21 Commits

Author SHA1 Message Date
58a503d2c4 io: add display unit
added rendering for modes 3,4,5
also changed how memory structuring works

Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-22 04:16:12 +05:30
54fc472399 bus: rewrite the private read/write methods
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-21 02:01:04 +05:30
514aeb7d44 cpu: bring back the flush pipeline method
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-21 01:56:25 +05:30
f510a54d40 utils/tcp_server: set TCP_NODELAY
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-20 06:12:42 +05:30
1c96f418eb massive instruction rewrite
So, I ended up moving exec methods from Instruction to Cpu for
encapsulating cycle emulation, and this has caused me lots of pain since
I had to rewrite a shit ton of tests which are not even useful or
comprehensible, i do no know why i put myself through this

Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-20 06:07:00 +05:30
7d3996526f bus: separate out read/write that count cycles
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-19 14:56:23 +05:30
f5aa73e7ca cpu/thumb: fix multiple load/store
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-19 14:18:37 +05:30
41b625790e [skip ci] readme: update
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-16 21:25:58 +05:30
2c89701fee gdb rsp: make start() rerunnable
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-16 21:11:18 +05:30
c55f2937f7 gdb rsp: minor changes
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-16 20:55:33 +05:30
951fc40134 tests/bus: idle cycle test
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-16 07:46:12 +05:30
a7d919eea0 massive feat: added a GDB stub for debugging
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-16 07:45:54 +05:30
c22333812e bus (feat): add cycle accuracy
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-15 03:49:10 +05:30
cb75ebf8ef bus: use a switch case for memory access
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-14 20:47:04 +05:30
08060a767f cpu (feat): store three opcodes instead of one
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-14 20:27:13 +05:30
bafd534671 bus: send a weak ptr to io
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-14 20:25:36 +05:30
d1df555a6a fix gcc build
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-14 05:48:13 +05:30
9397140473 get rid of memory.cc/.hh
also fix bus' shared pointer in cpu
TODO: put cpu in bus not the other way around

Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-14 05:42:09 +05:30
ffcdf5f3a7 ci: fix by bumping actions
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-13 04:01:24 +05:30
eaa4abcb90 cpu/arm: fix MSR by changing modes
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-13 03:56:10 +05:30
c4a9c5ee5e cpu: align PC every step
Signed-off-by: Amneesh Singh <natto@weirdnatto.in>
2024-06-13 03:54:46 +05:30
45 changed files with 3122 additions and 1130 deletions

View File

@@ -9,19 +9,19 @@ jobs:
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v3
- uses: cachix/install-nix-action@v20 - uses: cachix/install-nix-action@v27
with: with:
extra_nix_config: | extra_nix_config: |
auto-optimise-store = true auto-optimise-store = true
experimental-features = nix-command flakes experimental-features = nix-command flakes
- uses: cachix/cachix-action@v12 - uses: cachix/cachix-action@v15
with: with:
name: pain name: pain
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}' authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
- name: setup - name: setup
run: nix develop .#matar-clang -c meson setup $BUILDDIR run: nix develop .#matar-clang -c meson setup $BUILDDIR -Dgdb_debug=true
- name: fmt - name: fmt
run: nix develop .#matar-clang -c ninja clang-format-check -C $BUILDDIR run: nix develop .#matar-clang -c ninja clang-format-check -C $BUILDDIR
@@ -29,8 +29,8 @@ jobs:
- name: lint - name: lint
run: nix develop .#matar-clang -c ninja clang-tidy -C $BUILDDIR run: nix develop .#matar-clang -c ninja clang-tidy -C $BUILDDIR
- name: tests
run: nix develop .#matar-clang -c ninja test -C $BUILDDIR
- name: build - name: build
run: nix develop .#matar-clang -c ninja -C $BUILDDIR run: nix develop .#matar-clang -c ninja -C $BUILDDIR
- name: tests
run: nix develop .#matar-clang -c ninja test -C $BUILDDIR

View File

@@ -9,22 +9,22 @@ jobs:
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v3
- uses: cachix/install-nix-action@v20 - uses: cachix/install-nix-action@v27
with: with:
extra_nix_config: | extra_nix_config: |
auto-optimise-store = true auto-optimise-store = true
experimental-features = nix-command flakes experimental-features = nix-command flakes
- uses: cachix/cachix-action@v12 - uses: cachix/cachix-action@v15
with: with:
name: pain name: pain
authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}' authToken: '${{ secrets.CACHIX_AUTH_TOKEN }}'
- name: setup - name: setup
run: nix develop .#matar -c meson setup $BUILDDIR run: nix develop .#matar -c meson setup $BUILDDIR -Dgdb_debug=true
- name: tests
run: nix develop .#matar -c ninja test -C $BUILDDIR
- name: build - name: build
run: nix develop .#matar -c ninja -C $BUILDDIR run: nix develop .#matar -c ninja -C $BUILDDIR
- name: tests
run: nix develop .#matar -c ninja test -C $BUILDDIR

View File

@@ -19,7 +19,63 @@ I am using LLVM's clang and libcxx as the primary toolchain.
This goes without saying but using a different toolchain to compile these libraries before linking probably won't work. This goes without saying but using a different toolchain to compile these libraries before linking probably won't work.
# Status
- [x] CPU
- [x] Arm
- [x] Dissassembler
- [x] Execution
- [x] Thumb
- [x] Dissassembler
- [x] Execution
- [ ] Bus
- [x] Cycle counting with CPU
- [x] Reading memory
- [x] Writing memory
- [ ] Scheduler (maybe?)
- [ ] Sync PPU and CPU
- [ ] Sync APU and CPU
- [ ] Sync other stuff
- [ ] I/O
- [ ] PPU
- [ ] APU
- [ ] Timers
- [ ] DMA
- [ ] Keypad
- Debugging
- [x] GDB Remote Serial Protocol support
- Misc
- [ ] Save/Load states
- [x] Header Parsing
- Internal utilities
- [x] Bit manipulation
- [x] A global logger
- [x] TCP Server (for GDB RSP)
- [x] SHA256 hash (why? idk)
## Available unit tests so far
- CPU
- Arm
- Disassembler
- Execution
- Thumb
- Disassembler
- Execution
- Bus
- Memory read/writes
- Cycle Counting
- Some internal utility tests (idk why)
----- -----
# LOG # LOG
- June 11, 2024: After almost an year, I have come back to this silly abandoned project, will probably complete it soon. - June 11, 2024: After almost an year, I have come back to this silly abandoned project, will probably complete it soon.
- June 16, 2024: I ought to complete this soon

View File

@@ -1,8 +1,8 @@
#include "bus.hh" #include "bus.hh"
#include "cpu/cpu.hh" #include "cpu/cpu.hh"
#include "memory.hh"
#include "util/loglevel.hh" #include "util/loglevel.hh"
#include <array> #include <array>
#include <chrono>
#include <cstdlib> #include <cstdlib>
#include <fstream> #include <fstream>
#include <iostream> #include <iostream>
@@ -15,7 +15,7 @@
int int
main(int argc, const char* argv[]) { main(int argc, const char* argv[]) {
std::vector<uint8_t> rom; std::vector<uint8_t> rom;
std::array<uint8_t, matar::Memory::BIOS_SIZE> bios = { 0 }; std::array<uint8_t, matar::Bus::BIOS_SIZE> bios = { 0 };
auto usage = [argv]() { auto usage = [argv]() {
std::cerr << "Usage: " << argv[0] << " <file> [-b <bios>]" << std::endl; std::cerr << "Usage: " << argv[0] << " <file> [-b <bios>]" << std::endl;
@@ -65,7 +65,7 @@ main(int argc, const char* argv[]) {
ifile.seekg(0, std::ios::end); ifile.seekg(0, std::ios::end);
bios_size = ifile.tellg(); bios_size = ifile.tellg();
if (bios_size != matar::Memory::BIOS_SIZE) { if (bios_size != matar::Bus::BIOS_SIZE) {
throw std::ios::failure("BIOS file has invalid size", throw std::ios::failure("BIOS file has invalid size",
std::error_code()); std::error_code());
} }
@@ -87,12 +87,14 @@ main(int argc, const char* argv[]) {
matar::set_log_level(matar::LogLevel::Debug); matar::set_log_level(matar::LogLevel::Debug);
try { try {
matar::Memory memory(std::move(bios), std::move(rom)); std::shared_ptr<matar::Bus> bus =
matar::Bus bus(memory); matar::Bus::init(std::move(bios), std::move(rom));
matar::Cpu cpu(bus); matar::Cpu cpu(bus);
while (true) { while (true) {
cpu.step(); cpu.step();
std::this_thread::sleep_for(std::chrono::seconds(1)); // std::this_thread::sleep_for(std::chrono::milliseconds(10));
} }
} catch (const std::exception& e) { } catch (const std::exception& e) {
std::cerr << "Exception: " << e.what() << std::endl; std::cerr << "Exception: " << e.what() << std::endl;

View File

@@ -1,13 +1,63 @@
#pragma once #pragma once
#include "memory.hh" #include "header.hh"
#include "io/io.hh" #include "io/io.hh"
#include "memory.hh"
#include <memory> #include <memory>
#include <vector>
namespace matar { namespace matar {
enum CpuAccess {
Sequential,
NonSequential
};
enum CpuAccessWidth {
Word,
Halfword,
Byte
};
class Bus { class Bus {
private:
struct Private {
explicit Private() = default;
};
public: public:
Bus(const Memory& memory); static constexpr uint32_t BIOS_SIZE = 1024 * 16;
Bus(Private, std::array<uint8_t, BIOS_SIZE>&&, std::vector<uint8_t>&&);
static std::shared_ptr<Bus> init(std::array<uint8_t, BIOS_SIZE>&&,
std::vector<uint8_t>&&);
uint8_t read_byte(uint32_t address, CpuAccess access) {
add_cpu_cycles<CpuAccessWidth::Byte>(address, access);
return read_byte(address);
};
void write_byte(uint32_t address, uint8_t byte, CpuAccess access) {
add_cpu_cycles<CpuAccessWidth::Byte>(address, access);
write_byte(address, byte);
};
uint16_t read_halfword(uint32_t address, CpuAccess access) {
add_cpu_cycles<CpuAccessWidth::Halfword>(address, access);
return read_halfword(address);
}
void write_halfword(uint32_t address, uint16_t halfword, CpuAccess access) {
add_cpu_cycles<CpuAccessWidth::Halfword>(address, access);
write_halfword(address, halfword);
}
uint32_t read_word(uint32_t address, CpuAccess access) {
add_cpu_cycles<CpuAccessWidth::Word>(address, access);
return read_word(address);
}
void write_word(uint32_t address, uint32_t word, CpuAccess access) {
add_cpu_cycles<CpuAccessWidth::Word>(address, access);
write_word(address, word);
}
uint8_t read_byte(uint32_t address); uint8_t read_byte(uint32_t address);
void write_byte(uint32_t address, uint8_t byte); void write_byte(uint32_t address, uint8_t byte);
@@ -18,8 +68,44 @@ class Bus {
uint32_t read_word(uint32_t address); uint32_t read_word(uint32_t address);
void write_word(uint32_t address, uint32_t word); void write_word(uint32_t address, uint32_t word);
// not sure what else to do?
void internal_cycle() { cycles++; }
uint32_t get_cycles() { return cycles; }
private: private:
IoDevices io; template<CpuAccessWidth W>
std::shared_ptr<Memory> memory; void add_cpu_cycles(uint32_t address, CpuAccess access) {
auto cc = cycle_map[address >> 24 & 0xF];
if constexpr (W == CpuAccessWidth::Word) {
cycles += (access == CpuAccess::Sequential ? cc.s32 : cc.n32);
} else {
cycles += (access == CpuAccess::Sequential ? cc.s16 : cc.n16);
}
}
template<typename T>
T read(uint32_t address) const;
template<typename T>
void write(uint32_t address, T value);
uint32_t cycles = 0;
struct cycle_count {
uint8_t n16; // non sequential 8/16 bit width access
uint8_t n32; // non sequential 32 bit width access
uint8_t s16; // seuquential 8/16 bit width access
uint8_t s32; // sequential 32 bit width access
};
std::array<cycle_count, 0x10> cycle_map;
static constexpr decltype(cycle_map) init_cycle_count();
std::unique_ptr<IoDevices> io;
Memory<BIOS_SIZE> bios = {};
Memory<0x40000> board_wram = {};
Memory<0x80000> chip_wram = {};
Memory<> rom;
Header header;
void parse_header();
}; };
} }

View File

@@ -49,4 +49,7 @@ add(uint32_t a, uint32_t b, bool& carry, bool& overflow, bool c = 0);
uint32_t uint32_t
sbc(uint32_t a, uint32_t b, bool& carry, bool& overflow, bool c); sbc(uint32_t a, uint32_t b, bool& carry, bool& overflow, bool c);
uint8_t
multiplier_array_cycles(uint32_t x, bool zeroes_only = false);
} }

View File

@@ -4,17 +4,39 @@
#include "bus.hh" #include "bus.hh"
#include "cpu/psr.hh" #include "cpu/psr.hh"
#include "thumb/instruction.hh" #include "thumb/instruction.hh"
#include <cstdint> #include <cstdint>
#include <memory>
#ifdef GDB_DEBUG
#include <unordered_set>
#endif
namespace matar { namespace matar {
#ifdef GDB_DEBUG
class GdbRsp;
#endif
class Cpu { class Cpu {
public: public:
Cpu(const Bus& bus) noexcept; Cpu(std::shared_ptr<Bus> bus) noexcept;
void step(); void step();
void chg_mode(const Mode to); void chg_mode(const Mode to);
void exec(arm::Instruction& instruction);
void exec(thumb::Instruction& instruction);
#ifdef GDB_DEBUG
bool breakpoint_reached() {
if (breakpoints.contains(pc - 2 * (cpsr.state() == State::Arm
? arm::INSTRUCTION_SIZE
: thumb::INSTRUCTION_SIZE))) {
return true;
}
return false;
}
#endif
private: private:
friend void arm::Instruction::exec(Cpu& cpu); friend void arm::Instruction::exec(Cpu& cpu);
friend void thumb::Instruction::exec(Cpu& cpu); friend void thumb::Instruction::exec(Cpu& cpu);
@@ -29,10 +51,10 @@ class Cpu {
static constexpr uint8_t GPR_OLD_FIRST = 8; static constexpr uint8_t GPR_OLD_FIRST = 8;
std::shared_ptr<Bus> bus; std::shared_ptr<Bus> bus;
std::array<uint32_t, GPR_COUNT> gpr; // general purpose registers std::array<uint32_t, GPR_COUNT> gpr = {}; // general purpose registers
Psr cpsr; // current program status register Psr cpsr = {}; // current program status register
Psr spsr; // status program status register Psr spsr = {}; // status program status register
static constexpr uint8_t SP_INDEX = 13; static constexpr uint8_t SP_INDEX = 13;
static_assert(SP_INDEX < GPR_COUNT); static_assert(SP_INDEX < GPR_COUNT);
@@ -55,7 +77,7 @@ class Cpu {
// visible registers before the mode switch // visible registers before the mode switch
std::array<uint32_t, GPR_COUNT - GPR_OLD_FIRST - 1> old; std::array<uint32_t, GPR_COUNT - GPR_OLD_FIRST - 1> old;
} gpr_banked; // banked general purpose registers } gpr_banked = {}; // banked general purpose registers
struct { struct {
Psr fiq; Psr fiq;
@@ -63,8 +85,38 @@ class Cpu {
Psr abt; Psr abt;
Psr irq; Psr irq;
Psr und; Psr und;
} spsr_banked; // banked saved program status registers } spsr_banked = {}; // banked saved program status registers
bool is_flushed; void internal_cycle() { bus->internal_cycle(); }
// whether read is going to be sequential or not
CpuAccess next_access = CpuAccess::Sequential;
// raw instructions in the pipeline
std::array<uint32_t, 2> opcodes = {};
void advance_pc_arm();
void advance_pc_thumb();
template<State S>
void flush_pipeline() {
if constexpr (S == State::Arm) {
opcodes[0] = bus->read_word(pc, CpuAccess::NonSequential);
advance_pc_arm();
opcodes[1] = bus->read_word(pc, CpuAccess::Sequential);
advance_pc_arm();
} else {
opcodes[0] = bus->read_halfword(pc, CpuAccess::NonSequential);
advance_pc_thumb();
opcodes[1] = bus->read_halfword(pc, CpuAccess::Sequential);
advance_pc_thumb();
}
next_access = CpuAccess::Sequential;
}
#ifdef GDB_DEBUG
friend class GdbRsp;
std::unordered_set<uint32_t> breakpoints = {};
#endif
}; };
} }

View File

@@ -71,7 +71,7 @@ stringify(Condition cond) {
class Psr { class Psr {
public: public:
// clear the reserved bits i.e, [8:27] Psr() = default;
Psr(uint32_t raw); Psr(uint32_t raw);
uint32_t raw() const; uint32_t raw() const;

View File

@@ -251,7 +251,7 @@ struct UnconditionalBranch {
struct LongBranchWithLink { struct LongBranchWithLink {
uint16_t offset; uint16_t offset;
bool high; bool low;
}; };
using InstructionData = std::variant<MoveShiftedRegister, using InstructionData = std::variant<MoveShiftedRegister,

View File

@@ -0,0 +1,159 @@
#include "memory.hh"
#include <array>
#include <bit>
#include <cstdint>
#include <sys/types.h>
// NOLINTBEGIN(cppcoreguidelines-avoid-c-arrays)
namespace matar {
namespace display {
static constexpr int LCD_WIDTH = 240;
// there are 5 modes
static constexpr uint N_MODES = 6;
// there are 4 backgrounds that can be layered depending on mode
// there is also 1 object layer
static constexpr uint N_BACKGROUNDS = 4;
static constexpr uint32_t PRAM_START = 0x5000000;
static constexpr uint32_t VRAM_START = 0x6000000;
static constexpr uint32_t OAM_START = 0x7000000;
template<typename T, typename = std::enable_if_t<std::is_arithmetic_v<T>>>
struct Point {
T x;
T y;
};
struct Color {
public:
Color(uint16_t raw)
: red(raw & 0b11111)
, green(raw >> 5 & 0b11111)
, blue(raw >> 10 & 0b11111) {}
uint16_t read() const {
return (red & 0b11111) | ((green << 5) & 0b11111) |
((blue << 10) & 0b11111);
}
private:
uint8_t red;
uint8_t green;
uint8_t blue;
};
struct DisplayControl {
struct {
uint8_t mode : 3;
int : 1; // unused
bool frame_select_1 : 1;
bool hblank_free_interval : 1;
bool obj_character_vram_mapping : 1;
bool forced_blank : 1;
bool screen_display_0 : 1;
bool screen_display_1 : 1;
bool screen_display_2 : 1;
bool screen_display_3 : 1;
bool screen_display_obj : 1;
bool window_display_0 : 1;
bool window_display_1 : 1;
bool obj_window_display : 1;
} value;
uint16_t read() const { return std::bit_cast<uint16_t>(value); };
void write(uint16_t raw) { value = std::bit_cast<decltype(value)>(raw); };
};
struct DisplayStatus {
struct {
bool vblank_flag : 1;
bool hblank_flag : 1;
bool vcounter_flag : 1;
bool vblank_irq_enable : 1;
bool hblank_irq_enable : 1;
bool vcounter_irq_enable : 1;
int : 2; // unused
uint8_t vcount_setting : 8;
} value;
uint16_t read() const { return std::bit_cast<uint16_t>(value); };
void write(uint16_t raw) { value = std::bit_cast<decltype(value)>(raw); };
};
struct BackgroundControl {
struct {
uint8_t priority : 2;
uint8_t character_base_block : 2;
int : 2; // unused
bool mosaic : 1;
bool colors256 : 1;
uint8_t screen_base_block : 5;
bool bg_2_3_wraparound : 1;
uint8_t screen_size : 2;
} value;
uint16_t read() const { return std::bit_cast<uint16_t>(value); };
void write(uint16_t raw) { value = std::bit_cast<decltype(value)>(raw); };
};
struct RotationScaling {
// these are all 16 bit signed "fixed point" floats
// shifted by 8
int16_t a;
int16_t b;
int16_t c;
int16_t d;
// following points have 28 bit signed "fixed point" floats as coords
// shifted by 8
Point<int32_t> ref;
private:
Point<int32_t> internal [[maybe_unused]]
;
};
struct Display {
public:
using u16 = uint16_t;
Memory<0x400> pram;
Memory<0x18000> vram;
Memory<0x400> oam;
DisplayControl lcd_control;
DisplayStatus general_lcd_status;
u16 vertical_counter;
BackgroundControl bg_control[4];
Point<u16> bg0_offset;
Point<u16> bg1_offset;
Point<u16> bg2_offset;
Point<u16> bg3_offset;
RotationScaling bg2_rot_scale;
RotationScaling bg3_rot_scale;
u16 win0_horizontal_dimensions;
u16 win1_horizontal_dimensions;
u16 win0_vertical_dimensions;
u16 win1_vertical_dimensions;
u16 inside_win_0_1;
u16 outside_win;
u16 mosaic_size;
u16 color_special_effects_selection;
u16 alpha_blending_coefficients;
u16 brightness_coefficient;
private:
// 1 color is 16 bits in ARGB555 format
std::array<std::array<uint16_t, LCD_WIDTH>, N_BACKGROUNDS> scanline_buffers;
template<int MODE,
typename = std::enable_if_t<MODE == 3 || MODE == 4 || MODE == 5>>
void render_bitmap_mode();
template<int LAYER, typename = std::enable_if_t<LAYER >= 0 && LAYER <= 3>>
void render_text_layer();
};
}
}
// NOLINTEND(cppcoreguidelines-avoid-c-arrays)

39
include/io/dma.hh Normal file
View File

@@ -0,0 +1,39 @@
#include <bit>
#include <cstdint>
namespace matar {
// NOLINTBEGIN(cppcoreguidelines-avoid-c-arrays)
struct DmaControl {
struct {
int : 4; // this is supposed to be 5 bits, however, to align the struct
// to 16 bits, we will adjust for the first LSB in the
// read/write
uint8_t dst_adjustment : 2;
uint8_t src_adjustment : 2;
bool repeat : 1;
bool transfer_32 : 1;
int : 1;
uint8_t start_timing : 2;
bool irq_enable : 1;
bool enable : 1;
} value;
uint16_t read() const { return std::bit_cast<uint16_t>(value) << 1; };
void write(uint16_t raw) {
value = std::bit_cast<decltype(value)>(static_cast<uint16_t>(raw >> 1));
};
};
struct Dma {
using u16 = uint16_t;
struct {
u16 source[2];
u16 destination[2];
u16 word_count;
DmaControl control;
} channels[4];
};
// NOLINTEND(cppcoreguidelines-avoid-c-arrays)
}

View File

@@ -1,11 +1,18 @@
#pragma once #pragma once
#include "lcd.hh"
#include "display/display.hh"
#include "dma.hh"
#include "sound.hh" #include "sound.hh"
#include <cstdint> #include <cstdint>
#include <memory>
namespace matar { namespace matar {
class Bus; // forward declaration
class IoDevices { class IoDevices {
public: public:
IoDevices(std::weak_ptr<Bus>);
uint8_t read_byte(uint32_t) const; uint8_t read_byte(uint32_t) const;
void write_byte(uint32_t, uint8_t); void write_byte(uint32_t, uint8_t);
@@ -26,7 +33,11 @@ class IoDevices {
bool low_power_mode; bool low_power_mode;
} system = {}; } system = {};
struct lcd lcd = {}; display::Display display = {};
struct sound sound = {}; Sound sound = {};
Dma dma = {};
std::weak_ptr<Bus> bus;
friend class Bus;
}; };
} }

View File

@@ -1,84 +0,0 @@
#include <cstdint>
// NOLINTBEGIN(cppcoreguidelines-avoid-c-arrays)
/*
4000000h 2 R/W DISPCNT LCD Control
4000002h 2 R/W - Undocumented - Green Swap
4000004h 2 R/W DISPSTAT General LCD Status (STAT,LYC)
4000006h 2 R VCOUNT Vertical Counter (LY)
4000008h 2 R/W BG0CNT BG0 Control
400000Ah 2 R/W BG1CNT BG1 Control
400000Ch 2 R/W BG2CNT BG2 Control
400000Eh 2 R/W BG3CNT BG3 Control
4000010h 2 W BG0HOFS BG0 X-Offset
4000012h 2 W BG0VOFS BG0 Y-Offset
4000014h 2 W BG1HOFS BG1 X-Offset
4000016h 2 W BG1VOFS BG1 Y-Offset
4000018h 2 W BG2HOFS BG2 X-Offset
400001Ah 2 W BG2VOFS BG2 Y-Offset
400001Ch 2 W BG3HOFS BG3 X-Offset
400001Eh 2 W BG3VOFS BG3 Y-Offset
4000020h 2 W BG2PA BG2 Rotation/Scaling Parameter A (dx)
4000022h 2 W BG2PB BG2 Rotation/Scaling Parameter B (dmx)
4000024h 2 W BG2PC BG2 Rotation/Scaling Parameter C (dy)
4000026h 2 W BG2PD BG2 Rotation/Scaling Parameter D (dmy)
4000028h 4 W BG2X BG2 Reference Point X-Coordinate
400002Ch 4 W BG2Y BG2 Reference Point Y-Coordinate
4000030h 2 W BG3PA BG3 Rotation/Scaling Parameter A (dx)
4000032h 2 W BG3PB BG3 Rotation/Scaling Parameter B (dmx)
4000034h 2 W BG3PC BG3 Rotation/Scaling Parameter C (dy)
4000036h 2 W BG3PD BG3 Rotation/Scaling Parameter D (dmy)
4000038h 4 W BG3X BG3 Reference Point X-Coordinate
400003Ch 4 W BG3Y BG3 Reference Point Y-Coordinate
4000040h 2 W WIN0H Window 0 Horizontal Dimensions
4000042h 2 W WIN1H Window 1 Horizontal Dimensions
4000044h 2 W WIN0V Window 0 Vertical Dimensions
4000046h 2 W WIN1V Window 1 Vertical Dimensions
4000048h 2 R/W WININ Inside of Window 0 and 1
400004Ah 2 R/W WINOUT Inside of OBJ Window & Outside of Windows
400004Ch 2 W MOSAIC Mosaic Size
400004Eh - - Not used
4000050h 2 R/W BLDCNT Color Special Effects Selection
4000052h 2 R/W BLDALPHA Alpha Blending Coefficients
4000054h 2 W BLDY Brightness (Fade-In/Out) Coefficient
4000056h - - Not used
*/
struct lcd {
using u16 = uint16_t;
u16 lcd_control;
u16 general_lcd_status;
u16 vertical_counter;
u16 bg0_control;
u16 bg1_control;
u16 bg2_control;
u16 bg3_control;
u16 bg0_x_offset;
u16 bg0_y_offset;
u16 bg1_x_offset;
u16 bg1_y_offset;
u16 bg2_x_offset;
u16 bg2_y_offset;
u16 bg3_x_offset;
u16 bg3_y_offset;
u16 bg2_rot_scaling_parameters[4];
u16 bg2_reference_x[2];
u16 bg2_reference_y[2];
u16 bg3_rot_scaling_parameters[4];
u16 bg3_reference_x[2];
u16 bg3_reference_y[2];
u16 win0_horizontal_dimensions;
u16 win1_horizontal_dimensions;
u16 win0_vertical_dimensions;
u16 win1_vertical_dimensions;
u16 inside_win_0_1;
u16 outside_win;
u16 mosaic_size;
u16 color_special_effects_selection;
u16 alpha_blending_coefficients;
u16 brightness_coefficient;
};
// NOLINTEND(cppcoreguidelines-avoid-c-arrays)

