::array<uint8_t, 5> data = { 'm', 'a', 't', 'a', 'r' }; std::array<uint8_t, 5> data = { 'm', 'a', 't', 'a', 'r' };
@@ -19,3 +19,5 @@ TEST_CASE("sha256 forgis", TAG) {
CHECK(crypto::sha256(data) == CHECK(crypto::sha256(data) ==
"cfddca2ce2673f355518cbe2df2a8522693c54723a469e8b36a4f68b90d2b759"); "cfddca2ce2673f355518cbe2df2a8522693c54723a469e8b36a4f68b90d2b759");
} }
#undef TAG