View File

@@ -30,7 +30,7 @@
40000A4h 4 W FIFO_B Channel B FIFO, Data 0-3 40000A4h 4 W FIFO_B Channel B FIFO, Data 0-3
*/ */
struct sound{ struct Sound {
using u16 = uint16_t; using u16 = uint16_t;
// channel 1 // channel 1

View File

@@ -1,58 +1,60 @@
#pragma once #pragma once
#include "header.hh"
#include <array> #include <array>
#include <cstddef> #include <cstddef>
#include <cstdint> #include <cstdint>
#include <unordered_map>
#include <vector> #include <vector>
// ill use [] instead of at because i dont want if (...) throw conditions for
// all accesses to improve performance (?)
// we are also not gonna perform bound checks, as i expect the user to handle
// those
namespace matar { namespace matar {
template<std::size_t N = 0>
class Memory { class Memory {
// we can use either a vector or an array with this
using Container = std::
conditional_t<(N != 0), std::array<uint8_t, N>, std::vector<uint8_t>>;
public: public:
static constexpr uint32_t BIOS_SIZE = 1024 * 16; Memory() = default;
Memory(auto x)
: memory(x) {}
Memory(std::array<uint8_t, BIOS_SIZE>&& bios, std::vector<uint8_t>&& rom); uint8_t read_byte(std::size_t idx) const { return memory[idx]; }
uint8_t read(uint32_t address) const; void write_byte(std::size_t idx, uint8_t byte) { memory[idx] = byte; }
void write(uint32_t address, uint8_t byte);
uint16_t read_halfword(std::size_t idx) const {
return memory[idx] | memory[idx + 1] << 8;
}
void write_halfword(std::size_t idx, uint16_t halfword) {
memory[idx] = halfword & 0xFF;
memory[idx + 1] = halfword >> 8 & 0xFF;
}
uint32_t read_word(std::size_t idx) const {
return memory[idx] | memory[idx + 1] << 8 | memory[idx + 2] << 16 |
memory[idx + 3] << 24;
}
void write_word(std::size_t idx, uint32_t word) {
memory[idx] = word & 0xFF;
memory[idx + 1] = word >> 8 & 0xFF;
memory[idx + 2] = word >> 16 & 0xFF;
memory[idx + 3] = word >> 24 & 0xFF;
}
uint8_t& operator[](std::size_t idx) { return memory.at(idx); }
Container& data() { return memory; }
std::size_t size() const { return memory.size(); }
private: private:
#define MEMORY_REGION(name, start) \ Container memory;
static constexpr uint32_t name##_START = start;
#define DECL_MEMORY(name, ident, start, end) \
MEMORY_REGION(name, start) \
std::array<uint8_t, end - start + 1> ident;
MEMORY_REGION(BIOS, 0x00000000)
std::array<uint8_t, BIOS_SIZE> bios;
// board working RAM
DECL_MEMORY(BOARD_WRAM, board_wram, 0x02000000, 0x0203FFFF)
// chip working RAM
DECL_MEMORY(CHIP_WRAM, chip_wram, 0x03000000, 0x03007FFF)
// palette RAM
DECL_MEMORY(PALETTE_RAM, palette_ram, 0x05000000, 0x050003FF)
// video RAM
DECL_MEMORY(VRAM, vram, 0x06000000, 0x06017FFF)
// OAM OBJ attributes
DECL_MEMORY(OAM_OBJ_ATTR, oam_obj_attr, 0x07000000, 0x070003FF)
#undef DECL_MEMORY
MEMORY_REGION(ROM_0, 0x08000000)
MEMORY_REGION(ROM_1, 0x0A000000)
MEMORY_REGION(ROM_2, 0x0C000000)
#undef MEMORY_REGION
std::unordered_map<uint32_t, uint8_t> invalid_mem;
std::vector<uint8_t> rom;
Header header;
void parse_header();
}; };
} }

View File

@@ -1,5 +1,4 @@
headers = files( headers = files(
'memory.hh',
'bus.hh', 'bus.hh',
'header.hh', 'header.hh',
) )
@@ -10,4 +9,4 @@ subdir('cpu')
subdir('util') subdir('util')
subdir('io') subdir('io')
install_headers(headers, subdir: meson.project_name(), preserve_path: true) install_headers(headers, subdir: meson.project_name(), preserve_path: true)

View File

@@ -7,8 +7,18 @@ project('matar', 'cpp',
'cpp_std=c++23', 'cpp_std=c++23',
'default_library=static']) 'default_library=static'])
lib_cpp_args = []
compiler = meson.get_compiler('cpp') compiler = meson.get_compiler('cpp')
if get_option('disassembler')
lib_cpp_args += '-DDISASSEMBLER'
endif
if get_option('gdb_debug')
lib_cpp_args += '-DGDB_DEBUG'
endif
subdir('include') subdir('include')
subdir('src') subdir('src')
subdir('apps') subdir('apps')

View File

@@ -1,2 +1,3 @@
option('tests', type : 'boolean', value : true, description: 'enable tests') option('tests', type : 'boolean', value : true, description: 'enable tests')
option('disassembler', type: 'boolean', value: true, description: 'enable disassembler') option('disassembler', type: 'boolean', value: true, description: 'enable disassembler')
option('gdb_debug', type: 'boolean', value: false, description: 'enable GDB RSP server')

View File

@@ -1,31 +1,212 @@
#include "bus.hh" #include "bus.hh"
#include "io/io.hh"
#include "util/crypto.hh"
#include "util/log.hh" #include "util/log.hh"
#include <memory>
namespace matar { namespace matar {
// Constants
#define MEMORY(AREA, start) \
static constexpr uint32_t AREA##_START = start; \
static constexpr uint8_t AREA##_REGION = (AREA##_START >> 24) & 0xFF;
MEMORY(BIOS, 0x0000000);
MEMORY(BOARD_WRAM, 0x2000000);
MEMORY(CHIP_WRAM, 0x3000000);
MEMORY(PRAM, display::PRAM_START);
MEMORY(VRAM, display::VRAM_START);
MEMORY(OAM, display::OAM_START);
MEMORY(ROM_0, 0x8000000);
MEMORY(ROM_1, 0xA000000);
MEMORY(ROM_2, 0xC000000);
static constexpr uint32_t IO_START = 0x4000000; static constexpr uint32_t IO_START = 0x4000000;
static constexpr uint32_t IO_END = 0x40003FE; static constexpr uint32_t IO_END = 0x40003FE;
Bus::Bus(const Memory& memory) #undef MEMORY
: memory(std::make_shared<Memory>(memory)) {}
Bus::Bus(Private,
std::array<uint8_t, BIOS_SIZE>&& bios,
std::vector<uint8_t>&& rom)
: cycle_map(init_cycle_count())
, bios(std::move(bios))
, rom(std::move(rom)) {
std::string bios_hash = crypto::sha256(this->bios.data());
static constexpr std::string_view expected_hash =
"fd2547724b505f487e6dcb29ec2ecff3af35a841a77ab2e85fd87350abd36570";
if (bios_hash != expected_hash) {
glogger.warn("BIOS hash failed to match, run at your own risk"
"\nExpected : {} "
"\nGot : {}",
expected_hash,
bios_hash);
}
parse_header();
glogger.info("Memory successfully initialised");
glogger.info("Cartridge Title: {}", header.title);
};
std::shared_ptr<Bus>
Bus::init(std::array<uint8_t, BIOS_SIZE>&& bios, std::vector<uint8_t>&& rom) {
auto self =
std::make_shared<Bus>(Private(), std::move(bios), std::move(rom));
self->io = std::make_unique<IoDevices>(self);
return self;
}
constexpr decltype(Bus::cycle_map)
Bus::init_cycle_count() {
/*
Region Bus Read Write Cycles
BIOS ROM 32 8/16/32 - 1/1/1
Work RAM 32K 32 8/16/32 8/16/32 1/1/1
I/O 32 8/16/32 8/16/32 1/1/1
OAM 32 8/16/32 16/32 1/1/1 *
Work RAM 256K 16 8/16/32 8/16/32 3/3/6 **
Palette RAM 16 8/16/32 16/32 1/1/2 *
VRAM 16 8/16/32 16/32 1/1/2 *
GamePak ROM 16 8/16/32 - 5/5/8 **|***
GamePak Flash 16 8/16/32 16/32 5/5/8 **|***
GamePak SRAM 8 8 8 5 **
Timing Notes:
* Plus 1 cycle if GBA accesses video memory at the same time.
** Default waitstate settings, see System Control chapter.
*** Separate timings for sequential, and non-sequential accesses.
One cycle equals approx. 59.59ns (ie. 16.78MHz clock).
*/
decltype(cycle_map) map;
map.fill({ 1, 1, 1, 1 });
/* used fill instead of this
map[BIOS_REGION] = { 1, 1, 1, 1 };
map[CHIP_WRAM_REGION] = { 1, 1, 1, 1 };
map[IO_REGION] = { 1, 1, 1, 1 };
map[OAM_REGION] = { 1, 1, 1, 1 };
*/
map[BOARD_WRAM_REGION] = { .n16 = 3, .n32 = 6, .s16 = 3, .s32 = 6 };
map[PRAM_REGION] = { .n16 = 1, .n32 = 2, .s16 = 1, .s32 = 2 };
map[VRAM_REGION] = { .n16 = 1, .n32 = 2, .s16 = 1, .s32 = 2 };
// TODO: GamePak access cycles
return map;
}
template<typename T>
T
Bus::read(uint32_t address) const {
// this is cleaned than std::enable_if
static_assert(std::is_same_v<T, uint8_t> || std::is_same_v<T, uint16_t> ||
std::is_same_v<T, uint32_t>,
"Can only read uint8_t, uin16_t or uint32_t");
constexpr int N = std::is_same_v<T, uint8_t> ? 1
: std::is_same_v<T, uint16_t> ? 2
: std::is_same_v<T, uint32_t> ? 4
: 0;
switch (address >> 24 & 0xF) {
#define MATCHES(AREA, area) \
case AREA##_REGION: { \
uint32_t i = address - AREA##_START; \
if (i > area.size() - N) \
break; \
if constexpr (std::is_same_v<T, uint8_t>) \
return area.read_byte(i); \
else if constexpr (std::is_same_v<T, uint16_t>) \
return area.read_halfword(i); \
else if constexpr (std::is_same_v<T, uint32_t>) \
return area.read_word(i); \
}
#define MATCHES_PAK(AREA, area) \
case AREA##_REGION + 1: \
MATCHES(AREA, area)
MATCHES(BIOS, bios)
MATCHES(BOARD_WRAM, board_wram)
MATCHES(CHIP_WRAM, chip_wram)
MATCHES(PRAM, io->display.pram)
MATCHES(VRAM, io->display.vram)
MATCHES(OAM, io->display.oam)
MATCHES_PAK(ROM_0, rom)
MATCHES_PAK(ROM_1, rom)
MATCHES_PAK(ROM_2, rom)
#undef MATCHES_PAK
#undef MATCHES
}
glogger.error("invalid memory region read at {:08x}", address);
if constexpr (std::is_same_v<T, uint8_t>)
return 0xFF;
else if constexpr (std::is_same_v<T, uint16_t>)
return 0xFFFF;
else if constexpr (std::is_same_v<T, uint32_t>)
return 0xFFFFFFFF;
}
template<typename T>
void
Bus::write(uint32_t address, T value) {
static_assert(std::is_same_v<T, uint8_t> || std::is_same_v<T, uint16_t> ||
std::is_same_v<T, uint32_t>,
"Can only write uint8_t, uin16_t or uint32_t");
constexpr int N = std::is_same_v<T, uint8_t> ? 1
: std::is_same_v<T, uint16_t> ? 2
: std::is_same_v<T, uint32_t> ? 4
: 0;
switch (address >> 24 & 0xF) {
#define MATCHES(AREA, area) \
case AREA##_REGION: { \
uint32_t i = address - AREA##_START; \
if (i > area.size() - N) \
break; \
if constexpr (std::is_same_v<T, uint8_t>) \
area.write_byte(i, value); \
else if constexpr (std::is_same_v<T, uint16_t>) \
area.write_halfword(i, value); \
else if constexpr (std::is_same_v<T, uint32_t>) \
area.write_word(i, value); \
return; \
}
MATCHES(BOARD_WRAM, board_wram)
MATCHES(CHIP_WRAM, chip_wram)
MATCHES(PRAM, io->display.pram)
MATCHES(VRAM, io->display.vram)
MATCHES(OAM, io->display.oam)
#undef MATCHES
}
glogger.error("invalid memory region written at {:08x}", address);
}
uint8_t uint8_t
Bus::read_byte(uint32_t address) { Bus::read_byte(uint32_t address) {
if (address >= IO_START && address <= IO_END) if (address >= IO_START && address <= IO_END)
return io.read_byte(address); return io->read_byte(address);
return memory->read(address); return read<uint8_t>(address);
} }
void void
Bus::write_byte(uint32_t address, uint8_t byte) { Bus::write_byte(uint32_t address, uint8_t byte) {
if (address >= IO_START && address <= IO_END) { if (address >= IO_START && address <= IO_END) {
io.write_byte(address, byte); io->write_byte(address, byte);
return; return;
} }
memory->write(address, byte); write<uint8_t>(address, byte);
} }
uint16_t uint16_t
@@ -34,9 +215,9 @@ Bus::read_halfword(uint32_t address) {
glogger.warn("Reading a non aligned halfword address"); glogger.warn("Reading a non aligned halfword address");
if (address >= IO_START && address <= IO_END) if (address >= IO_START && address <= IO_END)
return io.read_halfword(address); return io->read_halfword(address);
return read_byte(address) | read_byte(address + 1) << 8; return read<uint16_t>(address);
} }
void void
@@ -45,12 +226,11 @@ Bus::write_halfword(uint32_t address, uint16_t halfword) {
glogger.warn("Writing to a non aligned halfword address"); glogger.warn("Writing to a non aligned halfword address");
if (address >= IO_START && address <= IO_END) { if (address >= IO_START && address <= IO_END) {
io.write_halfword(address, halfword); io->write_halfword(address, halfword);
return; return;
} }
write_byte(address, halfword & 0xFF); write<uint16_t>(address, halfword);
write_byte(address + 1, halfword >> 8 & 0xFF);
} }
uint32_t uint32_t
@@ -59,10 +239,9 @@ Bus::read_word(uint32_t address) {
glogger.warn("Reading a non aligned word address"); glogger.warn("Reading a non aligned word address");
if (address >= IO_START && address <= IO_END) if (address >= IO_START && address <= IO_END)
return io.read_word(address); return io->read_word(address);
return read_byte(address) | read_byte(address + 1) << 8 | return read<uint32_t>(address);
read_byte(address + 2) << 16 | read_byte(address + 3) << 24;
} }
void void
@@ -71,13 +250,116 @@ Bus::write_word(uint32_t address, uint32_t word) {
glogger.warn("Writing to a non aligned word address"); glogger.warn("Writing to a non aligned word address");
if (address >= IO_START && address <= IO_END) { if (address >= IO_START && address <= IO_END) {
io.write_word(address, word); io->write_word(address, word);
return; return;
} }
write_byte(address, word & 0xFF); write<uint32_t>(address, word);
write_byte(address + 1, word >> 8 & 0xFF); }
write_byte(address + 2, word >> 16 & 0xFF);
write_byte(address + 3, word >> 24 & 0xFF); void
Bus::parse_header() {
if (rom.size() < header.HEADER_SIZE) {
throw std::out_of_range(
"ROM is not large enough to even have a header");
}
// entrypoint
header.entrypoint =
rom[0x00] | rom[0x01] << 8 | rom[0x02] << 16 | rom[0x03] << 24;
// nintendo logo
if (rom[0x9C] != 0x21)
glogger.info("HEADER: BIOS debugger bits not set to 0");
// game info
header.title = std::string(&rom[0xA0], &rom[0xA0 + 12]);
switch (rom[0xAC]) {
case 'A':
header.unique_code = Header::UniqueCode::Old;
break;
case 'B':
header.unique_code = Header::UniqueCode::New;
break;
case 'C':
header.unique_code = Header::UniqueCode::Newer;
break;
case 'F':
header.unique_code = Header::UniqueCode::Famicom;
break;
case 'K':
header.unique_code = Header::UniqueCode::YoshiKoro;
break;
case 'P':
header.unique_code = Header::UniqueCode::Ereader;
break;
case 'R':
header.unique_code = Header::UniqueCode::Warioware;
break;
case 'U':
header.unique_code = Header::UniqueCode::Boktai;
break;
case 'V':
header.unique_code = Header::UniqueCode::DrillDozer;
break;
default:
glogger.error("HEADER: invalid unique code: {}", rom[0xAC]);
}
header.title_code = std::string(&rom[0xAD], &rom[0xAE]);
switch (rom[0xAF]) {
case 'J':
header.i18n = Header::I18n::Japan;
break;
case 'P':
header.i18n = Header::I18n::Europe;
break;
case 'F':
header.i18n = Header::I18n::French;
break;
case 'S':
header.i18n = Header::I18n::Spanish;
break;
case 'E':
header.i18n = Header::I18n::Usa;
break;
case 'D':
header.i18n = Header::I18n::German;
break;
case 'I':
header.i18n = Header::I18n::Italian;
break;
default:
glogger.error("HEADER: invalid destination/language: {}",
rom[0xAF]);
}
if (rom[0xB2] != 0x96)
glogger.error("HEADER: invalid fixed byte at 0xB2");
for (uint32_t i = 0xB5; i < 0xBC; i++) {
if (rom[i] != 0x00)
glogger.error("HEADER: invalid fixed bytes at 0xB5");
}
header.version = rom[0xBC];
// checksum
{
uint32_t i = 0xA0, chk = 0;
while (i <= 0xBC)
chk -= rom[i++];
chk -= 0x19;
chk &= 0xFF;
if (chk != rom[0xBD])
glogger.error("HEADER: checksum does not match");
}
// multiboot not required right now
} }
} }

View File

@@ -88,4 +88,21 @@ sbc(uint32_t a, uint32_t b, bool& carry, bool& overflow, bool c) {
return result & 0xFFFFFFFF; return result & 0xFFFFFFFF;
} }
uint8_t
multiplier_array_cycles(uint32_t x, bool zeroes_only) {
// set zeroes_only to evaluate first condition that checks ones to false
if ((!zeroes_only && (x & 0xFFFFFF00) == 0xFFFFFF00) ||
(x & 0xFFFFFF00) == 0)
return 1;
if ((!zeroes_only && (x & 0xFFFF0000) == 0xFFFF0000) ||
(x & 0xFFFF0000) == 0)
return 2;
if ((!zeroes_only && (x & 0xFF000000) == 0xFF000000) ||
(x & 0xFF000000) == 0)
return 3;
return 4;
};
} }

View File

@@ -1,21 +1,25 @@
#include "bus.hh"
#include "cpu/cpu.hh" #include "cpu/cpu.hh"
#include "util/bits.hh" #include "util/bits.hh"
#include "util/log.hh" #include "util/log.hh"
namespace matar::arm { namespace matar {
void void
Instruction::exec(Cpu& cpu) { Cpu::exec(arm::Instruction& instruction) {
if (!cpu.cpsr.condition(condition)) { bool is_flushed = false;
if (!cpsr.condition(instruction.condition)) {
advance_pc_arm();
return; return;
} }
auto pc_error = [cpu](uint8_t r) { auto pc_error = [](uint8_t r) {
if (r == cpu.PC_INDEX) if (r == PC_INDEX)
glogger.error("Using PC (R15) as operand register"); glogger.error("Using PC (R15) as operand register");
}; };
auto pc_warn = [cpu](uint8_t r) { auto pc_warn = [](uint8_t r) {
if (r == cpu.PC_INDEX) if (r == PC_INDEX)
glogger.warn("Using PC (R15) as operand register"); glogger.warn("Using PC (R15) as operand register");
}; };
@@ -23,40 +27,69 @@ Instruction::exec(Cpu& cpu) {
std::visit( std::visit(
overloaded{ overloaded{
[&cpu, pc_warn](BranchAndExchange& data) { [this, pc_warn, &is_flushed](BranchAndExchange& data) {
uint32_t addr = cpu.gpr[data.rn]; /*
S -> reading instruction in step()
N -> fetch from the new address in branch
S -> last opcode fetch at +L to refill the pipeline
Total = 2S + N cycles
1S done, S+N taken care of by flush_pipeline()
*/
uint32_t addr = gpr[data.rn];
State state = static_cast<State>(get_bit(addr, 0)); State state = static_cast<State>(get_bit(addr, 0));
pc_warn(data.rn); pc_warn(data.rn);
if (state != cpu.cpsr.state()) if (state != cpsr.state())
glogger.info_bold("State changed"); glogger.info_bold("State changed");
// set state // set state
cpu.cpsr.set_state(state); cpsr.set_state(state);
// copy to PC // copy to PC
cpu.pc = addr; pc = addr;
// ignore [1:0] bits for arm and 0 bit for thumb // ignore [1:0] bits for arm and 0 bit for thumb
rst_bit(cpu.pc, 0); rst_bit(pc, 0);
if (state == State::Arm) if (state == State::Arm)
rst_bit(cpu.pc, 1); rst_bit(pc, 1);
// PC is affected so flush the pipeline // PC is affected so flush the pipeline
cpu.is_flushed = true; is_flushed = true;
}, },
[&cpu](Branch& data) { [this, &is_flushed](Branch& data) {
if (data.link) /*
cpu.gpr[14] = cpu.pc - INSTRUCTION_SIZE; S -> reading instruction in step()
N -> fetch from the new address in branch
S -> last opcode fetch at +L to refill the pipeline
Total = 2S + N cycles
1S done, S+N taken care of by flush_pipeline()
*/
cpu.pc += data.offset; if (data.link)
gpr[14] = pc - INSTRUCTION_SIZE;
pc += data.offset;
// pc is affected so flush the pipeline // pc is affected so flush the pipeline
cpu.is_flushed = true; is_flushed = true;
}, },
[&cpu, pc_error](Multiply& data) { [this, pc_error](Multiply& data) {
/*
S -> reading instruction in step()
mI -> m internal cycles
I -> only when accumulating
let v = data at rn
m = 1 if bits [32:8] of v are all zero or all one
m = 2 [32:16]
m = 3 [32:24]
m = 4 otherwise
Total = S + mI or S + (m+1)I
*/
if (data.rd == data.rm) if (data.rd == data.rm)
glogger.error("rd and rm are not distinct in {}", glogger.error("rd and rm are not distinct in {}",
typeid(data).name()); typeid(data).name());
@@ -65,16 +98,38 @@ Instruction::exec(Cpu& cpu) {
pc_error(data.rd); pc_error(data.rd);
pc_error(data.rd); pc_error(data.rd);
cpu.gpr[data.rd] = cpu.gpr[data.rm] * cpu.gpr[data.rs] + // mI
(data.acc ? cpu.gpr[data.rn] : 0); for (int i = 0; i < multiplier_array_cycles(gpr[data.rs]); i++)
internal_cycle();
gpr[data.rd] = gpr[data.rm] * gpr[data.rs];
if (data.acc) {
gpr[data.rd] += gpr[data.rn];
// 1I
internal_cycle();
}
if (data.set) { if (data.set) {
cpu.cpsr.set_z(cpu.gpr[data.rd] == 0); cpsr.set_z(gpr[data.rd] == 0);
cpu.cpsr.set_n(get_bit(cpu.gpr[data.rd], 31)); cpsr.set_n(get_bit(gpr[data.rd], 31));
cpu.cpsr.set_c(0); cpsr.set_c(0);
} }
}, },
[&cpu, pc_error](MultiplyLong& data) { [this, pc_error](MultiplyLong& data) {
/*
S -> reading instruction in step()
(m+1)I -> m + 1 internal cycles
I -> only when accumulating
let v = data at rs
m = 1 if bits [32:8] of v are all zeroes (or all ones if signed)
m = 2 [32:16]
m = 3 [32:24]
m = 4 otherwise
Total = S + (m+1)I or S + (m+2)I
*/
if (data.rdhi == data.rdlo || data.rdhi == data.rm || if (data.rdhi == data.rdlo || data.rdhi == data.rm ||
data.rdlo == data.rm) data.rdlo == data.rm)
glogger.error("rdhi, rdlo and rm are not distinct in {}", glogger.error("rdhi, rdlo and rm are not distinct in {}",
@@ -85,65 +140,108 @@ Instruction::exec(Cpu& cpu) {
pc_error(data.rm); pc_error(data.rm);
pc_error(data.rs); pc_error(data.rs);
// 1I
if (data.acc)
internal_cycle();
// m+1 internal cycles
for (int i = 0;
i <= multiplier_array_cycles(gpr[data.rs], data.uns);
i++)
internal_cycle();
if (data.uns) { if (data.uns) {
auto cast = [](uint32_t x) -> uint64_t { auto cast = [](uint32_t x) -> uint64_t {
return static_cast<uint64_t>(x); return static_cast<uint64_t>(x);
}; };
uint64_t eval = uint64_t eval = cast(gpr[data.rm]) * cast(gpr[data.rs]) +
cast(cpu.gpr[data.rm]) * cast(cpu.gpr[data.rs]) + (data.acc ? (cast(gpr[data.rdhi]) << 32) |
(data.acc ? (cast(cpu.gpr[data.rdhi]) << 32) | cast(gpr[data.rdlo])
cast(cpu.gpr[data.rdlo]) : 0);
: 0);
cpu.gpr[data.rdlo] = bit_range(eval, 0, 31); gpr[data.rdlo] = bit_range(eval, 0, 31);
cpu.gpr[data.rdhi] = bit_range(eval, 32, 63); gpr[data.rdhi] = bit_range(eval, 32, 63);
} else { } else {
auto cast = [](uint32_t x) -> int64_t { auto cast = [](uint32_t x) -> int64_t {
return static_cast<int64_t>(static_cast<int32_t>(x)); return static_cast<int64_t>(static_cast<int32_t>(x));
}; };
int64_t eval = cast(cpu.gpr[data.rm]) * cast(cpu.gpr[data.rs]) + int64_t eval = cast(gpr[data.rm]) * cast(gpr[data.rs]) +
(data.acc ? (cast(cpu.gpr[data.rdhi]) << 32) | (data.acc ? (cast(gpr[data.rdhi]) << 32) |
cast(cpu.gpr[data.rdlo]) cast(gpr[data.rdlo])
: 0); : 0);
cpu.gpr[data.rdlo] = bit_range(eval, 0, 31); gpr[data.rdlo] = bit_range(eval, 0, 31);
cpu.gpr[data.rdhi] = bit_range(eval, 32, 63); gpr[data.rdhi] = bit_range(eval, 32, 63);
} }
if (data.set) { if (data.set) {
cpu.cpsr.set_z(cpu.gpr[data.rdhi] == 0 && cpsr.set_z(gpr[data.rdhi] == 0 && gpr[data.rdlo] == 0);
cpu.gpr[data.rdlo] == 0); cpsr.set_n(get_bit(gpr[data.rdhi], 31));
cpu.cpsr.set_n(get_bit(cpu.gpr[data.rdhi], 31)); cpsr.set_c(0);
cpu.cpsr.set_c(0); cpsr.set_v(0);
cpu.cpsr.set_v(0);
} }
}, },
[](Undefined) { glogger.warn("Undefined instruction"); }, [](Undefined) {
[&cpu, pc_error](SingleDataSwap& data) { // this should be 2S + N + I, should i flush the pipeline? i
// dont know. TODO: study
glogger.warn("Undefined instruction");
},
[this, pc_error](SingleDataSwap& data) {
/*
N -> reading instruction in step()
N -> unrelated read
S -> related write
I -> earlier read value is written to register
Total = S + 2N +I
*/
pc_error(data.rm); pc_error(data.rm);
pc_error(data.rn); pc_error(data.rn);
pc_error(data.rd); pc_error(data.rd);
if (data.byte) { if (data.byte) {
cpu.gpr[data.rd] = cpu.bus->read_byte(cpu.gpr[data.rn]); gpr[data.rd] =
cpu.bus->write_byte(cpu.gpr[data.rn], cpu.gpr[data.rm] & 0xFF); bus->read_byte(gpr[data.rn], CpuAccess::NonSequential);
bus->write_byte(
gpr[data.rn], gpr[data.rm] & 0xFF, CpuAccess::Sequential);
} else { } else {
cpu.gpr[data.rd] = cpu.bus->read_word(cpu.gpr[data.rn]); gpr[data.rd] =
cpu.bus->write_word(cpu.gpr[data.rn], cpu.gpr[data.rm]); bus->read_word(gpr[data.rn], CpuAccess::NonSequential);
bus->write_word(
gpr[data.rn], gpr[data.rm], CpuAccess::Sequential);
} }
internal_cycle();
// last write address is unrelated to next
next_access = CpuAccess::NonSequential;
}, },
[&cpu, pc_warn, pc_error](SingleDataTransfer& data) { [this, pc_warn, pc_error, &is_flushed](SingleDataTransfer& data) {
/*
Load
====
S -> reading instruction in step()
N -> read from target
I -> stored in register
N+S -> if PC is written - taken care of by flush_pipeline()
Total = S + N + I or 2S + 2N + I
Store
=====
N -> calculating memory address
N -> write at target
Total = 2N
*/
uint32_t offset = 0; uint32_t offset = 0;
uint32_t address = cpu.gpr[data.rn]; uint32_t address = gpr[data.rn];
if (!data.pre && data.write) if (!data.pre && data.write)
glogger.warn("Write-back enabled with post-indexing in {}", glogger.warn("Write-back enabled with post-indexing in {}",
typeid(data).name()); typeid(data).name());
if (data.rn == cpu.PC_INDEX && data.write) if (data.rn == PC_INDEX && data.write)
glogger.warn("Write-back enabled with base register as PC {}", glogger.warn("Write-back enabled with base register as PC {}",
typeid(data).name()); typeid(data).name());
@@ -157,18 +255,18 @@ Instruction::exec(Cpu& cpu) {
} else if (const Shift* shift = std::get_if<Shift>(&data.offset)) { } else if (const Shift* shift = std::get_if<Shift>(&data.offset)) {
uint8_t amount = uint8_t amount =
(shift->data.immediate ? shift->data.operand (shift->data.immediate ? shift->data.operand
: cpu.gpr[shift->data.operand] & 0xFF); : gpr[shift->data.operand] & 0xFF);
bool carry = cpu.cpsr.c(); bool carry = cpsr.c();
if (!shift->data.immediate) if (!shift->data.immediate)
pc_error(shift->data.operand); pc_error(shift->data.operand);
pc_error(shift->rm); pc_error(shift->rm);
offset = eval_shift( offset =
shift->data.type, cpu.gpr[shift->rm], amount, carry); eval_shift(shift->data.type, gpr[shift->rm], amount, carry);
cpu.cpsr.set_c(carry); cpsr.set_c(carry);
} }
if (data.pre) if (data.pre)
@@ -178,35 +276,63 @@ Instruction::exec(Cpu& cpu) {
if (data.load) { if (data.load) {
// byte // byte
if (data.byte) if (data.byte)
cpu.gpr[data.rd] = cpu.bus->read_byte(address); gpr[data.rd] =
bus->read_byte(address, CpuAccess::NonSequential);
// word // word
else else
cpu.gpr[data.rd] = cpu.bus->read_word(address); gpr[data.rd] =
bus->read_word(address, CpuAccess::NonSequential);
// N + S
if (data.rd == PC_INDEX)
is_flushed = true;
// I
internal_cycle();
// store // store
} else { } else {
// take PC into consideration // take PC into consideration
if (data.rd == cpu.PC_INDEX) uint32_t value = gpr[data.rd];
address += INSTRUCTION_SIZE;
if (data.rd == PC_INDEX)
value += INSTRUCTION_SIZE;
// byte // byte
if (data.byte) if (data.byte)
cpu.bus->write_byte(address, cpu.gpr[data.rd] & 0xFF); bus->write_byte(
address, value & 0xFF, CpuAccess::NonSequential);
// word // word
else else
cpu.bus->write_word(address, cpu.gpr[data.rd]); bus->write_word(address, value, CpuAccess::NonSequential);
} }
if (!data.pre) if (!data.pre)
address += (data.up ? offset : -offset); address += (data.up ? offset : -offset);
if (!data.pre || data.write) if (!data.pre || data.write)
cpu.gpr[data.rn] = address; gpr[data.rn] = address;
if (data.rd == cpu.PC_INDEX && data.load) // last read/write is unrelated, this will be overwriten if
cpu.is_flushed = true; // flushed
next_access = CpuAccess::NonSequential;
}, },
[&cpu, pc_warn, pc_error](HalfwordTransfer& data) { [this, pc_warn, pc_error, &is_flushed](HalfwordTransfer& data) {
uint32_t address = cpu.gpr[data.rn]; /*
Load
====
S -> reading instruction in step()
N -> read from target
I -> stored in register
N+S -> if PC is written - taken care of by flush_pipeline()
Total = S + N + I or 2S + 2N + I
Store
=====
N -> calculating memory address
N -> write at target
Total = 2N
*/
uint32_t address = gpr[data.rn];
uint32_t offset = 0; uint32_t offset = 0;
if (!data.pre && data.write) if (!data.pre && data.write)
@@ -222,15 +348,11 @@ Instruction::exec(Cpu& cpu) {
// offset is register number (4 bits) when not an immediate // offset is register number (4 bits) when not an immediate
if (!data.imm) { if (!data.imm) {
pc_error(data.offset); pc_error(data.offset);
offset = cpu.gpr[data.offset]; offset = gpr[data.offset];
} else { } else {
offset = data.offset; offset = data.offset;
} }
// PC is always two instructions ahead
if (data.rn == cpu.PC_INDEX)
address -= 2 * INSTRUCTION_SIZE;
if (data.pre) if (data.pre)
address += (data.up ? offset : -offset); address += (data.up ? offset : -offset);
@@ -240,62 +362,95 @@ Instruction::exec(Cpu& cpu) {
if (data.sign) { if (data.sign) {
// halfword // halfword
if (data.half) { if (data.half) {
cpu.gpr[data.rd] = cpu.bus->read_halfword(address); gpr[data.rd] =
bus->read_halfword(address, CpuAccess::NonSequential);
// sign extend the halfword // sign extend the halfword
cpu.gpr[data.rd] = gpr[data.rd] =
(static_cast<int32_t>(cpu.gpr[data.rd]) << 16) >> 16; (static_cast<int32_t>(gpr[data.rd]) << 16) >> 16;
// byte // byte
} else { } else {
cpu.gpr[data.rd] = cpu.bus->read_byte(address); gpr[data.rd] =
bus->read_byte(address, CpuAccess::NonSequential);
// sign extend the byte // sign extend the byte
cpu.gpr[data.rd] = gpr[data.rd] =
(static_cast<int32_t>(cpu.gpr[data.rd]) << 24) >> 24; (static_cast<int32_t>(gpr[data.rd]) << 24) >> 24;
} }
// unsigned halfword // unsigned halfword
} else if (data.half) { } else if (data.half) {
cpu.gpr[data.rd] = cpu.bus->read_halfword(address); gpr[data.rd] =
bus->read_halfword(address, CpuAccess::NonSequential);
} }
// I
internal_cycle();
if (data.rd == PC_INDEX)
is_flushed = true;
// store // store
} else { } else {
uint32_t value = gpr[data.rd];
// take PC into consideration // take PC into consideration
if (data.rd == cpu.PC_INDEX) if (data.rd == PC_INDEX)
address += INSTRUCTION_SIZE; value += INSTRUCTION_SIZE;
// halfword // halfword
if (data.half) if (data.half)
cpu.bus->write_halfword(address, cpu.gpr[data.rd]); bus->write_halfword(
address, value & 0xFFFF, CpuAccess::NonSequential);
} }
if (!data.pre) if (!data.pre)
address += (data.up ? offset : -offset); address += (data.up ? offset : -offset);
if (!data.pre || data.write) if (!data.pre || data.write)
cpu.gpr[data.rn] = address; gpr[data.rn] = address;
if (data.rd == cpu.PC_INDEX && data.load) // last read/write is unrelated, this will be overwriten if
cpu.is_flushed = true; // flushed
next_access = CpuAccess::NonSequential;
}, },
[&cpu, pc_error](BlockDataTransfer& data) { [this, pc_error, &is_flushed](BlockDataTransfer& data) {
/*
Load
====
S -> reading instruction in step()
N -> unrelated read from target
(n-1) S -> next n - 1 related reads from target
I -> stored in register
N+S -> if PC is written - taken care of by
flush_pipeline() Total = nS + N + I or (n+1)S + 2N + I
Store
=====
N -> calculating memory address
N -> unrelated write at target
(n-1) S -> next n - 1 related writes
Total = 2N + (n-1)S
*/
static constexpr uint8_t alignment = 4; // word static constexpr uint8_t alignment = 4; // word
uint32_t address = cpu.gpr[data.rn]; uint32_t address = gpr[data.rn];
Mode mode = cpu.cpsr.mode(); Mode mode = cpsr.mode();
int8_t i = 0; int8_t i = 0;
CpuAccess access = CpuAccess::NonSequential;
pc_error(data.rn); pc_error(data.rn);
if (cpu.cpsr.mode() == Mode::User && data.s) { if (cpsr.mode() == Mode::User && data.s) {
glogger.error("Bit S is set outside priviliged modes in block " glogger.error("Bit S is set outside priviliged modes in block "
"data transfer"); "data transfer");
} }
// we just change modes to load user registers // we just change modes to load user registers
if ((!get_bit(data.regs, cpu.PC_INDEX) && data.s) || if ((!get_bit(data.regs, PC_INDEX) && data.s) ||
(!data.load && data.s)) { (!data.load && data.s)) {
cpu.chg_mode(Mode::User); chg_mode(Mode::User);
if (data.write) { if (data.write) {
glogger.error("Write-back enable for user bank registers " glogger.error("Write-back enable for user bank registers "
@@ -308,40 +463,50 @@ Instruction::exec(Cpu& cpu) {
address += (data.up ? alignment : -alignment); address += (data.up ? alignment : -alignment);
if (data.load) { if (data.load) {
if (get_bit(data.regs, cpu.PC_INDEX) && data.s && data.load) { if (get_bit(data.regs, PC_INDEX)) {
// current mode's cpu.spsr is already loaded when it was is_flushed = true;
// current mode's spsr is already loaded when it was
// switched // switched
cpu.spsr = cpu.cpsr; if (data.s)
spsr = cpsr;
} }
if (data.up) { if (data.up) {
for (i = 0; i < cpu.GPR_COUNT; i++) { for (i = 0; i < GPR_COUNT; i++) {
if (get_bit(data.regs, i)) { if (get_bit(data.regs, i)) {
cpu.gpr[i] = cpu.bus->read_word(address); gpr[i] = bus->read_word(address, access);
address += alignment; address += alignment;
access = CpuAccess::Sequential;
} }
} }
} else { } else {
for (i = cpu.GPR_COUNT - 1; i >= 0; i--) { for (i = GPR_COUNT - 1; i >= 0; i--) {
if (get_bit(data.regs, i)) { if (get_bit(data.regs, i)) {
cpu.gpr[i] = cpu.bus->read_word(address); gpr[i] = bus->read_word(address, access);
address -= alignment; address -= alignment;
access = CpuAccess::Sequential;
} }
} }
} }
// I
internal_cycle();
} else { } else {
if (data.up) { if (data.up) {
for (i = 0; i < cpu.GPR_COUNT; i++) { for (i = 0; i < GPR_COUNT; i++) {
if (get_bit(data.regs, i)) { if (get_bit(data.regs, i)) {
cpu.bus->write_word(address, cpu.gpr[i]); bus->write_word(address, gpr[i], access);
address += alignment; address += alignment;
access = CpuAccess::Sequential;
} }
} }
} else { } else {
for (i = cpu.GPR_COUNT - 1; i >= 0; i--) { for (i = GPR_COUNT - 1; i >= 0; i--) {
if (get_bit(data.regs, i)) { if (get_bit(data.regs, i)) {
cpu.bus->write_word(address, cpu.gpr[i]); bus->write_word(address, gpr[i], access);
address -= alignment; address -= alignment;
access = CpuAccess::Sequential;
} }
} }
} }
@@ -352,37 +517,48 @@ Instruction::exec(Cpu& cpu) {
address += (data.up ? -alignment : alignment); address += (data.up ? -alignment : alignment);
if (!data.pre || data.write) if (!data.pre || data.write)
cpu.gpr[data.rn] = address; gpr[data.rn] = address;
if (data.load && get_bit(data.regs, cpu.PC_INDEX))
cpu.is_flushed = true;
// load back the original mode registers // load back the original mode registers
cpu.chg_mode(mode); chg_mode(mode);
// last read/write is unrelated, this will be overwriten if
// flushed
next_access = CpuAccess::NonSequential;
}, },
[&cpu, pc_error](PsrTransfer& data) { [this, pc_error](PsrTransfer& data) {
if (data.spsr && cpu.cpsr.mode() == Mode::User) { /*
glogger.error("Accessing CPU.SPSR in User mode in {}", S -> prefetched instruction in step()
Total = 1S cycle
*/
if (data.spsr && cpsr.mode() == Mode::User) {
glogger.error("Accessing SPSR in User mode in {}",
typeid(data).name()); typeid(data).name());
} }
Psr& psr = data.spsr ? cpu.spsr : cpu.cpsr; Psr& psr = data.spsr ? spsr : cpsr;
switch (data.type) { switch (data.type) {
case PsrTransfer::Type::Mrs: case PsrTransfer::Type::Mrs:
pc_error(data.operand); pc_error(data.operand);
cpu.gpr[data.operand] = psr.raw(); gpr[data.operand] = psr.raw();
break; break;
case PsrTransfer::Type::Msr: case PsrTransfer::Type::Msr:
pc_error(data.operand); pc_error(data.operand);
if (cpu.cpsr.mode() != Mode::User) { if (cpsr.mode() != Mode::User) {
psr.set_all(cpu.gpr[data.operand]); if (!data.spsr) {
Psr tmp = Psr(gpr[data.operand]);
chg_mode(tmp.mode());
}
psr.set_all(gpr[data.operand]);
} }
break; break;
case PsrTransfer::Type::Msr_flg: case PsrTransfer::Type::Msr_flg:
uint32_t operand = uint32_t operand =
(data.imm ? data.operand : cpu.gpr[data.operand]); (data.imm ? data.operand : gpr[data.operand]);
psr.set_n(get_bit(operand, 31)); psr.set_n(get_bit(operand, 31));
psr.set_z(get_bit(operand, 30)); psr.set_z(get_bit(operand, 30));
psr.set_c(get_bit(operand, 29)); psr.set_c(get_bit(operand, 29));
@@ -390,10 +566,28 @@ Instruction::exec(Cpu& cpu) {
break; break;
} }
}, },
[&cpu, pc_error](DataProcessing& data) { [this, pc_error, &is_flushed](DataProcessing& data) {
/*
Always
======
S -> prefetched instruction in step()
With Register specified shift
=============================
I -> internal cycle
When PC is written
==================
N -> fetch from the new address in branch
S -> last opcode fetch at +L to refill the pipeline
S+N taken care of by flush_pipeline()
Total = S or S + I or 2S + N + I or 2S + N cycles
*/
using OpCode = DataProcessing::OpCode; using OpCode = DataProcessing::OpCode;
uint32_t op_1 = cpu.gpr[data.rn]; uint32_t op_1 = gpr[data.rn];
uint32_t op_2 = 0; uint32_t op_2 = 0;
uint32_t result = 0; uint32_t result = 0;
@@ -404,26 +598,30 @@ Instruction::exec(Cpu& cpu) {
} else if (const Shift* shift = std::get_if<Shift>(&data.operand)) { } else if (const Shift* shift = std::get_if<Shift>(&data.operand)) {
uint8_t amount = uint8_t amount =
(shift->data.immediate ? shift->data.operand (shift->data.immediate ? shift->data.operand
: cpu.gpr[shift->data.operand] & 0xFF); : gpr[shift->data.operand] & 0xFF);
bool carry = cpu.cpsr.c(); bool carry = cpsr.c();
if (!shift->data.immediate) if (!shift->data.immediate)
pc_error(shift->data.operand); pc_error(shift->data.operand);
pc_error(shift->rm); pc_error(shift->rm);
op_2 = eval_shift( op_2 =
shift->data.type, cpu.gpr[shift->rm], amount, carry); eval_shift(shift->data.type, gpr[shift->rm], amount, carry);
cpu.cpsr.set_c(carry); cpsr.set_c(carry);
// PC is 12 bytes ahead when shifting // PC is 12 bytes ahead when shifting
if (data.rn == cpu.PC_INDEX) if (data.rn == PC_INDEX)
op_1 += INSTRUCTION_SIZE; op_1 += INSTRUCTION_SIZE;
// 1I when register specified shift
if (!shift->data.immediate)
internal_cycle();
} }
bool overflow = cpu.cpsr.v(); bool overflow = cpsr.v();
bool carry = cpu.cpsr.c(); bool carry = cpsr.c();
switch (data.opcode) { switch (data.opcode) {
case OpCode::AND: case OpCode::AND:
@@ -469,19 +667,19 @@ Instruction::exec(Cpu& cpu) {
break; break;
} }
auto set_conditions = [&cpu, carry, overflow, result]() { auto set_conditions = [this, carry, overflow, result]() {
cpu.cpsr.set_c(carry); cpsr.set_c(carry);
cpu.cpsr.set_v(overflow); cpsr.set_v(overflow);
cpu.cpsr.set_n(get_bit(result, 31)); cpsr.set_n(get_bit(result, 31));
cpu.cpsr.set_z(result == 0); cpsr.set_z(result == 0);
}; };
if (data.set) { if (data.set) {
if (data.rd == cpu.PC_INDEX) { if (data.rd == PC_INDEX) {
if (cpu.cpsr.mode() == Mode::User) if (cpsr.mode() == Mode::User)
glogger.error("Running {} in User mode", glogger.error("Running {} in User mode",
typeid(data).name()); typeid(data).name());
cpu.spsr = cpu.cpsr; spsr = cpsr;
} else { } else {
set_conditions(); set_conditions();
} }
@@ -491,19 +689,25 @@ Instruction::exec(Cpu& cpu) {
data.opcode == OpCode::CMP || data.opcode == OpCode::CMN) { data.opcode == OpCode::CMP || data.opcode == OpCode::CMN) {
set_conditions(); set_conditions();
} else { } else {
cpu.gpr[data.rd] = result; gpr[data.rd] = result;
if (data.rd == cpu.PC_INDEX || data.opcode == OpCode::MVN) if (data.rd == PC_INDEX || data.opcode == OpCode::MVN)
cpu.is_flushed = true; is_flushed = true;
} }
}, },
[&cpu](SoftwareInterrupt) { [this, &is_flushed](SoftwareInterrupt) {
cpu.chg_mode(Mode::Supervisor); chg_mode(Mode::Supervisor);
cpu.pc = 0x08; pc = 0x00;
cpu.spsr = cpu.cpsr; spsr = cpsr;
is_flushed = true;
}, },
[](auto& data) { [](auto& data) {
glogger.error("Unimplemented {} instruction", typeid(data).name()); glogger.error("Unimplemented {} instruction", typeid(data).name());
} }, } },
data); instruction.data);
if (is_flushed)
flush_pipeline<State::Arm>();
else
advance_pc_arm();
} }
} }

View File

@@ -1,19 +1,12 @@
#include "cpu/cpu.hh" #include "cpu/cpu.hh"
#include "cpu/arm/instruction.hh" #include "cpu/arm/instruction.hh"
#include "cpu/thumb/instruction.hh" #include "cpu/thumb/instruction.hh"
#include "util/bits.hh"
#include "util/log.hh" #include "util/log.hh"
#include <algorithm>
#include <cstdio>
namespace matar { namespace matar {
Cpu::Cpu(const Bus& bus) noexcept Cpu::Cpu(std::shared_ptr<Bus> bus) noexcept
: bus(std::make_shared<Bus>(bus)) : bus(bus) {
, gpr({ 0 })
, cpsr(0)
, spsr(0)
, gpr_banked({ { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 } })
, spsr_banked({ 0, 0, 0, 0, 0 })
, is_flushed(false) {
cpsr.set_mode(Mode::Supervisor); cpsr.set_mode(Mode::Supervisor);
cpsr.set_irq_disabled(true); cpsr.set_irq_disabled(true);
cpsr.set_fiq_disabled(true); cpsr.set_fiq_disabled(true);
@@ -21,8 +14,7 @@ Cpu::Cpu(const Bus& bus) noexcept
glogger.info("CPU successfully initialised"); glogger.info("CPU successfully initialised");
// PC always points to two instructions ahead // PC always points to two instructions ahead
// PC - 2 is the instruction being executed flush_pipeline<State::Arm>();
pc += 2 * arm::INSTRUCTION_SIZE;
} }
/* change modes */ /* change modes */
@@ -131,42 +123,50 @@ Cpu::chg_mode(const Mode to) {
void void
Cpu::step() { Cpu::step() {
// Current instruction is two instructions behind PC // halfword align
rst_bit(pc, 0);
if (cpsr.state() == State::Arm) { if (cpsr.state() == State::Arm) {
uint32_t cur_pc = pc - 2 * arm::INSTRUCTION_SIZE; // word align
arm::Instruction instruction(bus->read_word(cur_pc)); rst_bit(pc, 1);
arm::Instruction instruction(opcodes[0]);
opcodes[0] = opcodes[1];
opcodes[1] = bus->read_word(pc, next_access);
#ifdef DISASSEMBLER #ifdef DISASSEMBLER
glogger.info("0x{:08X} : {}", cur_pc, instruction.disassemble()); glogger.info("0x{:08X} : {}",
pc - 2 * arm::INSTRUCTION_SIZE,
instruction.disassemble());
#endif #endif
instruction.exec(*this); exec(instruction);
} else { } else {
uint32_t cur_pc = pc - 2 * thumb::INSTRUCTION_SIZE; thumb::Instruction instruction(opcodes[0]);
thumb::Instruction instruction(bus->read_halfword(cur_pc));
opcodes[0] = opcodes[1];
opcodes[1] = bus->read_halfword(pc, next_access);
#ifdef DISASSEMBLER #ifdef DISASSEMBLER
glogger.info("0x{:08X} : {}", cur_pc, instruction.disassemble()); glogger.info("0x{:08X} : {}",
pc - 2 * thumb::INSTRUCTION_SIZE,
instruction.disassemble());
#endif #endif
instruction.exec(*this); exec(instruction);
}
// advance PC
{
size_t size = cpsr.state() == State::Arm ? arm::INSTRUCTION_SIZE
: thumb::INSTRUCTION_SIZE;
if (is_flushed) {
// if flushed, do not increment the PC, instead set it to two
// instructions ahead to account for flushed "fetch" and "decode"
// instructions
pc += 2 * size;
is_flushed = false;
} else {
// if not flushed continue like normal
pc += size;
}
} }
} }
void
Cpu::advance_pc_arm() {
rst_bit(pc, 0);
rst_bit(pc, 1);
pc += arm::INSTRUCTION_SIZE;
};
void
Cpu::advance_pc_thumb() {
rst_bit(pc, 0);
pc += thumb::INSTRUCTION_SIZE;
}
} }

View File

@@ -147,7 +147,7 @@ Instruction::disassemble() {
[](LongBranchWithLink& data) { [](LongBranchWithLink& data) {
// duh this manual be empty for H = 0 // duh this manual be empty for H = 0
return std::format( return std::format(
"BL{} #{:d}", (data.high ? "H" : ""), data.offset); "BL{} #{:d}", (data.low ? "" : "H"), data.offset);
}, },
[](auto) { return std::string("unknown instruction"); } }, [](auto) { return std::string("unknown instruction"); } },
data); data);

View File

@@ -1,56 +1,78 @@
#include "bus.hh"
#include "cpu/alu.hh"
#include "cpu/cpu.hh" #include "cpu/cpu.hh"
#include "util/bits.hh" #include "util/bits.hh"
#include "util/log.hh" #include "util/log.hh"
namespace matar::thumb { namespace matar {
void void
Instruction::exec(Cpu& cpu) { Cpu::exec(thumb::Instruction& instruction) {
auto set_cc = [&cpu](bool c, bool v, bool n, bool z) { bool is_flushed = false;
cpu.cpsr.set_c(c); dbg(pc);
cpu.cpsr.set_v(v);
cpu.cpsr.set_n(n); auto set_cc = [this](bool c, bool v, bool n, bool z) {
cpu.cpsr.set_z(z); cpsr.set_c(c);
cpsr.set_v(v);
cpsr.set_n(n);
cpsr.set_z(z);
}; };
using namespace thumb;
std::visit( std::visit(
overloaded{ overloaded{
[&cpu, set_cc](MoveShiftedRegister& data) { [this, set_cc](MoveShiftedRegister& data) {
/*
S -> prefetched instruction in step()
Total = S cycle
*/
if (data.opcode == ShiftType::ROR) if (data.opcode == ShiftType::ROR)
glogger.error("Invalid opcode in {}", typeid(data).name()); glogger.error("Invalid opcode in {}", typeid(data).name());
bool carry = cpu.cpsr.c(); bool carry = cpsr.c();
uint32_t shifted = uint32_t shifted =
eval_shift(data.opcode, cpu.gpr[data.rs], data.offset, carry); eval_shift(data.opcode, gpr[data.rs], data.offset, carry);
cpu.gpr[data.rd] = shifted; gpr[data.rd] = shifted;
set_cc(carry, cpu.cpsr.v(), get_bit(shifted, 31), shifted == 0); set_cc(carry, cpsr.v(), get_bit(shifted, 31), shifted == 0);
}, },
[&cpu, set_cc](AddSubtract& data) { [this, set_cc](AddSubtract& data) {
/*
S -> prefetched instruction in step()
Total = S cycle
*/
uint32_t offset = uint32_t offset =
data.imm ? static_cast<uint32_t>(static_cast<int8_t>(data.offset)) data.imm ? static_cast<uint32_t>(static_cast<int8_t>(data.offset))
: cpu.gpr[data.offset]; : gpr[data.offset];
uint32_t result = 0; uint32_t result = 0;
bool carry = cpu.cpsr.c(); bool carry = cpsr.c();
bool overflow = cpu.cpsr.v(); bool overflow = cpsr.v();
switch (data.opcode) { switch (data.opcode) {
case AddSubtract::OpCode::ADD: case AddSubtract::OpCode::ADD:
result = add(cpu.gpr[data.rs], offset, carry, overflow); result = add(gpr[data.rs], offset, carry, overflow);
break; break;
case AddSubtract::OpCode::SUB: case AddSubtract::OpCode::SUB:
result = sub(cpu.gpr[data.rs], offset, carry, overflow); result = sub(gpr[data.rs], offset, carry, overflow);
break; break;
} }
cpu.gpr[data.rd] = result; gpr[data.rd] = result;
set_cc(carry, overflow, get_bit(result, 31), result == 0); set_cc(carry, overflow, get_bit(result, 31), result == 0);
}, },
[&cpu, set_cc](MovCmpAddSubImmediate& data) { [this, set_cc](MovCmpAddSubImmediate& data) {
/*
S -> prefetched instruction in step()
Total = S cycle
*/
uint32_t result = 0; uint32_t result = 0;
bool carry = cpu.cpsr.c(); bool carry = cpsr.c();
bool overflow = cpu.cpsr.v(); bool overflow = cpsr.v();
switch (data.opcode) { switch (data.opcode) {
case MovCmpAddSubImmediate::OpCode::MOV: case MovCmpAddSubImmediate::OpCode::MOV:
@@ -58,27 +80,44 @@ Instruction::exec(Cpu& cpu) {
carry = 0; carry = 0;
break; break;
case MovCmpAddSubImmediate::OpCode::ADD: case MovCmpAddSubImmediate::OpCode::ADD:
result = result = add(gpr[data.rd], data.offset, carry, overflow);
add(cpu.gpr[data.rd], data.offset, carry, overflow);
break; break;
case MovCmpAddSubImmediate::OpCode::SUB: case MovCmpAddSubImmediate::OpCode::SUB:
case MovCmpAddSubImmediate::OpCode::CMP: case MovCmpAddSubImmediate::OpCode::CMP:
result = result = sub(gpr[data.rd], data.offset, carry, overflow);
sub(cpu.gpr[data.rd], data.offset, carry, overflow);
break; break;
} }
set_cc(carry, overflow, get_bit(result, 31), result == 0); set_cc(carry, overflow, get_bit(result, 31), result == 0);
if (data.opcode != MovCmpAddSubImmediate::OpCode::CMP) if (data.opcode != MovCmpAddSubImmediate::OpCode::CMP)
cpu.gpr[data.rd] = result; gpr[data.rd] = result;
}, },
[&cpu, set_cc](AluOperations& data) { [this, set_cc](AluOperations& data) {
uint32_t op_1 = cpu.gpr[data.rd]; /*
uint32_t op_2 = cpu.gpr[data.rs]; Data Processing
===============
S -> prefetched instruction in step()
I -> only when register specified shift
Total = S or S + I cycles
Multiply
========
S -> reading instruction in step()
mI -> m internal cycles
let v = data at rn
m = 1 if bits [32:8] of v are all zero or all one
m = 2 [32:16]
m = 3 [32:24]
m = 4 otherwise
Total = S + mI cycles
*/
uint32_t op_1 = gpr[data.rd];
uint32_t op_2 = gpr[data.rs];
uint32_t result = 0; uint32_t result = 0;
bool carry = cpu.cpsr.c(); bool carry = cpsr.c();
bool overflow = cpu.cpsr.v(); bool overflow = cpsr.v();
switch (data.opcode) { switch (data.opcode) {
case AluOperations::OpCode::AND: case AluOperations::OpCode::AND:
@@ -90,12 +129,15 @@ Instruction::exec(Cpu& cpu) {
break; break;
case AluOperations::OpCode::LSL: case AluOperations::OpCode::LSL:
result = eval_shift(ShiftType::LSL, op_1, op_2, carry); result = eval_shift(ShiftType::LSL, op_1, op_2, carry);
internal_cycle();
break; break;
case AluOperations::OpCode::LSR: case AluOperations::OpCode::LSR:
result = eval_shift(ShiftType::LSR, op_1, op_2, carry); result = eval_shift(ShiftType::LSR, op_1, op_2, carry);
internal_cycle();
break; break;
case AluOperations::OpCode::ASR: case AluOperations::OpCode::ASR:
result = eval_shift(ShiftType::ASR, op_1, op_2, carry); result = eval_shift(ShiftType::ASR, op_1, op_2, carry);
internal_cycle();
break; break;
case AluOperations::OpCode::ADC: case AluOperations::OpCode::ADC:
result = add(op_1, op_2, carry, overflow, carry); result = add(op_1, op_2, carry, overflow, carry);
@@ -105,6 +147,7 @@ Instruction::exec(Cpu& cpu) {
break; break;
case AluOperations::OpCode::ROR: case AluOperations::OpCode::ROR:
result = eval_shift(ShiftType::ROR, op_1, op_2, carry); result = eval_shift(ShiftType::ROR, op_1, op_2, carry);
internal_cycle();
break; break;
case AluOperations::OpCode::NEG: case AluOperations::OpCode::NEG:
result = -op_2; result = -op_2;
@@ -120,6 +163,9 @@ Instruction::exec(Cpu& cpu) {
break; break;
case AluOperations::OpCode::MUL: case AluOperations::OpCode::MUL:
result = op_1 * op_2; result = op_1 * op_2;
// mI cycles
for (int i = 0; i < multiplier_array_cycles(op_2); i++)
internal_cycle();
break; break;
case AluOperations::OpCode::BIC: case AluOperations::OpCode::BIC:
result = op_1 & ~op_2; result = op_1 & ~op_2;
@@ -132,260 +178,435 @@ Instruction::exec(Cpu& cpu) {
if (data.opcode != AluOperations::OpCode::TST && if (data.opcode != AluOperations::OpCode::TST &&
data.opcode != AluOperations::OpCode::CMP && data.opcode != AluOperations::OpCode::CMP &&
data.opcode != AluOperations::OpCode::CMN) data.opcode != AluOperations::OpCode::CMN)
cpu.gpr[data.rd] = result; gpr[data.rd] = result;
set_cc(carry, overflow, get_bit(result, 31), result == 0); set_cc(carry, overflow, get_bit(result, 31), result == 0);
}, },
[&cpu, set_cc](HiRegisterOperations& data) { [this, set_cc, &is_flushed](HiRegisterOperations& data) {
uint32_t op_1 = cpu.gpr[data.rd]; /*
uint32_t op_2 = cpu.gpr[data.rs]; Always
======
S -> prefetched instruction in step()
bool carry = cpu.cpsr.c(); When PC is written
bool overflow = cpu.cpsr.v(); ==================
N -> fetch from the new address in branch
S -> last opcode fetch at +L to refill the pipeline
S+N taken care of by flush_pipeline()
Total = S or 2S + N cycles
*/
uint32_t op_1 = gpr[data.rd];
uint32_t op_2 = gpr[data.rs];
bool carry = cpsr.c();
bool overflow = cpsr.v();
// PC is already current + 4, so dont need to do that // PC is already current + 4, so dont need to do that
if (data.rd == cpu.PC_INDEX) if (data.rd == PC_INDEX)
rst_bit(op_1, 0); rst_bit(op_1, 0);
if (data.rs == cpu.PC_INDEX) if (data.rs == PC_INDEX)
rst_bit(op_2, 0); rst_bit(op_2, 0);
switch (data.opcode) { switch (data.opcode) {
case HiRegisterOperations::OpCode::ADD: { case HiRegisterOperations::OpCode::ADD: {
cpu.gpr[data.rd] = add(op_1, op_2, carry, overflow); gpr[data.rd] = add(op_1, op_2, carry, overflow);
if (data.rd == cpu.PC_INDEX) if (data.rd == PC_INDEX)
cpu.is_flushed = true; is_flushed = true;
} break; } break;
case HiRegisterOperations::OpCode::CMP: { case HiRegisterOperations::OpCode::CMP: {
uint32_t result = sub(op_1, op_2, carry, overflow); uint32_t result = sub(op_1, op_2, carry, overflow);
set_cc(carry, overflow, get_bit(result, 31), result == 0); set_cc(carry, overflow, get_bit(result, 31), result == 0);
} break; } break;
case HiRegisterOperations::OpCode::MOV: { case HiRegisterOperations::OpCode::MOV: {
cpu.gpr[data.rd] = op_2; gpr[data.rd] = op_2;
if (data.rd == cpu.PC_INDEX) if (data.rd == PC_INDEX)
cpu.is_flushed = true; is_flushed = true;
} break; } break;
case HiRegisterOperations::OpCode::BX: { case HiRegisterOperations::OpCode::BX: {
State state = static_cast<State>(get_bit(op_2, 0)); State state = static_cast<State>(get_bit(op_2, 0));
if (state != cpu.cpsr.state()) if (state != cpsr.state())
glogger.info_bold("State changed"); glogger.info_bold("State changed");
// set state // set state
cpu.cpsr.set_state(state); cpsr.set_state(state);
// copy to PC // copy to PC
cpu.pc = op_2; pc = op_2;
// ignore [1:0] bits for arm and 0 bit for thumb // ignore [1:0] bits for arm and 0 bit for thumb
rst_bit(cpu.pc, 0); rst_bit(pc, 0);
if (state == State::Arm) if (state == State::Arm)
rst_bit(cpu.pc, 1); rst_bit(pc, 1);
// pc is affected so flush the pipeline // pc is affected so flush the pipeline
cpu.is_flushed = true; is_flushed = true;
} break; } break;
} }
}, },
[&cpu](PcRelativeLoad& data) { [this](PcRelativeLoad& data) {
uint32_t pc = cpu.pc; /*
rst_bit(pc, 0); S -> reading instruction in step()
rst_bit(pc, 1); N -> read from target
I -> stored in register
Total = S + N + I cycles
*/
uint32_t pc_ = pc;
rst_bit(pc_, 0);
rst_bit(pc_, 1);
cpu.gpr[data.rd] = cpu.bus->read_word(pc + data.word); gpr[data.rd] =
bus->read_word(pc_ + data.word, CpuAccess::NonSequential);
internal_cycle();
// last read is unrelated
next_access = CpuAccess::NonSequential;
}, },
[&cpu](LoadStoreRegisterOffset& data) { [this](LoadStoreRegisterOffset& data) {
uint32_t address = cpu.gpr[data.rb] + cpu.gpr[data.ro]; /*
Load
====
S -> reading instruction in step()
N -> read from target
I -> stored in register
Total = S + N + I
Store
=====
N -> calculating memory address
N -> write at target
Total = 2N
*/
uint32_t address = gpr[data.rb] + gpr[data.ro];
if (data.load) { if (data.load) {
if (data.byte) { if (data.byte) {
cpu.gpr[data.rd] = cpu.bus->read_byte(address); gpr[data.rd] =
bus->read_byte(address, CpuAccess::NonSequential);
} else { } else {
cpu.gpr[data.rd] = cpu.bus->read_word(address); gpr[data.rd] =
bus->read_word(address, CpuAccess::NonSequential);
} }
internal_cycle();
} else { } else {
if (data.byte) { if (data.byte) {
cpu.bus->write_byte(address, cpu.gpr[data.rd] & 0xFF); bus->write_byte(
address, gpr[data.rd] & 0xFF, CpuAccess::NonSequential);
} else { } else {
cpu.bus->write_word(address, cpu.gpr[data.rd]); bus->write_word(
address, gpr[data.rd], CpuAccess::NonSequential);
} }
} }
// last read/write is unrelated
next_access = CpuAccess::NonSequential;
}, },
[&cpu](LoadStoreSignExtendedHalfword& data) { [this](LoadStoreSignExtendedHalfword& data) {
uint32_t address = cpu.gpr[data.rb] + cpu.gpr[data.ro]; // Same cycles as above
uint32_t address = gpr[data.rb] + gpr[data.ro];
switch (data.s << 1 | data.h) { switch (data.s << 1 | data.h) {
case 0b00: case 0b00:
cpu.bus->write_halfword(address, cpu.gpr[data.rd] & 0xFFFF); bus->write_halfword(
address, gpr[data.rd] & 0xFFFF, CpuAccess::NonSequential);
break; break;
case 0b01: case 0b01:
cpu.gpr[data.rd] = cpu.bus->read_halfword(address); gpr[data.rd] =
bus->read_halfword(address, CpuAccess::NonSequential);
internal_cycle();
break; break;
case 0b10: case 0b10:
// sign extend and load the byte // sign extend and load the byte
cpu.gpr[data.rd] = gpr[data.rd] = (static_cast<int32_t>(bus->read_byte(
(static_cast<int32_t>(cpu.bus->read_byte(address)) address, CpuAccess::NonSequential))
<< 24) >> << 24) >>
24; 24;
internal_cycle();
break; break;
case 0b11: case 0b11:
// sign extend the halfword // sign extend the halfword
cpu.gpr[data.rd] = gpr[data.rd] = (static_cast<int32_t>(bus->read_halfword(
(static_cast<int32_t>(cpu.bus->read_halfword(address)) address, CpuAccess::NonSequential))
<< 16) >> << 16) >>
16; 16;
internal_cycle();
break; break;
// unreachable // unreachable
default: { default: {
} }
} }
// last read/write is unrelated
next_access = CpuAccess::NonSequential;
}, },
[&cpu](LoadStoreImmediateOffset& data) { [this](LoadStoreImmediateOffset& data) {
uint32_t address = cpu.gpr[data.rb] + data.offset; // Same cycles as above
uint32_t address = gpr[data.rb] + data.offset;
dbg(address);
if (data.load) { if (data.load) {
if (data.byte) { if (data.byte) {
cpu.gpr[data.rd] = cpu.bus->read_byte(address); gpr[data.rd] =
bus->read_byte(address, CpuAccess::NonSequential);
} else { } else {
cpu.gpr[data.rd] = cpu.bus->read_word(address); gpr[data.rd] =
bus->read_word(address, CpuAccess::NonSequential);
} }
internal_cycle();
} else { } else {
if (data.byte) { if (data.byte) {
cpu.bus->write_byte(address, cpu.gpr[data.rd] & 0xFF); bus->write_byte(
address, gpr[data.rd] & 0xFF, CpuAccess::NonSequential);
} else { } else {
cpu.bus->write_word(address, cpu.gpr[data.rd]); bus->write_word(
address, gpr[data.rd], CpuAccess::NonSequential);
} }
} }
// last read/write is unrelated
next_access = CpuAccess::NonSequential;
}, },
[&cpu](LoadStoreHalfword& data) { [this](LoadStoreHalfword& data) {
uint32_t address = cpu.gpr[data.rb] + data.offset; // Same cycles as above
uint32_t address = gpr[data.rb] + data.offset;
if (data.load) { if (data.load) {
cpu.gpr[data.rd] = cpu.bus->read_halfword(address); gpr[data.rd] =
bus->read_halfword(address, CpuAccess::NonSequential);
internal_cycle();
} else { } else {
cpu.bus->write_halfword(address, cpu.gpr[data.rd] & 0xFFFF); bus->write_halfword(
address, gpr[data.rd] & 0xFFFF, CpuAccess::NonSequential);
} }
// last read/write is unrelated
next_access = CpuAccess::NonSequential;
}, },
[&cpu](SpRelativeLoad& data) { [this](SpRelativeLoad& data) {
uint32_t address = cpu.sp + data.word; // Same cycles as above
uint32_t address = sp + data.word;
if (data.load) { if (data.load) {
cpu.gpr[data.rd] = cpu.bus->read_word(address); gpr[data.rd] = bus->read_word(address, CpuAccess::Sequential);
internal_cycle();
} else { } else {
cpu.bus->write_word(address, cpu.gpr[data.rd]); bus->write_word(address, gpr[data.rd], CpuAccess::Sequential);
} }
// last read/write is unrelated
next_access = CpuAccess::NonSequential;
}, },
[&cpu](LoadAddress& data) { [this](LoadAddress& data) {
// 1S cycle in step()
if (data.sp) { if (data.sp) {
cpu.gpr[data.rd] = cpu.sp + data.word; gpr[data.rd] = sp + data.word;
} else { } else {
// PC is already current + 4, so dont need to do that // PC is already current + 4, so dont need to do that
// force bit 1 to 0 // force bit 1 to 0
cpu.gpr[data.rd] = (cpu.pc & ~(1 << 1)) + data.word; gpr[data.rd] = (pc & ~(1 << 1)) + data.word;
} }
}, },
[&cpu](AddOffsetStackPointer& data) { cpu.sp += data.word; }, [this](AddOffsetStackPointer& data) {
[&cpu](PushPopRegister& data) { // 1S cycle in step()
sp += data.word;
},
[this, &is_flushed](PushPopRegister& data) {
/*
Load
====
S -> reading instruction in step()
N -> unrelated read from target
(n-1) S -> next n - 1 related reads from target
I -> stored in register
N+S -> if PC is written - taken care of by flush_pipeline()
S -> if PC, memory read for PC write
Total = nS + N + I or (n+2)S + 2N + I
Store
=====
N -> calculating memory address
N -> if LR, memory read for PC write
N/S -> unrelated write at target
(n-1) S -> next n - 1 related writes
Total = 2N + nS or 2N + (n-1)S
*/
static constexpr uint8_t alignment = 4; static constexpr uint8_t alignment = 4;
CpuAccess access = CpuAccess::NonSequential;
if (data.load) { if (data.load) {
for (uint8_t i = 0; i < 8; i++) { for (uint8_t i = 0; i < 8; i++) {
if (get_bit(data.regs, i)) { if (get_bit(data.regs, i)) {
cpu.gpr[i] = cpu.bus->read_word(cpu.sp); gpr[i] = bus->read_word(sp, access);
cpu.sp += alignment; sp += alignment;
access = CpuAccess::Sequential;
} }
} }
if (data.pclr) { if (data.pclr) {
cpu.pc = cpu.bus->read_word(cpu.sp); pc = bus->read_word(sp, access);
cpu.sp += alignment; sp += alignment;
cpu.is_flushed = true; is_flushed = true;
} }
// I
internal_cycle();
} else { } else {
if (data.pclr) { if (data.pclr) {
cpu.sp -= alignment; sp -= alignment;
cpu.bus->write_word(cpu.sp, cpu.lr); bus->write_word(sp, lr, access);
access = CpuAccess::Sequential;
} }
for (int8_t i = 7; i >= 0; i--) { for (int8_t i = 7; i >= 0; i--) {
if (get_bit(data.regs, i)) { if (get_bit(data.regs, i)) {
cpu.sp -= alignment; sp -= alignment;
cpu.bus->write_word(cpu.sp, cpu.gpr[i]); bus->write_word(sp, gpr[i], access);
access = CpuAccess::Sequential;
} }
} }
} }
// last read/write is unrelated
next_access = CpuAccess::NonSequential;
}, },
[&cpu](MultipleLoad& data) { [this](MultipleLoad& data) {
/*
Load
====
S -> reading instruction in step()
N -> unrelated read from target
(n-1) S -> next n - 1 related reads from target
I -> stored in register
Total = nS + N + I
Store
=====
N -> calculating memory address
N -> unrelated write at target
(n-1) S -> next n - 1 related writes
Total = 2N + (n-1)S
*/
static constexpr uint8_t alignment = 4; static constexpr uint8_t alignment = 4;
uint32_t rb = cpu.gpr[data.rb]; uint32_t rb = gpr[data.rb];
CpuAccess access = CpuAccess::NonSequential;
if (data.load) { if (data.load) {
for (uint8_t i = 0; i < 8; i++) { for (uint8_t i = 0; i < 8; i++) {
if (get_bit(data.regs, i)) { if (get_bit(data.regs, i)) {
cpu.gpr[i] = cpu.bus->read_word(rb); gpr[i] = bus->read_word(rb, access);
rb += alignment; rb += alignment;
access = CpuAccess::Sequential;
} }
} }
internal_cycle();
} else { } else {
for (int8_t i = 7; i >= 0; i--) { for (uint8_t i = 0; i < 8; i++) {
if (get_bit(data.regs, i)) { if (get_bit(data.regs, i)) {
rb -= alignment; bus->write_word(rb, gpr[i], access);
cpu.bus->write_word(rb, cpu.gpr[i]); rb += alignment;
access = CpuAccess::Sequential;
} }
} }
} }
cpu.gpr[data.rb] = rb; gpr[data.rb] = rb;
// last read/write is unrelated
next_access = CpuAccess::NonSequential;
}, },
[&cpu](ConditionalBranch& data) { [this, &is_flushed](ConditionalBranch& data) {
/*
S -> reading instruction in step()
N+S -> if condition is true, branch and refill pipeline
Total = S or 2S + N
*/
if (data.condition == Condition::AL) if (data.condition == Condition::AL)
glogger.warn("Condition 1110 (AL) is undefined"); glogger.warn("Condition 1110 (AL) is undefined");
if (!cpu.cpsr.condition(data.condition)) if (!cpsr.condition(data.condition))
return; return;
cpu.pc += data.offset; pc += data.offset;
cpu.is_flushed = true; is_flushed = true;
}, },
[&cpu](SoftwareInterrupt& data) { [this, &is_flushed](SoftwareInterrupt& data) {
/*
S -> reading instruction in step()
N+S -> refill pipeline
Total = 2S + N
*/
// next instruction is one instruction behind PC // next instruction is one instruction behind PC
cpu.lr = cpu.pc - INSTRUCTION_SIZE; lr = pc - INSTRUCTION_SIZE;
cpu.spsr = cpu.cpsr; spsr = cpsr;
cpu.pc = data.vector; pc = data.vector;
cpu.cpsr.set_state(State::Arm); cpsr.set_state(State::Arm);
cpu.chg_mode(Mode::Supervisor); chg_mode(Mode::Supervisor);
cpu.is_flushed = true; is_flushed = true;
}, },
[&cpu](UnconditionalBranch& data) { [this, &is_flushed](UnconditionalBranch& data) {
cpu.pc += data.offset; /*
cpu.is_flushed = true; S -> reading instruction in step()
N+S -> branch and refill pipeline
Total = 2S + N
*/
pc += data.offset;
is_flushed = true;
}, },
[&cpu](LongBranchWithLink& data) { [this, &is_flushed](LongBranchWithLink& data) {
/*
S -> prefetched instruction in step()
N -> fetch from the new address in branch
S -> last opcode fetch at +L to refill the pipeline
Total = 2S + N cycles
1S done, S+N taken care of by flush_pipeline()
*/
// 12 bit integer // 12 bit integer
int32_t offset = data.offset; int32_t offset = data.offset;
if (data.high) { if (data.low) {
uint32_t old_pc = cpu.pc; uint32_t old_pc = pc;
offset <<= 1;
cpu.pc = cpu.lr + offset; pc = lr + offset;
cpu.lr = (old_pc - INSTRUCTION_SIZE) | 1; lr = (old_pc - INSTRUCTION_SIZE) | 1;
cpu.is_flushed = true; is_flushed = true;
} else { } else {
// 12 + 11 = 23 bit // 12 + 11 = 23 bit
offset <<= 11; offset <<= 12;
// sign extend // sign extend
offset = (offset << 9) >> 9; offset = (offset << 9) >> 9;
cpu.lr = cpu.pc + offset; lr = pc + offset;
} }
}, },
[](auto& data) { [](auto& data) {
glogger.error("Unknown thumb format : {}", typeid(data).name()); glogger.error("Unknown thumb format : {}", typeid(data).name());
} }, } },
data); instruction.data);
if (is_flushed)
flush_pipeline<State::Thumb>();
else
advance_pc_thumb();
} }
} }

View File

@@ -203,11 +203,9 @@ Instruction::Instruction(uint16_t insn) {
// Format 19: Long branch with link // Format 19: Long branch with link
} else if ((insn & 0xF000) == 0xF000) { } else if ((insn & 0xF000) == 0xF000) {
uint16_t offset = bit_range(insn, 0, 10); uint16_t offset = bit_range(insn, 0, 10);
bool high = get_bit(insn, 11); bool low = get_bit(insn, 11);
offset <<= 1; data = LongBranchWithLink{ .offset = offset, .low = low };
data = LongBranchWithLink{ .offset = offset, .high = high };
} }
} }
} }

487
src/gdb_rsp.cc Normal file
View File

@@ -0,0 +1,487 @@
#include "gdb_rsp.hh"
#include "util/log.hh"
#include <csignal>
#include <numeric>
#include <regex>
#include <stdexcept>
#include <string>
namespace matar {
template<typename... Args>
static inline constexpr void
gdb_log(const std::format_string<Args...>& fmt, Args&&... args) {
glogger.debug("GDB: {}", std::format(fmt, std::forward<Args>(args)...));
}
static inline void
append_le(std::string& str, uint32_t value) {
// little endian only
str += std::format("{:02x}", value & 0xFF);
str += std::format("{:02x}", value >> 8 & 0xFF);
str += std::format("{:02x}", value >> 16 & 0xFF);
str += std::format("{:02x}", value >> 24 & 0xFF);
}
static inline std::string
be_to_le(std::string str) {
if (str.length() != 8)
throw std::out_of_range("string is supposed to be 8 bytes");
std::string current;
for (int i = 7; i >= 0; i -= 2) {
current += str[i - 1];
current += str[i];
}
return current;
}
GdbRsp::GdbRsp(std::shared_ptr<Cpu> cpu, uint port)
: cpu(cpu) {
server.start(port);
}
void
GdbRsp::start() {
server.run();
attach();
// attaching is not enough, we continue, until the last GDB communication
// happens for ARMv4t i.e, fetching of the CPSR
std::string msg;
while (msg != "$p19") {
msg = receive();
step(msg); // 25th (0x19) register is cpsr
}
}
void
GdbRsp::attach() {
while (!attached) {
step();
}
}
void
GdbRsp::satisfy_client() {
while (server.client_waiting() && attached) {
step();
}
}
void
GdbRsp::step() {
std::string msg = receive();
step(msg);
}
void
GdbRsp::step(std::string msg) {
switch (msg[0]) {
case '+':
break;
case '-':
break;
case '\x03':
gdb_log("ctrl+c interrupt received");
cmd_halted();
break;
case '$': {
acknowledge();
switch (msg[1]) {
case '?':
cmd_halted();
break;
case 'g':
cmd_read_registers();
break;
case 'G':
cmd_write_registers(msg);
break;
case 'p':
cmd_read_register(msg);
break;
case 'P':
cmd_write_register(msg);
break;
case 'm':
cmd_read_memory(msg);
break;
case 'M':
cmd_write_memory(msg);
break;
case 'z':
cmd_rm_breakpoint(msg);
break;
case 'Z':
cmd_add_breakpoint(msg);
break;
case 'c':
cmd_continue();
break;
case 'D':
cmd_detach();
break;
case 'Q':
if (msg == "$QStartNoAckMode")
ack_mode = true;
send_ok();
break;
case 'q':
if (msg.starts_with("$qSupported")) {
cmd_supported(msg);
break;
} else if (msg == "$qAttached") {
cmd_attached();
break;
}
[[fallthrough]];
default:
gdb_log("unknown command");
send_empty();
}
break;
}
default:
gdb_log("unknown message received");
}
}
std::string
GdbRsp::receive() {
std::string msg = server.receive(1);
char ch = msg[0];
uint checksum = 0;
if (ch == '$') {
while ((ch = server.receive(1)[0]) != '#') {
checksum += static_cast<uint>(ch);
msg += ch;
if (msg.length() > MAX_MSG_LEN) {
throw std::logic_error("GDB: received message is too long");
}
}
if (std::stoul(server.receive(2), nullptr, 16) != (checksum & 0xFF)) {
gdb_log("{}", msg);
throw std::logic_error("GDB: bad message checksum");
}
}
gdb_log("received message \"{}\"", msg);
return msg;
}
std::string
GdbRsp::make_packet(std::string raw) {
uint checksum = std::accumulate(raw.begin(), raw.end(), 0);
return std::format("${}#{:02x}", raw, checksum & 0xFF);
}
void
GdbRsp::acknowledge() {
if (ack_mode)
server.send("+");
}
void
GdbRsp::send_empty() {
server.send(make_packet(""));
}
void
GdbRsp::send_ok() {
acknowledge();
server.send(make_packet("OK"));
}
void
GdbRsp::notify_breakpoint_reached() {
gdb_log("reached breakpoint, sending signal");
server.send(make_packet(std::format("S{:02x}", SIGTRAP)));
}
void
GdbRsp::cmd_attached() {
attached = true;
gdb_log("server is now attached");
server.send(make_packet("1"));
}
void
GdbRsp::cmd_supported(std::string msg) {
std::string response;
if (msg.find("hwbreak+;") != std::string::npos)
response += "hwbreak+;";
// no acknowledgement mode
response += "QStartNoAckMode+";
gdb_log("sending response for qSupported");
server.send(make_packet(response));
}
void
GdbRsp::cmd_halted() {
gdb_log("sending reason for upcoming halt");
server.send(make_packet(std::format("S{:02x}", SIGTRAP)));
}
void
GdbRsp::cmd_read_registers() {
std::string response;
for (int i = 0; i < cpu->GPR_COUNT - 1; i++)
append_le(response, cpu->gpr[i]);
// for some reason this PC needs to be the address of executing instruction
// i.e, two instructions behind actual PC
append_le(response,
cpu->pc - 2 * (cpu->cpsr.state() == State::Arm
? arm::INSTRUCTION_SIZE
: thumb::INSTRUCTION_SIZE));
gdb_log("sending register values");
server.send(make_packet(response));
}
void
GdbRsp::cmd_write_registers(std::string msg) {
static std::regex rgx("\\$G([0-9A-Fa-f]+)");
std::smatch sm;
regex_match(msg, sm, rgx);
if (sm.size() != 2 || sm[1].str().size() != 16 * 8) {
gdb_log("invalid arguments to write registers");
send_empty();
return;
}
try {
std::string values = sm[1].str();
for (uint i = 0, j = 0; i < values.length() - 8; i += 8, j++) {
cpu->gpr[i] = std::stoul(sm[i + 1].str(), nullptr, 16);
cpu->gpr[j] =
std::stoul(be_to_le(values.substr(i, 8)), nullptr, 16);
}
gdb_log("register values written");
send_ok();
} catch (const std::exception& e) {
gdb_log("{}", e.what());
send_empty();
}
}
void
GdbRsp::cmd_read_register(std::string msg) {
std::string response;
try {
uint reg = std::stoul(msg.substr(2), nullptr, 16);
// 25th register is CPSR in gdb ARM
if (reg == 25)
append_le(response, cpu->cpsr.raw());
else if (reg < cpu->GPR_COUNT)
append_le(response, cpu->gpr[reg]);
else
response += "xxxxxxxx";
gdb_log("sending single register value");
server.send(make_packet(response));
} catch (const std::exception& e) {
gdb_log("{}", e.what());
send_empty();
}
}
void
GdbRsp::cmd_write_register(std::string msg) {
static std::regex rgx("\\$P([0-9A-Fa-f]+)\\=([0-9A-Fa-f]+)");
std::smatch sm;
regex_match(msg, sm, rgx);
if (sm.size() != 3 && sm[2].str().length() != 8) {
gdb_log("invalid arguments to write single register");
send_empty();
return;
}
try {
uint reg = std::stoul(sm[1].str(), nullptr, 16);
uint32_t value = std::stoul(be_to_le(sm[2].str()), nullptr, 16);
dbg(value);
if (reg == 25)
cpu->cpsr.set_all(value);
else if (reg < cpu->GPR_COUNT)
cpu->gpr[reg] = value;
gdb_log("single register value written");
send_ok();
} catch (const std::exception& e) {
gdb_log("{}", e.what());
send_empty();
}
}
void
GdbRsp::cmd_read_memory(std::string msg) {
std::string response;
static std::regex rgx("\\$m([0-9A-Fa-f]+),([0-9A-Fa-f]+)");
std::smatch sm;
regex_match(msg, sm, rgx);
if (sm.size() != 3) {
gdb_log("invalid arguments to read memory");
send_empty();
return;
}
uint32_t address = 0, length = 0;
try {
address = std::stoul(sm[1].str(), nullptr, 16);
length = std::stoul(sm[2].str(), nullptr, 16);
} catch (const std::exception& e) {
gdb_log("{}", e.what());
send_empty();
return;
}
for (uint i = 0; i < length; i++) {
response += std::format("{:02x}", cpu->bus->read_byte(address + i));
}
gdb_log("sending memory values values");
server.send(make_packet(response));
}
void
GdbRsp::cmd_write_memory(std::string msg) {
static std::regex rgx("\\$M([0-9A-Fa-f]+),([0-9A-Fa-f]+):([0-9A-Fa-f]+)");
std::smatch sm;
regex_match(msg, sm, rgx);
if (sm.size() != 4) {
gdb_log("invalid arguments to write memory");
send_empty();
return;
}
try {
uint32_t address = std::stoul(sm[1].str(), nullptr, 16);
uint32_t length = std::stoul(sm[2].str(), nullptr, 16);
std::string values = sm[3].str();
for (uint i = 0, j = 0; i < length && j < values.size(); i++, j += 2) {
cpu->bus->write_byte(
address + i, std::stoul(values.substr(j, 2), nullptr, 16) & 0xFF);
}
gdb_log("register values written");
send_ok();
} catch (const std::exception& e) {
gdb_log("{}", e.what());
send_empty();
}
}
void
GdbRsp::cmd_rm_breakpoint(std::string msg) {
static std::regex rgx("\\$z(0|1),([0-9A-Fa-f]+),(2|3|4)");
std::smatch sm;
regex_match(msg, sm, rgx);
if (sm.size() != 4) {
gdb_log("invalid arguments to remove breakpoint");
send_empty();
return;
}
if (sm[1].str() != "0" && sm[0].str() != "1") {
gdb_log("unrecognized breakpoint type encountered");
send_empty();
return;
}
if (sm[3].str() != "3" && sm[3].str() != "4") {
gdb_log("only 32 bit breakpoints supported");
send_empty();
return;
}
try {
uint32_t address = std::stoul(sm[2].str(), nullptr, 16);
cpu->breakpoints.erase(address);
gdb_log("breakpoint {:#08x} removed", address);
send_ok();
} catch (const std::exception& e) {
gdb_log("{}", e.what());
send_empty();
}
}
void
GdbRsp::cmd_add_breakpoint(std::string msg) {
static std::regex rgx("\\$Z(0|1),([0-9A-Fa-f]+),(2|3|4)");
std::smatch sm;
regex_match(msg, sm, rgx);
dbg(sm.size());
dbg(sm[0].str());
if (sm.size() != 4) {
gdb_log("invalid arguments to add breakpoint");
send_empty();
return;
}
if (sm[1].str() != "0" && sm[0].str() != "1") {
gdb_log("unrecognized breakpoint type encountered");
send_empty();
return;
}
if (sm[3].str() != "3" && sm[3].str() != "4") {
gdb_log("only 32 bit breakpoints supported");
send_empty();
return;
}
try {
uint32_t address = std::stoul(sm[2].str(), nullptr, 16);
cpu->breakpoints.insert(address);
gdb_log("breakpoint {:#08x} added", address);
send_ok();
} catch (const std::exception& e) {
gdb_log("{}", e.what());
send_empty();
}
}
void
GdbRsp::cmd_detach() {
attached = false;
gdb_log("detached");
send_ok();
}
void
GdbRsp::cmd_continue() {
// what to do?
gdb_log("cpu continued");
send_ok();
}
}

47
src/gdb_rsp.hh Normal file
View File

@@ -0,0 +1,47 @@
#include "cpu/cpu.hh"
#include "util/tcp_server.hh"
namespace matar {
class GdbRsp {
public:
GdbRsp(std::shared_ptr<Cpu> cpu, uint port);
~GdbRsp() = default;
void start();
void attach();
void satisfy_client();
void step();
void step(std::string msg);
void notify_breakpoint_reached();
inline bool is_attached() { return attached; }
private:
bool attached = false;
std::shared_ptr<Cpu> cpu;
net::TcpServer server;
std::string receive();
std::string make_packet(std::string raw);
bool ack_mode = true;
void acknowledge();
void send_empty();
void send_ok();
// Commands
void cmd_attached();
void cmd_supported(std::string msg);
void cmd_halted();
void cmd_read_registers();
void cmd_write_registers(std::string msg);
void cmd_read_register(std::string msg);
void cmd_write_register(std::string msg);
void cmd_read_memory(std::string msg);
void cmd_write_memory(std::string msg);
void cmd_rm_breakpoint(std::string msg);
void cmd_add_breakpoint(std::string msg);
void cmd_detach();
void cmd_continue();
static constexpr uint MAX_MSG_LEN = 4096;
};
}

23
src/io/display/display.cc Normal file
View File

@@ -0,0 +1,23 @@
#include "io/display/display.hh"
namespace matar {
namespace display {
/*
static constexpr uint LCD_HEIGHT = 160;
static constexpr uint LCD_WIDTH = 240;
static constexpr uint BLANK = 68;
static constexpr uint PIXEL_CYCLES = 4; // 4
static constexpr uint HDRAW_CYCLES = LCD_WIDTH * PIXEL_CYCLES + 46; // 1006
static constexpr uint HBLANK_CYCLES = BLANK * PIXEL_CYCLES - 46; // 226
static constexpr uint HREFRESH_CYCLES = HDRAW_CYCLES + HBLANK_CYCLES; // 1232
static constexpr uint VDRAW_CYCLES = LCD_HEIGHT * HREFRESH_CYCLES; // 197120
static constexpr uint VBLANK_CYCLES = BLANK * HREFRESH_CYCLES; // 83776
static constexpr uint VREFRESH_CYCLES = VDRAW_CYCLES + VBLANK_CYCLES; // 280896
*/
void
Display::mode_3() {}
}
}

View File

@@ -0,0 +1,3 @@
lib_sources += files(
'display.cc'
)

51
src/io/display/render.cc Normal file
View File

@@ -0,0 +1,51 @@
#include "io/display/display.hh"
namespace matar {
namespace display {
struct TextScreen {
uint16_t tile_number : 10;
bool mirror_horizontal : 1;
bool mirror_vertical : 1;
uint8_t palette_number : 4;
};
// if 16th bit is set, this will denote the transparent color in rgb555 format
static constexpr uint16_t TRANSPARENT_RGB555 = 0x8000;
template<int MODE, typename>
void
Display::render_bitmap_mode() {
static constexpr std::size_t VIEWPORT_WIDTH = MODE == 5 ? 160 : 240;
for (int x = 0; x < LCD_WIDTH; x++) {
// pixel to texel for x
// shift by 8 cuz both ref.x and a are fixed point floats shifted by 8
int32_t x_ = (bg2_rot_scale.ref.x + x * bg2_rot_scale.a) >> 8;
int32_t y_ = (bg2_rot_scale.ref.y + x * bg2_rot_scale.c) >> 8;
// ignore handling area overflow for bitmap modes
// i am not sure how well this will turn out
std::size_t idx = y_ * VIEWPORT_WIDTH + x_;
// mode 3 and 5 takes 2 bytes per pixel
if constexpr (MODE != 4)
idx *= 2;
// offset
if constexpr (MODE != 3) {
std::size_t offset =
lcd_control.value.frame_select_1 ? 0xA000 : 0x0000;
idx += offset;
}
// read two bytes
if constexpr (MODE == 4)
scanline_buffers[2][x] = pram.read_halfword(vram.read_byte(idx));
else
scanline_buffers[2][x] = vram.read_halfword(idx);
}
}
}
}

View File

@@ -76,6 +76,24 @@ ADDR FIFO_A_H = 0x40000A2;
ADDR FIFO_B_L = 0x40000A4; ADDR FIFO_B_L = 0x40000A4;
ADDR FIFO_B_H = 0x40000A6; ADDR FIFO_B_H = 0x40000A6;
// dma
ADDR DMA0SAD = 0x40000B0;
ADDR DMA0DAD = 0x40000B4;
ADDR DMA0CNT_L = 0x40000B8;
ADDR DMA0CNT_H = 0x40000BA;
ADDR DMA1SAD = 0x40000BC;
ADDR DMA1DAD = 0x40000C0;
ADDR DMA1CNT_L = 0x40000C4;
ADDR DMA1CNT_H = 0x40000C6;
ADDR DMA2SAD = 0x40000C8;
ADDR DMA2DAD = 0x40000CC;
ADDR DMA2CNT_L = 0x40000D0;
ADDR DMA2CNT_H = 0x40000D2;
ADDR DMA3SAD = 0x40000D4;
ADDR DMA3DAD = 0x40000D8;
ADDR DMA3CNT_L = 0x40000DC;
ADDR DMA3CNT_H = 0x40000DE;
// system // system
ADDR POSTFLG = 0x4000300; ADDR POSTFLG = 0x4000300;
ADDR IME = 0x4000208; ADDR IME = 0x4000208;
@@ -86,6 +104,9 @@ ADDR HALTCNT = 0x4000301;
#undef ADDR #undef ADDR
IoDevices::IoDevices(std::weak_ptr<Bus> bus)
: bus(bus) {}
uint8_t uint8_t
IoDevices::read_byte(uint32_t address) const { IoDevices::read_byte(uint32_t address) const {
uint16_t halfword = read_halfword(address & ~1); uint16_t halfword = read_halfword(address & ~1);
@@ -127,45 +148,87 @@ IoDevices::read_halfword(uint32_t address) const {
case name: \ case name: \
return var; return var;
// lcd // lcd
READ(DISPCNT, lcd.lcd_control) case DISPCNT:
READ(DISPSTAT, lcd.general_lcd_status) return display.lcd_control.read();
READ(VCOUNT, lcd.vertical_counter) case DISPSTAT:
READ(WININ, lcd.inside_win_0_1) return display.general_lcd_status.read();
READ(WINOUT, lcd.outside_win) case BG0CNT:
READ(BLDCNT, lcd.color_special_effects_selection) return display.bg_control[0].read();
READ(BLDALPHA, lcd.alpha_blending_coefficients) case BG1CNT:
return display.bg_control[1].read();
case BG2CNT:
return display.bg_control[2].read();
case BG3CNT:
return display.bg_control[3].read();
// sound READ(VCOUNT, display.vertical_counter)
READ(SOUND1CNT_L, sound.ch1_sweep) READ(WININ, display.inside_win_0_1)
READ(SOUND1CNT_H, sound.ch1_duty_length_env) READ(WINOUT, display.outside_win)
READ(SOUND1CNT_X, sound.ch1_freq_control) READ(BLDCNT, display.color_special_effects_selection)
READ(SOUND2CNT_L, sound.ch2_duty_length_env) READ(BLDALPHA, display.alpha_blending_coefficients)
READ(SOUND2CNT_H, sound.ch2_freq_control)
READ(SOUND3CNT_L, sound.ch3_stop_wave_ram_select)
READ(SOUND3CNT_H, sound.ch3_length_volume)
READ(SOUND3CNT_X, sound.ch3_freq_control)
READ(WAVE_RAM0_L, sound.ch3_wave_pattern[0]);
READ(WAVE_RAM0_H, sound.ch3_wave_pattern[1]);
READ(WAVE_RAM1_L, sound.ch3_wave_pattern[2]);
READ(WAVE_RAM1_H, sound.ch3_wave_pattern[3]);
READ(WAVE_RAM2_L, sound.ch3_wave_pattern[4]);
READ(WAVE_RAM2_H, sound.ch3_wave_pattern[5]);
READ(WAVE_RAM3_L, sound.ch3_wave_pattern[6]);
READ(WAVE_RAM3_H, sound.ch3_wave_pattern[7]);
READ(SOUND4CNT_L, sound.ch4_length_env);
READ(SOUND4CNT_H, sound.ch4_freq_control);
READ(SOUNDCNT_L, sound.ctrl_stereo_volume);
READ(SOUNDCNT_H, sound.ctrl_mixing);
READ(SOUNDCNT_X, sound.ctrl_sound_on_off);
READ(SOUNDBIAS, sound.pwm_control);
// system // sound
READ(POSTFLG, system.post_boot_flag) READ(SOUND1CNT_L, sound.ch1_sweep)
READ(IME, system.interrupt_master_enabler) READ(SOUND1CNT_H, sound.ch1_duty_length_env)
READ(IE, system.interrupt_enable); READ(SOUND1CNT_X, sound.ch1_freq_control)
READ(IF, system.interrupt_request_flags); READ(SOUND2CNT_L, sound.ch2_duty_length_env)
READ(WAITCNT, system.waitstate_control); READ(SOUND2CNT_H, sound.ch2_freq_control)
READ(SOUND3CNT_L, sound.ch3_stop_wave_ram_select)
READ(SOUND3CNT_H, sound.ch3_length_volume)
READ(SOUND3CNT_X, sound.ch3_freq_control)
READ(WAVE_RAM0_L, sound.ch3_wave_pattern[0]);
READ(WAVE_RAM0_H, sound.ch3_wave_pattern[1]);
READ(WAVE_RAM1_L, sound.ch3_wave_pattern[2]);
READ(WAVE_RAM1_H, sound.ch3_wave_pattern[3]);
READ(WAVE_RAM2_L, sound.ch3_wave_pattern[4]);
READ(WAVE_RAM2_H, sound.ch3_wave_pattern[5]);
READ(WAVE_RAM3_L, sound.ch3_wave_pattern[6]);
READ(WAVE_RAM3_H, sound.ch3_wave_pattern[7]);
READ(SOUND4CNT_L, sound.ch4_length_env);
READ(SOUND4CNT_H, sound.ch4_freq_control);
READ(SOUNDCNT_L, sound.ctrl_stereo_volume);
READ(SOUNDCNT_H, sound.ctrl_mixing);
READ(SOUNDCNT_X, sound.ctrl_sound_on_off);
READ(SOUNDBIAS, sound.pwm_control);
// dma
case DMA0CNT_H:
return dma.channels[0].control.read();
case DMA1CNT_H:
return dma.channels[1].control.read();
case DMA2CNT_H:
return dma.channels[2].control.read();
case DMA3CNT_H:
return dma.channels[3].control.read();
READ(DMA0SAD, dma.channels[0].source[0]);
READ(DMA0SAD + 2, dma.channels[0].source[1]);
READ(DMA0DAD, dma.channels[0].destination[0]);
READ(DMA0DAD + 2, dma.channels[0].destination[1]);
READ(DMA0CNT_L, dma.channels[0].word_count);
READ(DMA1SAD, dma.channels[1].source[0]);
READ(DMA1SAD + 2, dma.channels[1].source[1]);
READ(DMA1DAD, dma.channels[1].destination[0]);
READ(DMA1DAD + 2, dma.channels[1].destination[1]);
READ(DMA1CNT_L, dma.channels[1].word_count);
READ(DMA2SAD, dma.channels[2].source[0]);
READ(DMA2SAD + 2, dma.channels[2].source[1]);
READ(DMA2DAD, dma.channels[2].destination[0]);
READ(DMA2DAD + 2, dma.channels[2].destination[1]);
READ(DMA2CNT_L, dma.channels[2].word_count);
READ(DMA3SAD, dma.channels[3].source[0]);
READ(DMA3SAD + 2, dma.channels[3].source[1]);
READ(DMA3DAD, dma.channels[3].destination[0]);
READ(DMA3DAD + 2, dma.channels[3].destination[1]);
READ(DMA3CNT_L, dma.channels[3].word_count);
// system
READ(POSTFLG, system.post_boot_flag)
READ(IME, system.interrupt_master_enabler)
READ(IE, system.interrupt_enable);
READ(IF, system.interrupt_request_flags);
READ(WAITCNT, system.waitstate_control);
#undef READ #undef READ
@@ -178,6 +241,18 @@ IoDevices::read_halfword(uint32_t address) const {
void void
IoDevices::write_halfword(uint32_t address, uint16_t halfword) { IoDevices::write_halfword(uint32_t address, uint16_t halfword) {
// set lower 16 bits for reference points (BG 2/3)
auto ref_low = [](uint32_t original, uint16_t low) {
return static_cast<int32_t>((original & 0xFFFF0000) | low);
};
// set upper 12 bits for reference points (BG 2/3)
// and sign extend
auto ref_high = [](uint32_t original, uint16_t high) {
return static_cast<int32_t>(
((((high & 0xFFF) << 16) | (original & 0xFFFF)) << 4) >> 4);
};
switch (address) { switch (address) {
#define WRITE(name, var) \ #define WRITE(name, var) \
@@ -191,82 +266,146 @@ IoDevices::write_halfword(uint32_t address, uint16_t halfword) {
break; break;
// lcd // lcd
WRITE(DISPCNT, lcd.lcd_control) case DISPCNT:
WRITE(DISPSTAT, lcd.general_lcd_status) display.lcd_control.write(halfword);
WRITE(BG0CNT, lcd.bg0_control) break;
WRITE(BG1CNT, lcd.bg1_control) case DISPSTAT:
WRITE(BG2CNT, lcd.bg2_control) display.general_lcd_status.write(halfword);
WRITE(BG3CNT, lcd.bg3_control) break;
WRITE(BG0HOFS, lcd.bg0_x_offset) case BG0CNT:
WRITE(BG0VOFS, lcd.bg0_y_offset) display.bg_control[0].write(halfword);
WRITE(BG1HOFS, lcd.bg1_x_offset) break;
WRITE(BG1VOFS, lcd.bg1_y_offset) case BG1CNT:
WRITE(BG2HOFS, lcd.bg2_x_offset) display.bg_control[1].write(halfword);
WRITE(BG2VOFS, lcd.bg2_y_offset) break;
WRITE(BG3HOFS, lcd.bg3_x_offset) case BG2CNT:
WRITE(BG3VOFS, lcd.bg3_y_offset) display.bg_control[2].write(halfword);
WRITE(BG2PA, lcd.bg2_rot_scaling_parameters[0]) break;
WRITE(BG2PB, lcd.bg2_rot_scaling_parameters[1]) case BG3CNT:
WRITE(BG2PC, lcd.bg2_rot_scaling_parameters[2]) display.bg_control[3].write(halfword);
WRITE(BG2PD, lcd.bg2_rot_scaling_parameters[3]) break;
WRITE(BG2X_L, lcd.bg2_reference_x[0])
WRITE(BG2X_H, lcd.bg2_reference_x[1])
WRITE(BG2Y_L, lcd.bg2_reference_y[0])
WRITE(BG2Y_H, lcd.bg2_reference_y[1])
WRITE(BG3PA, lcd.bg3_rot_scaling_parameters[0])
WRITE(BG3PB, lcd.bg3_rot_scaling_parameters[1])
WRITE(BG3PC, lcd.bg3_rot_scaling_parameters[2])
WRITE(BG3PD, lcd.bg3_rot_scaling_parameters[3])
WRITE(BG3X_L, lcd.bg3_reference_x[0])
WRITE(BG3X_H, lcd.bg3_reference_x[1])
WRITE(BG3Y_L, lcd.bg3_reference_y[0])
WRITE(BG3Y_H, lcd.bg3_reference_y[1])
WRITE(WIN0H, lcd.win0_horizontal_dimensions)
WRITE(WIN1H, lcd.win1_horizontal_dimensions)
WRITE(WIN0V, lcd.win0_vertical_dimensions)
WRITE(WIN1V, lcd.win1_vertical_dimensions)
WRITE(WININ, lcd.inside_win_0_1)
WRITE(WINOUT, lcd.outside_win)
WRITE(MOSAIC, lcd.mosaic_size)
WRITE(BLDCNT, lcd.color_special_effects_selection)
WRITE(BLDALPHA, lcd.alpha_blending_coefficients)
WRITE(BLDY, lcd.brightness_coefficient)
// sound WRITE(BG0HOFS, display.bg0_offset.x)
WRITE(SOUND1CNT_L, sound.ch1_sweep) WRITE(BG0VOFS, display.bg0_offset.y)
WRITE(SOUND1CNT_H, sound.ch1_duty_length_env) WRITE(BG1HOFS, display.bg1_offset.x)
WRITE(SOUND1CNT_X, sound.ch1_freq_control) WRITE(BG1VOFS, display.bg1_offset.y)
WRITE(SOUND2CNT_L, sound.ch2_duty_length_env) WRITE(BG2HOFS, display.bg2_offset.x)
WRITE(SOUND2CNT_H, sound.ch2_freq_control) WRITE(BG2VOFS, display.bg2_offset.y)
WRITE(SOUND3CNT_L, sound.ch3_stop_wave_ram_select) WRITE(BG3HOFS, display.bg3_offset.x)
WRITE(SOUND3CNT_H, sound.ch3_length_volume) WRITE(BG3VOFS, display.bg3_offset.y)
WRITE(SOUND3CNT_X, sound.ch3_freq_control) WRITE(BG2PA, display.bg2_rot_scale.a)
WRITE(WAVE_RAM0_L, sound.ch3_wave_pattern[0]); WRITE(BG2PB, display.bg2_rot_scale.b)
WRITE(WAVE_RAM0_H, sound.ch3_wave_pattern[1]); WRITE(BG2PC, display.bg2_rot_scale.c)
WRITE(WAVE_RAM1_L, sound.ch3_wave_pattern[2]); WRITE(BG2PD, display.bg2_rot_scale.d)
WRITE(WAVE_RAM1_H, sound.ch3_wave_pattern[3]); WRITE_2(BG2X_L,
WRITE(WAVE_RAM2_L, sound.ch3_wave_pattern[4]); display.bg2_rot_scale.ref.x,
WRITE(WAVE_RAM2_H, sound.ch3_wave_pattern[5]); ref_low(display.bg2_rot_scale.ref.x, halfword));
WRITE(WAVE_RAM3_L, sound.ch3_wave_pattern[6]); WRITE_2(BG2X_H,
WRITE(WAVE_RAM3_H, sound.ch3_wave_pattern[7]); display.bg2_rot_scale.ref.x,
WRITE(SOUND4CNT_L, sound.ch4_length_env); ref_high(display.bg2_rot_scale.ref.x, halfword));
WRITE(SOUND4CNT_H, sound.ch4_freq_control); WRITE_2(BG2Y_L,
WRITE(SOUNDCNT_L, sound.ctrl_stereo_volume); display.bg2_rot_scale.ref.y,
WRITE(SOUNDCNT_H, sound.ctrl_mixing); ref_low(display.bg2_rot_scale.ref.y, halfword));
WRITE(SOUNDCNT_X, sound.ctrl_sound_on_off); WRITE_2(BG2Y_H,
WRITE(SOUNDBIAS, sound.pwm_control); display.bg2_rot_scale.ref.y,
WRITE(FIFO_A_L, sound.fifo_a[0]); ref_high(display.bg2_rot_scale.ref.y, halfword));
WRITE(FIFO_A_H, sound.fifo_a[1]); WRITE(BG3PA, display.bg3_rot_scale.a)
WRITE(FIFO_B_L, sound.fifo_b[0]); WRITE(BG3PB, display.bg3_rot_scale.b)
WRITE(FIFO_B_H, sound.fifo_b[1]); WRITE(BG3PC, display.bg3_rot_scale.c)
WRITE(BG3PD, display.bg3_rot_scale.d)
WRITE_2(BG3X_L,
display.bg3_rot_scale.ref.x,
ref_low(display.bg3_rot_scale.ref.x, halfword));
WRITE_2(BG3X_H,
display.bg3_rot_scale.ref.x,
ref_high(display.bg3_rot_scale.ref.x, halfword));
WRITE_2(BG3Y_L,
display.bg3_rot_scale.ref.y,
ref_low(display.bg3_rot_scale.ref.y, halfword));
WRITE_2(BG3Y_H,
display.bg3_rot_scale.ref.y,
ref_high(display.bg3_rot_scale.ref.y, halfword));
WRITE(WIN0H, display.win0_horizontal_dimensions)
WRITE(WIN1H, display.win1_horizontal_dimensions)
WRITE(WIN0V, display.win0_vertical_dimensions)
WRITE(WIN1V, display.win1_vertical_dimensions)
WRITE(WININ, display.inside_win_0_1)
WRITE(WINOUT, display.outside_win)
WRITE(MOSAIC, display.mosaic_size)
WRITE(BLDCNT, display.color_special_effects_selection)
WRITE(BLDALPHA, display.alpha_blending_coefficients)
WRITE(BLDY, display.brightness_coefficient)
// system // sound
WRITE_2(POSTFLG, system.post_boot_flag, halfword & 1) WRITE(SOUND1CNT_L, sound.ch1_sweep)
WRITE_2(IME, system.interrupt_master_enabler, halfword & 1) WRITE(SOUND1CNT_H, sound.ch1_duty_length_env)
WRITE(IE, system.interrupt_enable); WRITE(SOUND1CNT_X, sound.ch1_freq_control)
WRITE(IF, system.interrupt_request_flags); WRITE(SOUND2CNT_L, sound.ch2_duty_length_env)
WRITE(WAITCNT, system.waitstate_control); WRITE(SOUND2CNT_H, sound.ch2_freq_control)
WRITE_2(HALTCNT, system.low_power_mode, get_bit(halfword, 7)); WRITE(SOUND3CNT_L, sound.ch3_stop_wave_ram_select)
WRITE(SOUND3CNT_H, sound.ch3_length_volume)
WRITE(SOUND3CNT_X, sound.ch3_freq_control)
WRITE(WAVE_RAM0_L, sound.ch3_wave_pattern[0]);
WRITE(WAVE_RAM0_H, sound.ch3_wave_pattern[1]);
WRITE(WAVE_RAM1_L, sound.ch3_wave_pattern[2]);
WRITE(WAVE_RAM1_H, sound.ch3_wave_pattern[3]);
WRITE(WAVE_RAM2_L, sound.ch3_wave_pattern[4]);
WRITE(WAVE_RAM2_H, sound.ch3_wave_pattern[5]);
WRITE(WAVE_RAM3_L, sound.ch3_wave_pattern[6]);
WRITE(WAVE_RAM3_H, sound.ch3_wave_pattern[7]);
WRITE(SOUND4CNT_L, sound.ch4_length_env);
WRITE(SOUND4CNT_H, sound.ch4_freq_control);
WRITE(SOUNDCNT_L, sound.ctrl_stereo_volume);
WRITE(SOUNDCNT_H, sound.ctrl_mixing);
WRITE(SOUNDCNT_X, sound.ctrl_sound_on_off);
WRITE(SOUNDBIAS, sound.pwm_control);
WRITE(FIFO_A_L, sound.fifo_a[0]);
WRITE(FIFO_A_H, sound.fifo_a[1]);
WRITE(FIFO_B_L, sound.fifo_b[0]);
WRITE(FIFO_B_H, sound.fifo_b[1]);
// dma
case DMA0CNT_H:
dma.channels[0].control.write(halfword);
break;
case DMA1CNT_H:
dma.channels[1].control.write(halfword);
break;
case DMA2CNT_H:
dma.channels[2].control.write(halfword);
break;
case DMA3CNT_H:
dma.channels[3].control.write(halfword);
break;
WRITE(DMA0SAD, dma.channels[0].source[0]);
WRITE(DMA0SAD + 2, dma.channels[0].source[1]);
WRITE(DMA0DAD, dma.channels[0].destination[0]);
WRITE(DMA0DAD + 2, dma.channels[0].destination[1]);
WRITE(DMA0CNT_L, dma.channels[0].word_count);
WRITE(DMA1SAD, dma.channels[1].source[0]);
WRITE(DMA1SAD + 2, dma.channels[1].source[1]);
WRITE(DMA1DAD, dma.channels[1].destination[0]);
WRITE(DMA1DAD + 2, dma.channels[1].destination[1]);
WRITE(DMA1CNT_L, dma.channels[1].word_count);
WRITE(DMA2SAD, dma.channels[2].source[0]);
WRITE(DMA2SAD + 2, dma.channels[2].source[1]);
WRITE(DMA2DAD, dma.channels[2].destination[0]);
WRITE(DMA2DAD + 2, dma.channels[2].destination[1]);
WRITE(DMA2CNT_L, dma.channels[2].word_count);
WRITE(DMA3SAD, dma.channels[3].source[0]);
WRITE(DMA3SAD + 2, dma.channels[3].source[1]);
WRITE(DMA3DAD, dma.channels[3].destination[0]);
WRITE(DMA3DAD + 2, dma.channels[3].destination[1]);
WRITE(DMA3CNT_L, dma.channels[3].word_count);
// system
WRITE_2(POSTFLG, system.post_boot_flag, halfword & 1)
WRITE_2(IME, system.interrupt_master_enabler, halfword & 1)
WRITE(IE, system.interrupt_enable);
WRITE(IF, system.interrupt_request_flags);
WRITE(WAITCNT, system.waitstate_control);
WRITE_2(HALTCNT, system.low_power_mode, get_bit(halfword, 7));
#undef WRITE #undef WRITE
#undef WRITE_2 #undef WRITE_2
@@ -276,4 +415,5 @@ IoDevices::write_halfword(uint32_t address, uint16_t halfword) {
} }
return; return;
} }
} }

View File

@@ -1,3 +1,3 @@
lib_sources += files( lib_sources += files(
'io.cc', 'io.cc'
) )

View File

@@ -1,181 +0,0 @@
#include "memory.hh"
#include "header.hh"
#include "util/crypto.hh"
#include "util/log.hh"
#include <stdexcept>
namespace matar {
Memory::Memory(std::array<uint8_t, BIOS_SIZE>&& bios,
std::vector<uint8_t>&& rom)
: bios(std::move(bios))
, board_wram({ 0 })
, chip_wram({ 0 })
, palette_ram({ 0 })
, vram({ 0 })
, oam_obj_attr({ 0 })
, rom(std::move(rom)) {
std::string bios_hash = crypto::sha256(this->bios);
static constexpr std::string_view expected_hash =
"fd2547724b505f487e6dcb29ec2ecff3af35a841a77ab2e85fd87350abd36570";
if (bios_hash != expected_hash) {
glogger.warn("BIOS hash failed to match, run at your own risk"
"\nExpected : {} "
"\nGot : {}",
expected_hash,
bios_hash);
}
parse_header();
glogger.info("Memory successfully initialised");
glogger.info("Cartridge Title: {}", header.title);
};
uint8_t
Memory::read(uint32_t address) const {
#define MATCHES(AREA, area) \
if (address >= AREA##_START && address < AREA##_START + area.size()) \
return area[address - AREA##_START];
MATCHES(BIOS, bios)
MATCHES(BOARD_WRAM, board_wram)
MATCHES(CHIP_WRAM, chip_wram)
MATCHES(PALETTE_RAM, palette_ram)
MATCHES(VRAM, vram)
MATCHES(OAM_OBJ_ATTR, oam_obj_attr)
MATCHES(ROM_0, rom)
MATCHES(ROM_1, rom)
MATCHES(ROM_2, rom)
glogger.error("Invalid memory region accessed");
return 0xFF;
#undef MATCHES
}
void
Memory::write(uint32_t address, uint8_t byte) {
#define MATCHES(AREA, area) \
if (address >= AREA##_START && address < AREA##_START + area.size()) { \
area[address - AREA##_START] = byte; \
return; \
}
MATCHES(BOARD_WRAM, board_wram)
MATCHES(CHIP_WRAM, chip_wram)
MATCHES(PALETTE_RAM, palette_ram)
MATCHES(VRAM, vram)
MATCHES(OAM_OBJ_ATTR, oam_obj_attr)
glogger.error("Invalid memory region accessed");
#undef MATCHES
}
void
Memory::parse_header() {
if (rom.size() < header.HEADER_SIZE) {
throw std::out_of_range(
"ROM is not large enough to even have a header");
}
// entrypoint
header.entrypoint =
rom[0x00] | rom[0x01] << 8 | rom[0x02] << 16 | rom[0x03] << 24;
// nintendo logo
if (rom[0x9C] != 0x21)
glogger.info("HEADER: BIOS debugger bits not set to 0");
// game info
header.title = std::string(&rom[0xA0], &rom[0xA0 + 12]);
switch (rom[0xAC]) {
case 'A':
header.unique_code = Header::UniqueCode::Old;
break;
case 'B':
header.unique_code = Header::UniqueCode::New;
break;
case 'C':
header.unique_code = Header::UniqueCode::Newer;
break;
case 'F':
header.unique_code = Header::UniqueCode::Famicom;
break;
case 'K':
header.unique_code = Header::UniqueCode::YoshiKoro;
break;
case 'P':
header.unique_code = Header::UniqueCode::Ereader;
break;
case 'R':
header.unique_code = Header::UniqueCode::Warioware;
break;
case 'U':
header.unique_code = Header::UniqueCode::Boktai;
break;
case 'V':
header.unique_code = Header::UniqueCode::DrillDozer;
break;
default:
glogger.error("HEADER: invalid unique code: {}", rom[0xAC]);
}
header.title_code = std::string(&rom[0xAD], &rom[0xAE]);
switch (rom[0xAF]) {
case 'J':
header.i18n = Header::I18n::Japan;
break;
case 'P':
header.i18n = Header::I18n::Europe;
break;
case 'F':
header.i18n = Header::I18n::French;
break;
case 'S':
header.i18n = Header::I18n::Spanish;
break;
case 'E':
header.i18n = Header::I18n::Usa;
break;
case 'D':
header.i18n = Header::I18n::German;
break;
case 'I':
header.i18n = Header::I18n::Italian;
break;
default:
glogger.error("HEADER: invalid destination/language: {}",
rom[0xAF]);
}
if (rom[0xB2] != 0x96)
glogger.error("HEADER: invalid fixed byte at 0xB2");
for (uint32_t i = 0xB5; i < 0xBC; i++) {
if (rom[i] != 0x00)
glogger.error("HEADER: invalid fixed bytes at 0xB5");
}
header.version = rom[0xBC];
// checksum
{
uint32_t i = 0xA0, chk = 0;
while (i <= 0xBC)
chk -= rom[i++];
chk -= 0x19;
chk &= 0xFF;
if (chk != rom[0xBD])
glogger.error("HEADER: checksum does not match");
}
// multiboot not required right now
}
}

View File

@@ -1,18 +1,15 @@
lib_sources = files( lib_sources = files(
'memory.cc',
'bus.cc', 'bus.cc',
) )
if get_option('gdb_debug')
lib_sources += files('gdb_rsp.cc')
endif
subdir('util') subdir('util')
subdir('cpu') subdir('cpu')
subdir('io') subdir('io')
lib_cpp_args = []
if get_option('disassembler')
lib_cpp_args += '-DDISASSEMBLER'
endif
lib = library( lib = library(
meson.project_name(), meson.project_name(),
lib_sources, lib_sources,

View File

@@ -1,3 +1,8 @@
lib_sources += files( lib_sources += files(
'log.cc' 'log.cc',
) 'tcp_server.cc'
)
if get_option('gdb_debug')
lib_sources += files('tcp_server.cc')
endif

89
src/util/tcp_server.cc Normal file
View File

@@ -0,0 +1,89 @@
#include "tcp_server.hh"
#include <netinet/tcp.h>
#include <cstring>
#include <format>
#include <sys/ioctl.h>
#include <unistd.h>
namespace net {
TcpServer::TcpServer()
: server_fd(0)
, client_fd(0) {}
TcpServer::~TcpServer() {
close(server_fd);
close(client_fd);
}
bool
TcpServer::client_waiting() {
int count = 0;
ioctl(client_fd, FIONREAD, &count);
return static_cast<bool>(count);
}
void
TcpServer::run() {
socklen_t cli_addr_size = sizeof(client_addr);
client_fd = ::accept(
server_fd, reinterpret_cast<sockaddr*>(&client_addr), &cli_addr_size);
if (client_fd == -1)
throw std::runtime_error("accept failed");
}
void
TcpServer::start(uint port) {
int opts = 0;
server_fd = socket(PF_INET, SOCK_STREAM, 0);
if (server_fd == -1) {
throw std::runtime_error("creating socket failed");
}
int option = 1;
opts +=
setsockopt(server_fd, SOL_SOCKET, SO_REUSEADDR, &option, sizeof(option));
opts +=
setsockopt(server_fd, IPPROTO_TCP, TCP_NODELAY, &option, sizeof(option));
if (opts != 0) {
throw std::runtime_error("failed to set socket opts");
}
std::memset(&server_addr, 0, sizeof(server_addr));
server_addr.sin_family = PF_INET;
server_addr.sin_addr.s_addr = htonl(INADDR_ANY);
server_addr.sin_port = htons(port);
if (::bind(server_fd,
reinterpret_cast<sockaddr*>(&server_addr),
sizeof(server_addr)) == -1) {
throw std::runtime_error("binding socket failed");
}
if (::listen(server_fd, 1) == -1) {
throw std::runtime_error("listening failed");
}
}
void
TcpServer::send(std::string msg) {
if (::send(client_fd, msg.data(), msg.length(), 0) == -1) {
throw std::runtime_error(
std::format("failed to send message: {}\n", strerror(errno)));
}
}
std::string
TcpServer::receive(uint length) {
ssize_t num_bytes = recv(client_fd, msg, length, 0);
msg[num_bytes] = '\0';
if (num_bytes < 0) {
throw std::runtime_error(
std::format("failed to receive messages: {}\n", strerror(errno)));
}
return std::string(msg);
}
}

28
src/util/tcp_server.hh Normal file
View File

@@ -0,0 +1,28 @@
#pragma once
#include <netinet/in.h>
#include <string>
namespace net {
class TcpServer {
public:
TcpServer();
~TcpServer();
void run();
void start(uint port);
void send(std::string msg);
std::string receive(uint length);
std::string receive_all() { return receive(MAX_PACKET_SIZE); };
bool client_waiting();
private:
static constexpr uint MAX_PACKET_SIZE = 4096;
char msg[MAX_PACKET_SIZE];
int server_fd;
int client_fd;
sockaddr_in server_addr;
sockaddr_in client_addr;
};
}

View File

@@ -8,38 +8,121 @@ using namespace matar;
class BusFixture { class BusFixture {
public: public:
BusFixture() BusFixture()
: bus(Memory(std::array<uint8_t, Memory::BIOS_SIZE>(), : bus(Bus::init(std::array<uint8_t, Bus::BIOS_SIZE>(),
std::vector<uint8_t>(Header::HEADER_SIZE))) {} std::vector<uint8_t>(Header::HEADER_SIZE))) {}
protected: protected:
Bus bus; std::shared_ptr<Bus> bus;
}; };
TEST_CASE_METHOD(BusFixture, "Byte", TAG) { TEST_CASE("bios", TAG) {
CHECK(bus.read_byte(0x30001A9) == 0); std::array<uint8_t, Bus::BIOS_SIZE> bios = { 0 };
bus.write_byte(0x30001A9, 0xEC); // populate bios
CHECK(bus.read_byte(0x30001A9) == 0xEC); bios[0] = 0xAC;
CHECK(bus.read_word(0x30001A9) == 0xEC); bios[0x3FFF] = 0x48;
CHECK(bus.read_halfword(0x30001A9) == 0xEC); bios[0x2A56] = 0x10;
auto bus =
Bus::init(std::move(bios), std::vector<uint8_t>(Header::HEADER_SIZE));
CHECK(bus->read_byte(0) == 0xAC);
CHECK(bus->read_byte(0x3FFF) == 0x48);
CHECK(bus->read_byte(0x2A56) == 0x10);
} }
TEST_CASE_METHOD(BusFixture, "Halfword", TAG) { TEST_CASE_METHOD(BusFixture, "board wram", TAG) {
CHECK(bus.read_halfword(0x202FED9) == 0); bus->write_byte(0x2000000, 0xAC);
CHECK(bus->read_byte(0x2000000) == 0xAC);
bus.write_halfword(0x202FED9, 0x1A4A); bus->write_byte(0x203FFFF, 0x48);
CHECK(bus.read_halfword(0x202FED9) == 0x1A4A); CHECK(bus->read_byte(0x203FFFF) == 0x48);
CHECK(bus.read_word(0x202FED9) == 0x1A4A);
CHECK(bus.read_byte(0x202FED9) == 0x4A); bus->write_byte(0x2022A56, 0x10);
CHECK(bus->read_byte(0x2022A56) == 0x10);
} }
TEST_CASE_METHOD(BusFixture, "Word", TAG) { TEST_CASE_METHOD(BusFixture, "chip wram", TAG) {
CHECK(bus.read_word(0x600EE34) == 0); bus->write_byte(0x3000000, 0xAC);
CHECK(bus->read_byte(0x3000000) == 0xAC);
bus.write_word(0x600EE34, 0x3ACC491D); bus->write_byte(0x3007FFF, 0x48);
CHECK(bus.read_word(0x600EE34) == 0x3ACC491D); CHECK(bus->read_byte(0x3007FFF) == 0x48);
CHECK(bus.read_halfword(0x600EE34) == 0x491D);
CHECK(bus.read_byte(0x600EE34) == 0x1D); bus->write_byte(0x3002A56, 0x10);
CHECK(bus->read_byte(0x3002A56) == 0x10);
}
TEST_CASE_METHOD(BusFixture, "palette ram", TAG) {
bus->write_byte(0x5000000, 0xAC);
CHECK(bus->read_byte(0x5000000) == 0xAC);
bus->write_byte(0x50003FF, 0x48);
CHECK(bus->read_byte(0x50003FF) == 0x48);
bus->write_byte(0x5000156, 0x10);
CHECK(bus->read_byte(0x5000156) == 0x10);
}
TEST_CASE_METHOD(BusFixture, "video ram", TAG) {
bus->write_byte(0x6000000, 0xAC);
CHECK(bus->read_byte(0x6000000) == 0xAC);
bus->write_byte(0x6017FFF, 0x48);
CHECK(bus->read_byte(0x6017FFF) == 0x48);
bus->write_byte(0x6012A56, 0x10);
CHECK(bus->read_byte(0x6012A56) == 0x10);
}
TEST_CASE_METHOD(BusFixture, "oam obj ram", TAG) {
bus->write_byte(0x7000000, 0xAC);
CHECK(bus->read_byte(0x7000000) == 0xAC);
bus->write_byte(0x70003FF, 0x48);
CHECK(bus->read_byte(0x70003FF) == 0x48);
bus->write_byte(0x7000156, 0x10);
CHECK(bus->read_byte(0x7000156) == 0x10);
}
TEST_CASE("rom", TAG) {
std::vector<uint8_t> rom(32 * 1024 * 1024, 0);
// populate rom
rom[0] = 0xAC;
rom[0x1FFFFFF] = 0x48;
rom[0x0EF0256] = 0x10;
// 32 megabyte ROM
auto bus = Bus::init(std::array<uint8_t, Bus::BIOS_SIZE>(), std::move(rom));
SECTION("ROM1") {
CHECK(bus->read_byte(0x8000000) == 0xAC);
CHECK(bus->read_byte(0x9FFFFFF) == 0x48);
CHECK(bus->read_byte(0x8EF0256) == 0x10);
}
SECTION("ROM2") {
CHECK(bus->read_byte(0xA000000) == 0xAC);
CHECK(bus->read_byte(0xBFFFFFF) == 0x48);
CHECK(bus->read_byte(0xAEF0256) == 0x10);
}
SECTION("ROM3") {
CHECK(bus->read_byte(0xC000000) == 0xAC);
CHECK(bus->read_byte(0xDFFFFFF) == 0x48);
CHECK(bus->read_byte(0xCEF0256) == 0x10);
}
}
TEST_CASE_METHOD(BusFixture, "internal cycle", TAG) {
uint32_t cycles = bus->get_cycles();
bus->internal_cycle();
bus->internal_cycle();
CHECK(bus->get_cycles() == cycles + 2);
} }
#undef TAG #undef TAG

View File

@@ -15,9 +15,16 @@ TEST_CASE_METHOD(CpuFixture, "Branch and Exchange", TAG) {
setr(3, 342800); setr(3, 342800);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 3);
CHECK(getr(15) == 342800); INFO(getr(15));
INFO(getr(15));
INFO(getr(15));
INFO(getr(15));
// +8 cuz pipeline flush
CHECK(getr(15) == 342808);
} }
TEST_CASE_METHOD(CpuFixture, "Branch", TAG) { TEST_CASE_METHOD(CpuFixture, "Branch", TAG) {
@@ -27,10 +34,13 @@ TEST_CASE_METHOD(CpuFixture, "Branch", TAG) {
// set PC to 48 // set PC to 48
setr(15, 48); setr(15, 48);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 3);
// 48 + offset // 48 + offset
CHECK(getr(15) == 3489796); // +8 cuz pipeline flush
CHECK(getr(15) == 3489804);
CHECK(getr(14) == 0); CHECK(getr(14) == 0);
// with link // with link
@@ -40,7 +50,8 @@ TEST_CASE_METHOD(CpuFixture, "Branch", TAG) {
exec(data); exec(data);
// 48 + offset // 48 + offset
CHECK(getr(15) == 3489796); // +8 cuz pipeline flush
CHECK(getr(15) == 3489804);
// pc was set to 48 // pc was set to 48
CHECK(getr(14) == 48 - INSTRUCTION_SIZE); CHECK(getr(14) == 48 - INSTRUCTION_SIZE);
} }
@@ -53,11 +64,13 @@ TEST_CASE_METHOD(CpuFixture, "Multiply", TAG) {
setr(10, 234912349); setr(10, 234912349);
setr(11, 124897); setr(11, 124897);
setr(3, 99999); setr(3, 99999); // m = 3 since [32:24] bits are 0
{ {
uint32_t result = 234912349ull * 124897ull & 0xFFFFFFFF; uint32_t result = 234912349ull * 124897ull & 0xFFFFFFFF;
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 4); // S + mI
CHECK(getr(5) == result); CHECK(getr(5) == result);
} }
@@ -66,7 +79,9 @@ TEST_CASE_METHOD(CpuFixture, "Multiply", TAG) {
{ {
uint32_t result = (234912349ull * 124897ull + 99999ull) & 0xFFFFFFFF; uint32_t result = (234912349ull * 124897ull + 99999ull) & 0xFFFFFFFF;
multiply->acc = true; multiply->acc = true;
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 5); // S + mI + I
CHECK(getr(5) == result); CHECK(getr(5) == result);
} }
@@ -105,12 +120,14 @@ TEST_CASE_METHOD(CpuFixture, "Multiply Long", TAG) {
MultiplyLong* multiply_long = std::get_if<MultiplyLong>(&data); MultiplyLong* multiply_long = std::get_if<MultiplyLong>(&data);
setr(10, 234912349); setr(10, 234912349);
setr(11, 124897); setr(11, 124897); // m = 3
// unsigned // unsigned
{ {
uint64_t result = 234912349ull * 124897ull; uint64_t result = 234912349ull * 124897ull;
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 5); // S + (m+1)I
CHECK(getr(3) == bit_range(result, 0, 31)); CHECK(getr(3) == bit_range(result, 0, 31));
CHECK(getr(5) == bit_range(result, 32, 63)); CHECK(getr(5) == bit_range(result, 32, 63));
@@ -121,7 +138,9 @@ TEST_CASE_METHOD(CpuFixture, "Multiply Long", TAG) {
int64_t result = 234912349ll * -124897ll; int64_t result = 234912349ll * -124897ll;
setr(11, getr(11) * -1); setr(11, getr(11) * -1);
multiply_long->uns = false; multiply_long->uns = false;
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 5); // S + (m+1)I
CHECK(getr(3) == static_cast<uint32_t>(bit_range(result, 0, 31))); CHECK(getr(3) == static_cast<uint32_t>(bit_range(result, 0, 31)));
CHECK(getr(5) == static_cast<uint32_t>(bit_range(result, 32, 63))); CHECK(getr(5) == static_cast<uint32_t>(bit_range(result, 32, 63)));
@@ -136,7 +155,9 @@ TEST_CASE_METHOD(CpuFixture, "Multiply Long", TAG) {
234912349ll * -124897ll + (99999ll | -444333391ll << 32); 234912349ll * -124897ll + (99999ll | -444333391ll << 32);
multiply_long->acc = true; multiply_long->acc = true;
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 6); // S + (m+2)I
CHECK(getr(3) == static_cast<uint32_t>(bit_range(result, 0, 31))); CHECK(getr(3) == static_cast<uint32_t>(bit_range(result, 0, 31)));
CHECK(getr(5) == static_cast<uint32_t>(bit_range(result, 32, 63))); CHECK(getr(5) == static_cast<uint32_t>(bit_range(result, 32, 63)));
@@ -182,13 +203,15 @@ TEST_CASE_METHOD(CpuFixture, "Single Data Swap", TAG) {
setr(9, 0x3003FED); setr(9, 0x3003FED);
setr(3, 94235087); setr(3, 94235087);
setr(3, -259039045); setr(3, -259039045);
bus.write_word(getr(9), 3241011111); bus->write_word(getr(9), 3241011111);
SECTION("word") { SECTION("word") {
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 4); // S + 2N + I
CHECK(getr(4) == 3241011111); CHECK(getr(4) == 3241011111);
CHECK(bus.read_word(getr(9)) == static_cast<uint32_t>(-259039045)); CHECK(bus->read_word(getr(9)) == static_cast<uint32_t>(-259039045));
} }
SECTION("byte") { SECTION("byte") {
@@ -196,7 +219,7 @@ TEST_CASE_METHOD(CpuFixture, "Single Data Swap", TAG) {
exec(data); exec(data);
CHECK(getr(4) == (3241011111 & 0xFF)); CHECK(getr(4) == (3241011111 & 0xFF));
CHECK(bus.read_byte(getr(9)) == CHECK(bus->read_byte(getr(9)) ==
static_cast<uint8_t>(-259039045 & 0xFF)); static_cast<uint8_t>(-259039045 & 0xFF));
} }
} }
@@ -226,8 +249,10 @@ TEST_CASE_METHOD(CpuFixture, "Single Data Transfer", TAG) {
// shifted register (immediate) // shifted register (immediate)
{ {
// 0x31E + 0x3000004 // 0x31E + 0x3000004
bus.write_word(0x30031E4, 95995); bus->write_word(0x30031E4, 95995);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 3); // S + N + I
CHECK(getr(5) == 95995); CHECK(getr(5) == 95995);
setr(5, 0); setr(5, 0);
@@ -244,7 +269,7 @@ TEST_CASE_METHOD(CpuFixture, "Single Data Transfer", TAG) {
setr(12, 2); setr(12, 2);
// 6384 + 0x3000004 // 6384 + 0x3000004
bus.write_word(0x30018F4, 3948123487); bus->write_word(0x30018F4, 3948123487);
exec(data); exec(data);
CHECK(getr(5) == 3948123487); CHECK(getr(5) == 3948123487);
@@ -254,7 +279,7 @@ TEST_CASE_METHOD(CpuFixture, "Single Data Transfer", TAG) {
{ {
data_transfer->offset = static_cast<uint16_t>(0xDA1); data_transfer->offset = static_cast<uint16_t>(0xDA1);
// 0xDA1 + 0x3000004 // 0xDA1 + 0x3000004
bus.write_word(0x3000DA5, 68795467); bus->write_word(0x3000DA5, 68795467);
exec(data); exec(data);
@@ -266,7 +291,7 @@ TEST_CASE_METHOD(CpuFixture, "Single Data Transfer", TAG) {
setr(7, 0x3005E0D); setr(7, 0x3005E0D);
data_transfer->up = false; data_transfer->up = false;
// 0x3005E0D - 0xDA1 // 0x3005E0D - 0xDA1
bus.write_word(0x300506C, 5949595); bus->write_word(0x300506C, 5949595);
exec(data); exec(data);
@@ -279,7 +304,7 @@ TEST_CASE_METHOD(CpuFixture, "Single Data Transfer", TAG) {
{ {
data_transfer->write = true; data_transfer->write = true;
// 0x3005E0D - 0xDA1 // 0x3005E0D - 0xDA1
bus.write_word(0x300506C, 967844); bus->write_word(0x300506C, 967844);
exec(data); exec(data);
@@ -292,7 +317,7 @@ TEST_CASE_METHOD(CpuFixture, "Single Data Transfer", TAG) {
{ {
data_transfer->write = false; data_transfer->write = false;
data_transfer->pre = false; data_transfer->pre = false;
bus.write_word(0x300506C, 61119); bus->write_word(0x300506C, 61119);
exec(data); exec(data);
@@ -305,9 +330,11 @@ TEST_CASE_METHOD(CpuFixture, "Single Data Transfer", TAG) {
{ {
data_transfer->load = false; data_transfer->load = false;
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 2); // 2N for store
CHECK(bus.read_word(0x30042CB) == 61119); CHECK(bus->read_word(0x30042CB) == 61119);
// 0x30042CB - 0xDA1 // 0x30042CB - 0xDA1
CHECK(getr(7) == 0x300352A); CHECK(getr(7) == 0x300352A);
} }
@@ -315,13 +342,15 @@ TEST_CASE_METHOD(CpuFixture, "Single Data Transfer", TAG) {
// r15 as rn // r15 as rn
{ {
data_transfer->rn = 15; data_transfer->rn = 15;
setr(15, 0x300352A); setr(15, 0x300352C); // word aligned
exec(data); exec(data);
CHECK(bus.read_word(0x300352A) == 61119); CHECK(bus->read_word(0x300352C) == 61119);
// 0x300352A - 0xDA1 // 0x300352C - 0xDA1
CHECK(getr(15) == 0x3002789); // +4 cuz PC advanced
// and then word aligned
CHECK(getr(15) == 0x300278C);
// cleanup // cleanup
data_transfer->rn = 7; data_transfer->rn = 7;
@@ -334,13 +363,12 @@ TEST_CASE_METHOD(CpuFixture, "Single Data Transfer", TAG) {
exec(data); exec(data);
CHECK(bus.read_word(0x300352A + INSTRUCTION_SIZE) == 444444); CHECK(bus->read_word(0x300352A) == 444444 + 4);
// 0x300352A - 0xDA1 // 0x300352A - 0xDA1
CHECK(getr(7) == 0x3002789 + INSTRUCTION_SIZE); CHECK(getr(7) == 0x3002789);
// cleanup // cleanup
data_transfer->rd = 5; data_transfer->rd = 5;
setr(7, getr(7) - INSTRUCTION_SIZE);
} }
// byte // byte
@@ -351,10 +379,33 @@ TEST_CASE_METHOD(CpuFixture, "Single Data Transfer", TAG) {
exec(data); exec(data);
CHECK(bus.read_word(0x3002789) == (458267584 & 0xFF)); CHECK(bus->read_word(0x3002789) == (458267584 & 0xFF));
// 0x3002789 - 0xDA1 // 0x3002789 - 0xDA1
CHECK(getr(7) == 0x30019E8); CHECK(getr(7) == 0x30019E8);
} }
// r15 as rd with load
{
data_transfer->rd = 15;
data_transfer->load = true;
setr(15, 0);
bus->write_byte(0x30019E8, 0xE2);
uint32_t cycles = bus->get_cycles();
exec(data);
CHECK(bus->get_cycles() ==
cycles + 5); // 2S + 2N + I for load with rd=15
// +8 cuz pipeline flushed then word aligned
// so +6
CHECK(getr(15) == 0xE8);
// 0x30019E8 - 0xDA1
CHECK(getr(7) == 0x3000C47);
// cleanup
data_transfer->rd = 5;
}
} }
TEST_CASE_METHOD(CpuFixture, "Halfword Transfer", TAG) { TEST_CASE_METHOD(CpuFixture, "Halfword Transfer", TAG) {
@@ -377,8 +428,11 @@ TEST_CASE_METHOD(CpuFixture, "Halfword Transfer", TAG) {
// register offset // register offset
{ {
// 0x300611E + 0x384 // 0x300611E + 0x384
bus.write_word(0x30064A2, 3948123487); bus->write_word(0x30064A2, 3948123487);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 3); // S + N + I
CHECK(getr(11) == (3948123487 & 0xFFFF)); CHECK(getr(11) == (3948123487 & 0xFFFF));
} }
@@ -388,7 +442,7 @@ TEST_CASE_METHOD(CpuFixture, "Halfword Transfer", TAG) {
hw_transfer->imm = true; hw_transfer->imm = true;
hw_transfer->offset = 0xA7; hw_transfer->offset = 0xA7;
// 0x300611E + 0xA7 // 0x300611E + 0xA7
bus.write_word(0x30061C5, 594633302); bus->write_word(0x30061C5, 594633302);
exec(data); exec(data);
CHECK(getr(11) == (594633302 & 0xFFFF)); CHECK(getr(11) == (594633302 & 0xFFFF));
@@ -398,7 +452,7 @@ TEST_CASE_METHOD(CpuFixture, "Halfword Transfer", TAG) {
{ {
hw_transfer->up = false; hw_transfer->up = false;
// 0x300611E - 0xA7 // 0x300611E - 0xA7
bus.write_word(0x3006077, 222221); bus->write_word(0x3006077, 222221);
exec(data); exec(data);
@@ -411,7 +465,7 @@ TEST_CASE_METHOD(CpuFixture, "Halfword Transfer", TAG) {
{ {
hw_transfer->write = true; hw_transfer->write = true;
// 0x300611E - 0xA7 // 0x300611E - 0xA7
bus.write_word(0x3006077, 100000005); bus->write_word(0x3006077, 100000005);
exec(data); exec(data);
@@ -423,7 +477,7 @@ TEST_CASE_METHOD(CpuFixture, "Halfword Transfer", TAG) {
{ {
hw_transfer->pre = false; hw_transfer->pre = false;
hw_transfer->write = false; hw_transfer->write = false;
bus.write_word(0x3006077, 6111909); bus->write_word(0x3006077, 6111909);
exec(data); exec(data);
@@ -436,9 +490,11 @@ TEST_CASE_METHOD(CpuFixture, "Halfword Transfer", TAG) {
{ {
hw_transfer->load = false; hw_transfer->load = false;
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 2); // 2N
CHECK(bus.read_halfword(0x3005FD0) == (6111909 & 0xFFFF)); CHECK(bus->read_halfword(0x3005FD0) == (6111909 & 0xFFFF));
// 0x3005FD0 - 0xA7 // 0x3005FD0 - 0xA7
CHECK(getr(10) == 0x3005F29); CHECK(getr(10) == 0x3005F29);
} }
@@ -446,14 +502,15 @@ TEST_CASE_METHOD(CpuFixture, "Halfword Transfer", TAG) {
// r15 as rn // r15 as rn
{ {
hw_transfer->rn = 15; hw_transfer->rn = 15;
setr(15, 0x3005F29); setr(15, 0x3005F28); // word aligned
exec(data); exec(data);
CHECK(bus.read_halfword(0x3005F29 - 2 * INSTRUCTION_SIZE) == CHECK(bus->read_halfword(0x3005F28) == (6111909 & 0xFFFF));
(6111909 & 0xFFFF)); // 0x3005F28 - 0xA7
// 0x3005F29 - 0xA7 // +4 cuz PC advanced
CHECK(getr(15) == 0x3005E82 - 2 * INSTRUCTION_SIZE); // and then word aligned
CHECK(getr(15) == 0x3005E84);
// cleanup // cleanup
hw_transfer->rn = 10; hw_transfer->rn = 10;
@@ -466,20 +523,19 @@ TEST_CASE_METHOD(CpuFixture, "Halfword Transfer", TAG) {
exec(data); exec(data);
CHECK(bus.read_halfword(0x3005F29 + INSTRUCTION_SIZE) == 224); CHECK(bus->read_halfword(0x3005F29) == 224 + 4);
// 0x3005F29 - 0xA7 // 0x3005F29 - 0xA7
CHECK(getr(10) == 0x3005E82 + INSTRUCTION_SIZE); CHECK(getr(10) == 0x3005E82);
// cleanup // cleanup
hw_transfer->rd = 11; hw_transfer->rd = 11;
setr(10, getr(10) - INSTRUCTION_SIZE);
} }
// signed halfword // signed halfword
{ {
hw_transfer->load = true; hw_transfer->load = true;
hw_transfer->sign = true; hw_transfer->sign = true;
bus.write_halfword(0x3005E82, -12345); bus->write_halfword(0x3005E82, -12345);
exec(data); exec(data);
@@ -491,7 +547,7 @@ TEST_CASE_METHOD(CpuFixture, "Halfword Transfer", TAG) {
// signed byte // signed byte
{ {
hw_transfer->half = false; hw_transfer->half = false;
bus.write_byte(0x3005DDB, -56); bus->write_byte(0x3005DDB, -56);
exec(data); exec(data);
@@ -499,6 +555,28 @@ TEST_CASE_METHOD(CpuFixture, "Halfword Transfer", TAG) {
// 0x3005DDB - 0xA7 // 0x3005DDB - 0xA7
CHECK(getr(10) == 0x3005D34); CHECK(getr(10) == 0x3005D34);
} }
// r15 as rd with load
{
hw_transfer->rd = 15;
hw_transfer->load = true;
setr(15, 0);
bus->write_byte(0x3005D34, 56);
uint32_t cycles = bus->get_cycles();
exec(data);
CHECK(bus->get_cycles() ==
cycles + 5); // 2S + 2N + I for load with rd=15
// +8 cuz pipeline flushed then word aligned
CHECK(getr(15) == static_cast<uint32_t>(56 + 8));
// 0x3005D34 - 0xA7
CHECK(getr(10) == 0x3005C8D);
// cleanup
hw_transfer->rd = 11;
}
} }
TEST_CASE_METHOD(CpuFixture, "Block Data Transfer", TAG) { TEST_CASE_METHOD(CpuFixture, "Block Data Transfer", TAG) {
@@ -517,14 +595,14 @@ TEST_CASE_METHOD(CpuFixture, "Block Data Transfer", TAG) {
SECTION("load") { SECTION("load") {
static constexpr uint32_t address = 0x3000D78; static constexpr uint32_t address = 0x3000D78;
// populate memory // populate memory
bus.write_word(address, 38947234); bus->write_word(address, 38947234);
bus.write_word(address + alignment, 237164); bus->write_word(address + alignment, 237164);
bus.write_word(address + alignment * 2, 679785111); bus->write_word(address + alignment * 2, 679785111);
bus.write_word(address + alignment * 3, 905895898); bus->write_word(address + alignment * 3, 905895898);
bus.write_word(address + alignment * 4, 131313333); bus->write_word(address + alignment * 4, 131313333);
bus.write_word(address + alignment * 5, 131); bus->write_word(address + alignment * 5, 131);
bus.write_word(address + alignment * 6, 989231); bus->write_word(address + alignment * 6, 989231);
bus.write_word(address + alignment * 7, 6); bus->write_word(address + alignment * 7, 6);
auto checker = [this](uint32_t rnval = 0) { auto checker = [this](uint32_t rnval = 0) {
CHECK(getr(0) == 237164); CHECK(getr(0) == 237164);
@@ -542,7 +620,10 @@ TEST_CASE_METHOD(CpuFixture, "Block Data Transfer", TAG) {
CHECK(getr(12) == 0); CHECK(getr(12) == 0);
CHECK(getr(13) == 989231); CHECK(getr(13) == 989231);
CHECK(getr(14) == 0); CHECK(getr(14) == 0);
CHECK(getr(15) == 6);
// setting r15 as 6, flushes the pipeline causing it to go 6 + 8
// i.e, 14. word aligning this, gives us 12
CHECK(getr(15) == 12);
for (uint8_t i = 0; i < 16; i++) { for (uint8_t i = 0; i < 16; i++) {
setr(i, 0); setr(i, 0);
@@ -550,7 +631,9 @@ TEST_CASE_METHOD(CpuFixture, "Block Data Transfer", TAG) {
}; };
setr(10, address); setr(10, address);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 11); // (n+1)S + 2N + I
checker(address); checker(address);
// with write // with write
@@ -610,23 +693,30 @@ TEST_CASE_METHOD(CpuFixture, "Block Data Transfer", TAG) {
setr(8, 131313333); setr(8, 131313333);
setr(11, 131); setr(11, 131);
setr(13, 989231); setr(13, 989231);
setr(15, 6); setr(15, 4); // word align
auto checker = [this]() { // we will count the number of steps to count PC advances
CHECK(bus.read_word(address + alignment) == 237164); uint8_t steps = 0;
CHECK(bus.read_word(address + alignment * 2) == 679785111);
CHECK(bus.read_word(address + alignment * 3) == 905895898); auto checker = [this, &steps]() {
CHECK(bus.read_word(address + alignment * 4) == 131313333); CHECK(bus->read_word(address + alignment) == 237164);
CHECK(bus.read_word(address + alignment * 5) == 131); CHECK(bus->read_word(address + alignment * 2) == 679785111);
CHECK(bus.read_word(address + alignment * 6) == 989231); CHECK(bus->read_word(address + alignment * 3) == 905895898);
CHECK(bus.read_word(address + alignment * 7) == 6); CHECK(bus->read_word(address + alignment * 4) == 131313333);
CHECK(bus->read_word(address + alignment * 5) == 131);
CHECK(bus->read_word(address + alignment * 6) == 989231);
CHECK(bus->read_word(address + alignment * 7) ==
4 + (4 * (steps - 1)));
for (uint8_t i = 1; i < 8; i++) for (uint8_t i = 1; i < 8; i++)
bus.write_word(address + alignment * i, 0); bus->write_word(address + alignment * i, 0);
}; };
setr(10, address); // base setr(10, address); // base
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 8); // 2N + (n-1)S
steps++;
checker(); checker();
// decrement // decrement
@@ -635,6 +725,7 @@ TEST_CASE_METHOD(CpuFixture, "Block Data Transfer", TAG) {
// adjust rn // adjust rn
setr(10, address + alignment * 8); setr(10, address + alignment * 8);
exec(data); exec(data);
steps++;
checker(); checker();
// post increment // post increment
@@ -643,6 +734,7 @@ TEST_CASE_METHOD(CpuFixture, "Block Data Transfer", TAG) {
// adjust rn // adjust rn
setr(10, address + alignment); setr(10, address + alignment);
exec(data); exec(data);
steps++;
checker(); checker();
// post decrement // post decrement
@@ -650,14 +742,16 @@ TEST_CASE_METHOD(CpuFixture, "Block Data Transfer", TAG) {
// adjust rn // adjust rn
setr(10, address + alignment * 7); setr(10, address + alignment * 7);
exec(data); exec(data);
steps++;
checker(); checker();
// with s bit // with s bit
cpu.chg_mode(Mode::Fiq); cpu.chg_mode(Mode::Fiq);
block_transfer->s = true; block_transfer->s = true;
exec(data); exec(data);
steps++;
// User's R13 is different (unset at this point) // User's R13 is different (unset at this point)
CHECK(bus.read_word(address + alignment * 6) == 0); CHECK(bus->read_word(address + alignment * 6) == 0);
} }
} }
@@ -674,7 +768,9 @@ TEST_CASE_METHOD(CpuFixture, "PSR Transfer", TAG) {
setr(12, 12389398); setr(12, 12389398);
CHECK(psr().raw() != getr(12)); CHECK(psr().raw() != getr(12));
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 1); // 1S
CHECK(psr().raw() == getr(12)); CHECK(psr().raw() == getr(12));
psr_transfer->spsr = true; psr_transfer->spsr = true;
@@ -691,7 +787,9 @@ TEST_CASE_METHOD(CpuFixture, "PSR Transfer", TAG) {
setr(12, 16556u << 8); setr(12, 16556u << 8);
CHECK(psr().raw() != getr(12)); CHECK(psr().raw() != getr(12));
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 1); // 1S
CHECK(psr().raw() == getr(12)); CHECK(psr().raw() == getr(12));
psr_transfer->spsr = true; psr_transfer->spsr = true;
@@ -708,7 +806,9 @@ TEST_CASE_METHOD(CpuFixture, "PSR Transfer", TAG) {
setr(12, 1490352945); setr(12, 1490352945);
// go to the reserved bits // go to the reserved bits
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 1); // 1S
CHECK(psr().n() == get_bit(1490352945, 31)); CHECK(psr().n() == get_bit(1490352945, 31));
CHECK(psr().z() == get_bit(1490352945, 30)); CHECK(psr().z() == get_bit(1490352945, 30));
CHECK(psr().c() == get_bit(1490352945, 29)); CHECK(psr().c() == get_bit(1490352945, 29));
@@ -719,6 +819,7 @@ TEST_CASE_METHOD(CpuFixture, "PSR Transfer", TAG) {
psr_transfer->imm = true; psr_transfer->imm = true;
psr_transfer->spsr = true; psr_transfer->spsr = true;
exec(data); exec(data);
CHECK(psr().n() == get_bit(1490352945, 31));
CHECK(psr(true).n() == get_bit(9933394, 31)); CHECK(psr(true).n() == get_bit(9933394, 31));
CHECK(psr(true).z() == get_bit(9933394, 30)); CHECK(psr(true).z() == get_bit(9933394, 30));
CHECK(psr(true).c() == get_bit(9933394, 29)); CHECK(psr(true).c() == get_bit(9933394, 29));
@@ -750,7 +851,9 @@ TEST_CASE_METHOD(CpuFixture, "Data Processing", TAG) {
{ {
// rm // rm
setr(3, 1596); setr(3, 1596);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 1); // 1S
// -28717 & 12768 // -28717 & 12768
CHECK(getr(5) == 448); CHECK(getr(5) == 448);
} }
@@ -767,7 +870,11 @@ TEST_CASE_METHOD(CpuFixture, "Data Processing", TAG) {
setr(3, 1596); setr(3, 1596);
// rs // rs
setr(12, 2); setr(12, 2);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 2); // 1S + 1I
// -28717 & 6384 // -28717 & 6384
CHECK(getr(5) == 2256); CHECK(getr(5) == 2256);
} }
@@ -1063,10 +1170,12 @@ TEST_CASE_METHOD(CpuFixture, "Data Processing", TAG) {
processing->rd = 15; processing->rd = 15;
setr(15, 0); setr(15, 0);
CHECK(psr(true).raw() != psr().raw()); CHECK(psr(true).raw() != psr().raw());
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 3); // 2S + N
// ~54924809 // ~54924809 + 8 (for flush) and then word adjust
CHECK(getr(15) == static_cast<uint32_t>(-54924810)); CHECK(getr(15) == static_cast<uint32_t>(-54924804));
// flags are not set // flags are not set
flags(false, false, false, false); flags(false, false, false, false);

View File

@@ -2,6 +2,7 @@
Psr Psr
CpuFixture::psr(bool spsr) { CpuFixture::psr(bool spsr) {
uint32_t pc = getr(15);
Psr psr(0); Psr psr(0);
Cpu tmp = cpu; Cpu tmp = cpu;
arm::Instruction instruction( arm::Instruction instruction(
@@ -11,17 +12,19 @@ CpuFixture::psr(bool spsr) {
.type = arm::PsrTransfer::Type::Mrs, .type = arm::PsrTransfer::Type::Mrs,
.imm = false }); .imm = false });
instruction.exec(tmp); tmp.exec(instruction);
psr.set_all(getr_(0, tmp)); psr.set_all(getr_(0, tmp));
// reset pc
setr(15, pc);
return psr; return psr;
} }
void void
CpuFixture::set_psr(Psr psr, bool spsr) { CpuFixture::set_psr(Psr psr, bool spsr) {
// R0 uint32_t pc = getr(15);
uint32_t old = getr(0); uint32_t old = getr(0);
setr(0, psr.raw()); setr(0, psr.raw());
arm::Instruction instruction( arm::Instruction instruction(
@@ -31,22 +34,23 @@ CpuFixture::set_psr(Psr psr, bool spsr) {
.type = arm::PsrTransfer::Type::Msr, .type = arm::PsrTransfer::Type::Msr,
.imm = false }); .imm = false });
instruction.exec(cpu); cpu.exec(instruction);
setr(0, old); setr(0, old);
// reset PC
setr(15, pc);
} }
// We need these workarounds to just use the public API and not private // We need these workarounds to just use the public API and not private
// fields. Assuming that these work correctly is necessary. Besides, all that // fields. Assuming that these work correctly is necessary. Besides, all that
// matters is that the public API is correct. // matters is that the public API is correct.
uint32_t uint32_t
CpuFixture::getr_(uint8_t r, Cpu& cpu) { CpuFixture::getr_(uint8_t r, Cpu tmp) {
uint32_t addr = 0x02000000; uint32_t addr = 0x02000000;
uint8_t offset = r == 15 ? 4 : 0; uint32_t word = bus->read_word(addr);
uint32_t word = bus.read_word(addr + offset); uint32_t ret = 0xFFFFFFFF;
Cpu tmp = cpu; uint8_t base = r ? 0 : 1;
uint32_t ret = 0xFFFFFFFF;
uint8_t base = r ? 0 : 1;
// set R0/R1 = addr // set R0/R1 = addr
arm::Instruction zero( arm::Instruction zero(
@@ -69,16 +73,14 @@ CpuFixture::getr_(uint8_t r, Cpu& cpu) {
.up = true, .up = true,
.pre = true }); .pre = true });
zero.exec(tmp); tmp.exec(zero);
get.exec(tmp); tmp.exec(get);
addr += offset; ret = bus->read_word(addr);
ret = bus.read_word(addr); bus->write_word(addr, word);
bus.write_word(addr, word); return ret - (r == 15 ? 4 : 0); // +4 for rd = 15 in str
return ret;
} }
void void
@@ -86,11 +88,12 @@ CpuFixture::setr_(uint8_t r, uint32_t value, Cpu& cpu) {
// set register // set register
arm::Instruction set( arm::Instruction set(
Condition::AL, Condition::AL,
arm::DataProcessing{ .operand = value, arm::DataProcessing{
.rd = r, .operand = (r == 15 ? value - 8 : value), // account for pipeline flush
.rn = 0, .rd = r,
.set = false, .rn = 0,
.opcode = arm::DataProcessing::OpCode::MOV }); .set = false,
.opcode = arm::DataProcessing::OpCode::MOV });
set.exec(cpu); cpu.exec(set);
} }

View File

@@ -5,37 +5,66 @@ using namespace matar;
class CpuFixture { class CpuFixture {
public: public:
CpuFixture() CpuFixture()
: bus(Memory(std::array<uint8_t, Memory::BIOS_SIZE>(), : bus(Bus::init(std::array<uint8_t, Bus::BIOS_SIZE>(),
std::vector<uint8_t>(Header::HEADER_SIZE))) std::vector<uint8_t>(Header::HEADER_SIZE)))
, cpu(bus) {} , cpu(bus) {}
protected: protected:
void exec(arm::InstructionData data, Condition condition = Condition::AL) { void exec(arm::InstructionData data, Condition condition = Condition::AL) {
// hack to account for one fetch cycle
bus->internal_cycle();
arm::Instruction instruction(condition, data); arm::Instruction instruction(condition, data);
instruction.exec(cpu); cpu.exec(instruction);
} }
void exec(thumb::InstructionData data) { void exec(thumb::InstructionData data) {
// hack to account for one fetch cycle
bus->internal_cycle();
thumb::Instruction instruction(data); thumb::Instruction instruction(data);
instruction.exec(cpu); cpu.exec(instruction);
} }
void reset(uint32_t value = 0) { setr(15, value + 8); } void reset(uint32_t value = 0) { setr(15, value + 8); }
uint32_t getr(uint8_t r) { return getr_(r, cpu); } uint32_t getr(uint8_t r) {
uint32_t pc = 0;
void setr(uint8_t r, uint32_t value) { setr_(r, value, cpu); } if (r != 15)
pc = getr_(15, cpu);
uint32_t ret = getr_(r, cpu);
if (r == 15)
pc = ret;
// undo PC advance
setr_(15, pc, cpu);
return ret;
}
void setr(uint8_t r, uint32_t value) {
uint32_t pc = getr_(15, cpu);
setr_(r, value, cpu);
// undo PC advance when r != 15
// when r is 15, setr_ takes account of pipeline flush
if (r != 15)
setr_(15, pc, cpu);
}
Psr psr(bool spsr = false); Psr psr(bool spsr = false);
void set_psr(Psr psr, bool spsr = false); void set_psr(Psr psr, bool spsr = false);
Bus bus; std::shared_ptr<Bus> bus;
Cpu cpu; Cpu cpu;
private: private:
// hack to get a register // hack to get a register
uint32_t getr_(uint8_t r, Cpu& cpu); uint32_t getr_(uint8_t r, Cpu tmp);
// hack to set a register // hack to set a register
void setr_(uint8_t r, uint32_t value, Cpu& cpu); void setr_(uint8_t r, uint32_t value, Cpu& cpu);

View File

@@ -18,7 +18,9 @@ TEST_CASE_METHOD(CpuFixture, "Move Shifted Register", TAG) {
setr(3, 0); setr(3, 0);
setr(5, 6687); setr(5, 6687);
// LSL // LSL
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 1); // 1S
CHECK(getr(3) == 219119616); CHECK(getr(3) == 219119616);
setr(5, 0); setr(5, 0);
@@ -32,7 +34,11 @@ TEST_CASE_METHOD(CpuFixture, "Move Shifted Register", TAG) {
move->opcode = ShiftType::LSR; move->opcode = ShiftType::LSR;
setr(5, -1827489745); setr(5, -1827489745);
// LSR // LSR
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 1); // 1S
CHECK(getr(3) == 75301); CHECK(getr(3) == 75301);
CHECK(!psr().n()); CHECK(!psr().n());
@@ -47,7 +53,11 @@ TEST_CASE_METHOD(CpuFixture, "Move Shifted Register", TAG) {
setr(5, -1827489745); setr(5, -1827489745);
move->opcode = ShiftType::ASR; move->opcode = ShiftType::ASR;
// ASR // ASR
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 1); // 1S
CHECK(psr().n()); CHECK(psr().n());
CHECK(getr(3) == 4294911525); CHECK(getr(3) == 4294911525);
@@ -71,7 +81,10 @@ TEST_CASE_METHOD(CpuFixture, "Add/Subtract", TAG) {
SECTION("ADD") { SECTION("ADD") {
// register // register
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 1); // 1S
CHECK(getr(5) == 377761225); CHECK(getr(5) == 377761225);
add->imm = true; add->imm = true;
@@ -94,7 +107,11 @@ TEST_CASE_METHOD(CpuFixture, "Add/Subtract", TAG) {
add->opcode = AddSubtract::OpCode::SUB; add->opcode = AddSubtract::OpCode::SUB;
setr(2, -((1u << 31) - 1)); setr(2, -((1u << 31) - 1));
add->offset = 4; add->offset = 4;
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 1); // 1S
CHECK(getr(5) == 2147483645); CHECK(getr(5) == 2147483645);
CHECK(psr().v()); CHECK(psr().v());
@@ -122,7 +139,10 @@ TEST_CASE_METHOD(CpuFixture, "Move/Compare/Add/Subtract Immediate", TAG) {
MovCmpAddSubImmediate* move = std::get_if<MovCmpAddSubImmediate>(&data); MovCmpAddSubImmediate* move = std::get_if<MovCmpAddSubImmediate>(&data);
SECTION("MOV") { SECTION("MOV") {
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 1); // 1S
CHECK(getr(5) == 251); CHECK(getr(5) == 251);
move->offset = 0; move->offset = 0;
@@ -136,7 +156,11 @@ TEST_CASE_METHOD(CpuFixture, "Move/Compare/Add/Subtract Immediate", TAG) {
setr(5, 251); setr(5, 251);
move->opcode = MovCmpAddSubImmediate::OpCode::CMP; move->opcode = MovCmpAddSubImmediate::OpCode::CMP;
CHECK(!psr().z()); CHECK(!psr().z());
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 1); // 1S
CHECK(getr(5) == 251); CHECK(getr(5) == 251);
CHECK(psr().z()); CHECK(psr().z());
@@ -152,7 +176,11 @@ TEST_CASE_METHOD(CpuFixture, "Move/Compare/Add/Subtract Immediate", TAG) {
move->opcode = MovCmpAddSubImmediate::OpCode::ADD; move->opcode = MovCmpAddSubImmediate::OpCode::ADD;
setr(5, (1u << 31) - 1); setr(5, (1u << 31) - 1);
// immediate and overflow // immediate and overflow
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 1); // 1S
CHECK(getr(5) == 2147483898); CHECK(getr(5) == 2147483898);
CHECK(psr().v()); CHECK(psr().v());
@@ -168,7 +196,11 @@ TEST_CASE_METHOD(CpuFixture, "Move/Compare/Add/Subtract Immediate", TAG) {
setr(5, 251); setr(5, 251);
move->opcode = MovCmpAddSubImmediate::OpCode::SUB; move->opcode = MovCmpAddSubImmediate::OpCode::SUB;
CHECK(!psr().z()); CHECK(!psr().z());
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 1); // 1S
CHECK(getr(5) == 0); CHECK(getr(5) == 0);
CHECK(psr().z()); CHECK(psr().z());
@@ -190,8 +222,11 @@ TEST_CASE_METHOD(CpuFixture, "ALU Operations", TAG) {
setr(3, -991); setr(3, -991);
SECTION("AND") { SECTION("AND") {
uint32_t cycles = bus->get_cycles();
// 328940001 & -991 // 328940001 & -991
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 1); // 1S
CHECK(getr(1) == 328939553); CHECK(getr(1) == 328939553);
CHECK(!psr().n()); CHECK(!psr().n());
@@ -221,8 +256,12 @@ TEST_CASE_METHOD(CpuFixture, "ALU Operations", TAG) {
SECTION("LSL") { SECTION("LSL") {
setr(3, 3); setr(3, 3);
alu->opcode = AluOperations::OpCode::LSL; alu->opcode = AluOperations::OpCode::LSL;
uint32_t cycles = bus->get_cycles();
// 328940001 << 3 // 328940001 << 3
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 2); // 1S + 1I (shift)
CHECK(getr(1) == 2631520008); CHECK(getr(1) == 2631520008);
CHECK(psr().n()); CHECK(psr().n());
@@ -410,8 +449,12 @@ TEST_CASE_METHOD(CpuFixture, "ALU Operations", TAG) {
SECTION("MUL") { SECTION("MUL") {
alu->opcode = AluOperations::OpCode::MUL; alu->opcode = AluOperations::OpCode::MUL;
uint32_t cycles = bus->get_cycles();
// 328940001 * -991 (lower 32 bits) (-325979540991 & 0xFFFFFFFF) // 328940001 * -991 (lower 32 bits) (-325979540991 & 0xFFFFFFFF)
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 3); // S + mI (m = 2 for -991)
CHECK(getr(1) == 437973505); CHECK(getr(1) == 437973505);
setr(3, 0); setr(3, 0);
@@ -462,19 +505,22 @@ TEST_CASE_METHOD(CpuFixture, "Hi Register Operations/Branch Exchange", TAG) {
}; };
HiRegisterOperations* hi = std::get_if<HiRegisterOperations>(&data); HiRegisterOperations* hi = std::get_if<HiRegisterOperations>(&data);
setr(15, 3452948950); setr(15, 3452948948);
setr(5, 958656720); setr(5, 958656720);
SECTION("ADD") { SECTION("ADD") {
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(getr(5) == 116638374); CHECK(bus->get_cycles() == cycles + 1); // 1S
CHECK(getr(5) == 116638372);
// hi + hi // hi + hi
hi->rd = 14; hi->rd = 14;
hi->rs = 15; hi->rs = 15;
setr(14, 42589); setr(14, 42589);
exec(data); exec(data);
CHECK(getr(14) == 3452991539); CHECK(getr(14) == 3452991537);
} }
SECTION("CMP") { SECTION("CMP") {
@@ -500,7 +546,7 @@ TEST_CASE_METHOD(CpuFixture, "Hi Register Operations/Branch Exchange", TAG) {
hi->opcode = HiRegisterOperations::OpCode::MOV; hi->opcode = HiRegisterOperations::OpCode::MOV;
exec(data); exec(data);
CHECK(getr(5) == 3452948950); CHECK(getr(5) == 3452948948);
} }
SECTION("BX") { SECTION("BX") {
@@ -509,8 +555,13 @@ TEST_CASE_METHOD(CpuFixture, "Hi Register Operations/Branch Exchange", TAG) {
SECTION("Arm") { SECTION("Arm") {
setr(10, 2189988); setr(10, 2189988);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(getr(15) == 2189988); CHECK(bus->get_cycles() == cycles + 3); // 2S + N cycles
// +4 for pipeline flush
CHECK(getr(15) == 2189988 + 4);
// switched to arm // switched to arm
CHECK(psr().state() == State::Arm); CHECK(psr().state() == State::Arm);
} }
@@ -518,7 +569,9 @@ TEST_CASE_METHOD(CpuFixture, "Hi Register Operations/Branch Exchange", TAG) {
SECTION("Thumb") { SECTION("Thumb") {
setr(10, 2189989); setr(10, 2189989);
exec(data); exec(data);
CHECK(getr(15) == 2189988);
// +4 for pipeline flush
CHECK(getr(15) == 2189988 + 4);
// switched to thumb // switched to thumb
CHECK(psr().state() == State::Thumb); CHECK(psr().state() == State::Thumb);
@@ -532,10 +585,14 @@ TEST_CASE_METHOD(CpuFixture, "PC Relative Load", TAG) {
setr(15, 0x3003FD5); setr(15, 0x3003FD5);
// resetting bit 0 for 0x3003FD5, we get 0x3003FD4 // resetting bit 0 for 0x3003FD5, we get 0x3003FD4
// 0x3003FD4 + 0x578 // 0x3003FD4 + 0x578
bus.write_word(0x300454C, 489753492); bus->write_word(0x300454C, 489753492);
CHECK(getr(0) == 0); CHECK(getr(0) == 0);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 3); // S + N + I cycles
CHECK(getr(0) == 489753492); CHECK(getr(0) == 489753492);
} }
@@ -551,21 +608,29 @@ TEST_CASE_METHOD(CpuFixture, "Load/Store with Register Offset", TAG) {
SECTION("store") { SECTION("store") {
// 0x3003000 + 0x332 // 0x3003000 + 0x332
CHECK(bus.read_word(0x3003332) == 0); CHECK(bus->read_word(0x3003332) == 0);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus.read_word(0x3003332) == 389524259); CHECK(bus->get_cycles() == cycles + 2); // 2N cycles
CHECK(bus->read_word(0x3003332) == 389524259);
// byte // byte
load->byte = true; load->byte = true;
bus.write_word(0x3003332, 0); bus->write_word(0x3003332, 0);
exec(data); exec(data);
CHECK(bus.read_word(0x3003332) == 35); CHECK(bus->read_word(0x3003332) == 35);
} }
SECTION("load") { SECTION("load") {
load->load = true; load->load = true;
bus.write_word(0x3003332, 11123489); bus->write_word(0x3003332, 11123489);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 3); // S + N + I cycles
CHECK(getr(3) == 11123489); CHECK(getr(3) == 11123489);
// byte // byte
@@ -588,22 +653,28 @@ TEST_CASE_METHOD(CpuFixture, "Load/Store Sign Extended Byte/Halfword", TAG) {
SECTION("SH = 00") { SECTION("SH = 00") {
// 0x3003000 + 0x332 // 0x3003000 + 0x332
CHECK(bus.read_word(0x3003332) == 0); CHECK(bus->read_word(0x3003332) == 0);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus.read_word(0x3003332) == 43811); CHECK(bus->get_cycles() == cycles + 2); // 2N cycles
CHECK(bus->read_word(0x3003332) == 43811);
} }
SECTION("SH = 01") { SECTION("SH = 01") {
load->h = true; load->h = true;
bus.write_word(0x3003332, 11123489); bus->write_word(0x3003332, 11123489);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 3); // S + N + I cycles
CHECK(getr(3) == 47905); CHECK(getr(3) == 47905);
} }
SECTION("SH = 10") { SECTION("SH = 10") {
load->s = true; load->s = true;
bus.write_word(0x3003332, 34521594); bus->write_word(0x3003332, 34521594);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 3); // S + N + I cycles
// sign extended 250 byte (0xFA) // sign extended 250 byte (0xFA)
CHECK(getr(3) == 4294967290); CHECK(getr(3) == 4294967290);
} }
@@ -611,9 +682,11 @@ TEST_CASE_METHOD(CpuFixture, "Load/Store Sign Extended Byte/Halfword", TAG) {
SECTION("SH = 11") { SECTION("SH = 11") {
load->s = true; load->s = true;
load->h = true; load->h = true;
bus.write_word(0x3003332, 11123489); bus->write_word(0x3003332, 11123489);
// sign extended 47905 halfword (0xBB21) // sign extended 47905 halfword (0xBB21)
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 3); // S + N + I cycles
CHECK(getr(3) == 4294949665); CHECK(getr(3) == 4294949665);
} }
} }
@@ -630,21 +703,25 @@ TEST_CASE_METHOD(CpuFixture, "Load/Store with Immediate Offset", TAG) {
SECTION("store") { SECTION("store") {
// 0x30066A + 0x6E // 0x30066A + 0x6E
CHECK(bus.read_word(0x30066D8) == 0); CHECK(bus->read_word(0x30066D8) == 0);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus.read_word(0x30066D8) == 389524259); CHECK(bus->get_cycles() == cycles + 2); // 2N cycles
CHECK(bus->read_word(0x30066D8) == 389524259);
// byte // byte
load->byte = true; load->byte = true;
bus.write_word(0x30066D8, 0); bus->write_word(0x30066D8, 0);
exec(data); exec(data);
CHECK(bus.read_word(0x30066D8) == 35); CHECK(bus->read_word(0x30066D8) == 35);
} }
SECTION("load") { SECTION("load") {
load->load = true; load->load = true;
bus.write_word(0x30066D8, 11123489); bus->write_word(0x30066D8, 11123489);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 3); // S + N + I cycles
CHECK(getr(3) == 11123489); CHECK(getr(3) == 11123489);
// byte // byte
@@ -664,15 +741,19 @@ TEST_CASE_METHOD(CpuFixture, "Load/Store Halfword", TAG) {
SECTION("store") { SECTION("store") {
// 0x300666A + 0x6E // 0x300666A + 0x6E
CHECK(bus.read_word(0x30066D8) == 0); CHECK(bus->read_word(0x30066D8) == 0);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus.read_word(0x30066D8) == 43811); CHECK(bus->get_cycles() == cycles + 2); // 2N cycles
CHECK(bus->read_word(0x30066D8) == 43811);
} }
SECTION("load") { SECTION("load") {
load->load = true; load->load = true;
bus.write_word(0x30066D8, 11123489); bus->write_word(0x30066D8, 11123489);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 3); // S + N + I cycles
CHECK(getr(3) == 47905); CHECK(getr(3) == 47905);
} }
} }
@@ -688,15 +769,19 @@ TEST_CASE_METHOD(CpuFixture, "SP Relative Load", TAG) {
SECTION("store") { SECTION("store") {
// 0x3004A8A + 0x328 // 0x3004A8A + 0x328
CHECK(bus.read_word(0x3004DB2) == 0); CHECK(bus->read_word(0x3004DB2) == 0);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus.read_word(0x3004DB2) == 2349505744); CHECK(bus->get_cycles() == cycles + 2); // 2N cycles
CHECK(bus->read_word(0x3004DB2) == 2349505744);
} }
SECTION("load") { SECTION("load") {
load->load = true; load->load = true;
bus.write_word(0x3004DB2, 11123489); bus->write_word(0x3004DB2, 11123489);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 3); // S + N + I cycles
CHECK(getr(1) == 11123489); CHECK(getr(1) == 11123489);
} }
} }
@@ -711,8 +796,11 @@ TEST_CASE_METHOD(CpuFixture, "Load Address", TAG) {
setr(13, 69879977); setr(13, 69879977);
SECTION("PC") { SECTION("PC") {
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(getr(1) == 337293); CHECK(bus->get_cycles() == cycles + 1); // 1S
// word align 337293
CHECK(getr(1) == 337292);
} }
SECTION("SP") { SECTION("SP") {
@@ -730,7 +818,9 @@ TEST_CASE_METHOD(CpuFixture, "Add Offset to Stack Pointer", TAG) {
setr(13, 69879977); setr(13, 69879977);
SECTION("positive") { SECTION("positive") {
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 1); // 1S
CHECK(getr(13) == 69880450); CHECK(getr(13) == 69880450);
} }
@@ -761,18 +851,20 @@ TEST_CASE_METHOD(CpuFixture, "Push/Pop Registers", TAG) {
auto checker = [this]() { auto checker = [this]() {
// address // address
CHECK(bus.read_word(address) == 237164); CHECK(bus->read_word(address) == 237164);
CHECK(bus.read_word(address + alignment) == 679785111); CHECK(bus->read_word(address + alignment) == 679785111);
CHECK(bus.read_word(address + alignment * 2) == 905895898); CHECK(bus->read_word(address + alignment * 2) == 905895898);
CHECK(bus.read_word(address + alignment * 3) == 131313333); CHECK(bus->read_word(address + alignment * 3) == 131313333);
CHECK(bus.read_word(address + alignment * 4) == 131); CHECK(bus->read_word(address + alignment * 4) == 131);
}; };
// set stack pointer to top of stack // set stack pointer to top of stack
setr(13, address + alignment * 5); setr(13, address + alignment * 5);
SECTION("without LR") { SECTION("without LR") {
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 6); // 2N + (n-1)S, n = 5
checker(); checker();
CHECK(getr(13) == address); CHECK(getr(13) == address);
} }
@@ -783,9 +875,12 @@ TEST_CASE_METHOD(CpuFixture, "Push/Pop Registers", TAG) {
setr(14, 999304); setr(14, 999304);
// add another word on stack (top + 4) // add another word on stack (top + 4)
setr(13, address + alignment * 6); setr(13, address + alignment * 6);
exec(data);
CHECK(bus.read_word(address + alignment * 5) == 999304); uint32_t cycles = bus->get_cycles();
exec(data);
CHECK(bus->get_cycles() == cycles + 7); // 2N + nS, n = 5
CHECK(bus->read_word(address + alignment * 5) == 999304);
checker(); checker();
CHECK(getr(13) == address); CHECK(getr(13) == address);
} }
@@ -795,11 +890,11 @@ TEST_CASE_METHOD(CpuFixture, "Push/Pop Registers", TAG) {
push->load = true; push->load = true;
// populate memory // populate memory
bus.write_word(address, 237164); bus->write_word(address, 237164);
bus.write_word(address + alignment, 679785111); bus->write_word(address + alignment, 679785111);
bus.write_word(address + alignment * 2, 905895898); bus->write_word(address + alignment * 2, 905895898);
bus.write_word(address + alignment * 3, 131313333); bus->write_word(address + alignment * 3, 131313333);
bus.write_word(address + alignment * 4, 131); bus->write_word(address + alignment * 4, 131);
auto checker = [this]() { auto checker = [this]() {
CHECK(getr(0) == 237164); CHECK(getr(0) == 237164);
@@ -819,19 +914,25 @@ TEST_CASE_METHOD(CpuFixture, "Push/Pop Registers", TAG) {
// set stack pointer to bottom of stack // set stack pointer to bottom of stack
setr(13, address); setr(13, address);
SECTION("without SP") { SECTION("without PC") {
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 7); // nS + N + I, n = 5
checker(); checker();
CHECK(getr(13) == address + alignment * 5); CHECK(getr(13) == address + alignment * 5);
} }
SECTION("with SP") { SECTION("with PC") {
push->pclr = true; push->pclr = true;
// populate next address // populate next address
bus.write_word(address + alignment * 5, 93333912); bus->write_word(address + alignment * 5, 93333912);
exec(data);
CHECK(getr(15) == 93333912); uint32_t cycles = bus->get_cycles();
exec(data);
CHECK(bus->get_cycles() == cycles + 10); //(n+2)S + 2N + I, n = 5
// +4 for flushed pipeline
CHECK(getr(15) == 93333912 + 4);
checker(); checker();
CHECK(getr(13) == address + alignment * 6); CHECK(getr(13) == address + alignment * 6);
} }
@@ -855,34 +956,40 @@ TEST_CASE_METHOD(CpuFixture, "Multiple Load/Store", TAG) {
setr(6, 131313333); setr(6, 131313333);
setr(7, 131); setr(7, 131);
// set R2 (base) to top of stack // base
setr(2, address + alignment * 5); setr(2, address);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 6); //(n-1)S + 2N, n = 5
CHECK(bus->read_word(address) == 237164);
CHECK(bus->read_word(address + alignment) == address);
CHECK(bus->read_word(address + alignment * 2) == 905895898);
CHECK(bus->read_word(address + alignment * 3) == 131313333);
CHECK(bus->read_word(address + alignment * 4) == 131);
CHECK(bus.read_word(address) == 237164);
CHECK(bus.read_word(address + alignment) == address + alignment * 5);
CHECK(bus.read_word(address + alignment * 2) == 905895898);
CHECK(bus.read_word(address + alignment * 3) == 131313333);
CHECK(bus.read_word(address + alignment * 4) == 131);
// write back // write back
CHECK(getr(2) == address); CHECK(getr(2) == address + alignment * 5);
} }
SECTION("load") { SECTION("load") {
push->load = true; push->load = true;
// populate memory // populate memory
bus.write_word(address, 237164); bus->write_word(address, 237164);
bus.write_word(address + alignment, 679785111); bus->write_word(address + alignment, 679785111);
bus.write_word(address + alignment * 2, 905895898); bus->write_word(address + alignment * 2, 905895898);
bus.write_word(address + alignment * 3, 131313333); bus->write_word(address + alignment * 3, 131313333);
bus.write_word(address + alignment * 4, 131); bus->write_word(address + alignment * 4, 131);
// base // base
setr(2, address); setr(2, address);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 7); // nS + N + 1, n = 5
CHECK(getr(0) == 237164); CHECK(getr(0) == 237164);
CHECK(getr(1) == 0); CHECK(getr(1) == 0);
CHECK(getr(2) == address + alignment * 5); // write back CHECK(getr(2) == address + alignment * 5); // write back
@@ -899,72 +1006,93 @@ TEST_CASE_METHOD(CpuFixture, "Conditional Branch", TAG) {
ConditionalBranch{ .offset = -192, .condition = Condition::EQ }; ConditionalBranch{ .offset = -192, .condition = Condition::EQ };
ConditionalBranch* branch = std::get_if<ConditionalBranch>(&data); ConditionalBranch* branch = std::get_if<ConditionalBranch>(&data);
Psr cpsr = psr();
cpsr.set_state(State::Thumb);
setr(15, 4589344); setr(15, 4589344);
SECTION("z") { SECTION("z") {
Psr cpsr = psr(); uint32_t cycles = bus->get_cycles();
// condition is false // condition is false
exec(data); exec(data);
CHECK(getr(15) == 4589344); CHECK(bus->get_cycles() == cycles + 1); // 1S
// +2 for pc advance
CHECK(getr(15) == 4589344 + 2);
cpsr.set_z(true); cpsr.set_z(true);
set_psr(cpsr); set_psr(cpsr);
cycles = bus->get_cycles();
// condition is true // condition is true
exec(data); exec(data);
CHECK(getr(15) == 4589152); CHECK(bus->get_cycles() == cycles + 3); // 2S + N
// +4 for pipeline flush
CHECK(getr(15) == 4589156);
} }
SECTION("c") { SECTION("c") {
branch->condition = Condition::CS; branch->condition = Condition::CS;
Psr cpsr = psr();
// condition is false // condition is false
exec(data); exec(data);
CHECK(getr(15) == 4589344);
// +2 for pc advance
CHECK(getr(15) == 4589346);
cpsr.set_c(true); cpsr.set_c(true);
set_psr(cpsr); set_psr(cpsr);
// condition is true // condition is true
exec(data); exec(data);
CHECK(getr(15) == 4589152); // +4 for pipeline flush
CHECK(getr(15) == 4589156);
} }
SECTION("n") { SECTION("n") {
branch->condition = Condition::MI; branch->condition = Condition::MI;
Psr cpsr = psr();
// condition is false // condition is false
exec(data); exec(data);
CHECK(getr(15) == 4589344);
// +2 for pc advance
CHECK(getr(15) == 4589346);
cpsr.set_n(true); cpsr.set_n(true);
set_psr(cpsr); set_psr(cpsr);
// condition is true // condition is true
exec(data); exec(data);
CHECK(getr(15) == 4589152); // +4 for pipeline flush
CHECK(getr(15) == 4589156);
} }
SECTION("v") { SECTION("v") {
branch->condition = Condition::VS; branch->condition = Condition::VS;
Psr cpsr = psr();
// condition is false // condition is false
exec(data); exec(data);
CHECK(getr(15) == 4589344);
// +2 for pc advance
CHECK(getr(15) == 4589346);
cpsr.set_v(true); cpsr.set_v(true);
set_psr(cpsr); set_psr(cpsr);
// condition is true // condition is true
exec(data); exec(data);
CHECK(getr(15) == 4589152); // +4 for pipeline flush
CHECK(getr(15) == 4589156);
} }
} }
TEST_CASE_METHOD(CpuFixture, "Software Interrupt", TAG) { TEST_CASE_METHOD(CpuFixture, "Software Interrupt", TAG) {
InstructionData data = SoftwareInterrupt{ .vector = 33 }; InstructionData data = SoftwareInterrupt{ .vector = 32 };
setr(15, 4492); setr(15, 4492);
uint32_t cycles = bus->get_cycles();
// condition is true
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 3); // 2S + N
CHECK(psr().raw() == psr(true).raw()); CHECK(psr().raw() == psr(true).raw());
CHECK(getr(14) == 4490); CHECK(getr(14) == 4490);
CHECK(getr(15) == 33); // +4 for flushed pipeline
CHECK(getr(15) == 36);
CHECK(psr().state() == State::Arm); CHECK(psr().state() == State::Arm);
CHECK(psr().mode() == Mode::Supervisor); CHECK(psr().mode() == Mode::Supervisor);
} }
@@ -973,23 +1101,39 @@ TEST_CASE_METHOD(CpuFixture, "Unconditional Branch", TAG) {
InstructionData data = UnconditionalBranch{ .offset = -920 }; InstructionData data = UnconditionalBranch{ .offset = -920 };
setr(15, 4589344); setr(15, 4589344);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(getr(15) == 4588424); CHECK(bus->get_cycles() == cycles + 3); // 2S + N
// +4 for flushed pipeline
CHECK(getr(15) == 4588428);
} }
TEST_CASE_METHOD(CpuFixture, "Long Branch With Link", TAG) { TEST_CASE_METHOD(CpuFixture, "Long Branch With Link", TAG) {
InstructionData data = LongBranchWithLink{ .offset = 3262, .high = false }; InstructionData data =
LongBranchWithLink{ .offset = 0b10010111110, .low = false };
LongBranchWithLink* branch = std::get_if<LongBranchWithLink>(&data); LongBranchWithLink* branch = std::get_if<LongBranchWithLink>(&data);
// high // high
setr(15, 4589344); setr(15, 4589344);
uint32_t cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(getr(14) == 2881312); CHECK(bus->get_cycles() == cycles + 1); // 1S
CHECK(getr(14) == 1173280);
// low // low
branch->high = true; branch->low = true;
cycles = bus->get_cycles();
exec(data); exec(data);
CHECK(bus->get_cycles() == cycles + 3); // 2S + N
// +2 for advancing thumb, then -2 to get the next instruciton of current
// executing instruction, then set bit 0
CHECK(getr(14) == 4589343); CHECK(getr(14) == 4589343);
CHECK(getr(15) == 2884574); // 1175712 + 4 for flushed pipeline
CHECK(getr(15) == 1175712);
} }

View File

@@ -447,20 +447,20 @@ TEST_CASE("Unconditional Branch") {
} }
TEST_CASE("Long Branch with link") { TEST_CASE("Long Branch with link") {
uint16_t raw = 0b1111010011101100; uint16_t raw = 0b1111110011101100;
Instruction instruction(raw); Instruction instruction(raw);
LongBranchWithLink* bl = nullptr; LongBranchWithLink* bl = nullptr;
REQUIRE((bl = std::get_if<LongBranchWithLink>(&instruction.data))); REQUIRE((bl = std::get_if<LongBranchWithLink>(&instruction.data)));
// 1260 << 1 // 1260 << 1
CHECK(bl->offset == 2520); CHECK(bl->offset == 1260);
CHECK(bl->high == false); CHECK(bl->low == true);
#ifdef DISASSEMBLER #ifdef DISASSEMBLER
CHECK(instruction.disassemble() == "BL #2520"); CHECK(instruction.disassemble() == "BL #1260");
bl->high = true; bl->low = false;
CHECK(instruction.disassemble() == "BLH #2520"); CHECK(instruction.disassemble() == "BLH #1260");
#endif #endif
} }

View File

@@ -1,118 +0,0 @@
#include "memory.hh"
#include <catch2/catch_test_macros.hpp>
#define TAG "[memory]"
using namespace matar;
class MemFixture {
public:
MemFixture()
: memory(std::array<uint8_t, Memory::BIOS_SIZE>(),
std::vector<uint8_t>(Header::HEADER_SIZE)) {}
protected:
Memory memory;
};
TEST_CASE("bios", TAG) {
std::array<uint8_t, Memory::BIOS_SIZE> bios = { 0 };
// populate bios
bios[0] = 0xAC;
bios[0x3FFF] = 0x48;
bios[0x2A56] = 0x10;
Memory memory(std::move(bios), std::vector<uint8_t>(Header::HEADER_SIZE));
CHECK(memory.read(0) == 0xAC);
CHECK(memory.read(0x3FFF) == 0x48);
CHECK(memory.read(0x2A56) == 0x10);
}
TEST_CASE_METHOD(MemFixture, "board wram", TAG) {
memory.write(0x2000000, 0xAC);
CHECK(memory.read(0x2000000) == 0xAC);
memory.write(0x203FFFF, 0x48);
CHECK(memory.read(0x203FFFF) == 0x48);
memory.write(0x2022A56, 0x10);
CHECK(memory.read(0x2022A56) == 0x10);
}
TEST_CASE_METHOD(MemFixture, "chip wram", TAG) {
memory.write(0x3000000, 0xAC);
CHECK(memory.read(0x3000000) == 0xAC);
memory.write(0x3007FFF, 0x48);
CHECK(memory.read(0x3007FFF) == 0x48);
memory.write(0x3002A56, 0x10);
CHECK(memory.read(0x3002A56) == 0x10);
}
TEST_CASE_METHOD(MemFixture, "palette ram", TAG) {
memory.write(0x5000000, 0xAC);
CHECK(memory.read(0x5000000) == 0xAC);
memory.write(0x50003FF, 0x48);
CHECK(memory.read(0x50003FF) == 0x48);
memory.write(0x5000156, 0x10);
CHECK(memory.read(0x5000156) == 0x10);
}
TEST_CASE_METHOD(MemFixture, "video ram", TAG) {
memory.write(0x6000000, 0xAC);
CHECK(memory.read(0x6000000) == 0xAC);
memory.write(0x6017FFF, 0x48);
CHECK(memory.read(0x6017FFF) == 0x48);
memory.write(0x6012A56, 0x10);
CHECK(memory.read(0x6012A56) == 0x10);
}
TEST_CASE_METHOD(MemFixture, "oam obj ram", TAG) {
memory.write(0x7000000, 0xAC);
CHECK(memory.read(0x7000000) == 0xAC);
memory.write(0x70003FF, 0x48);
CHECK(memory.read(0x70003FF) == 0x48);
memory.write(0x7000156, 0x10);
CHECK(memory.read(0x7000156) == 0x10);
}
TEST_CASE("rom", TAG) {
std::vector<uint8_t> rom(32 * 1024 * 1024, 0);
// populate rom
rom[0] = 0xAC;
rom[0x1FFFFFF] = 0x48;
rom[0x0EF0256] = 0x10;
// 32 megabyte ROM
Memory memory(std::array<uint8_t, Memory::BIOS_SIZE>(), std::move(rom));
SECTION("ROM1") {
CHECK(memory.read(0x8000000) == 0xAC);
CHECK(memory.read(0x9FFFFFF) == 0x48);
CHECK(memory.read(0x8EF0256) == 0x10);
}
SECTION("ROM2") {
CHECK(memory.read(0xA000000) == 0xAC);
CHECK(memory.read(0xBFFFFFF) == 0x48);
CHECK(memory.read(0xAEF0256) == 0x10);
}
SECTION("ROM3") {
CHECK(memory.read(0xC000000) == 0xAC);
CHECK(memory.read(0xDFFFFFF) == 0x48);
CHECK(memory.read(0xCEF0256) == 0x10);
}
}
#undef TAG

View File

@@ -6,19 +6,14 @@ src = include_directories('../src')
tests_sources = files( tests_sources = files(
'main.cc', 'main.cc',
'bus.cc', 'bus.cc'
'memory.cc'
) )
tests_cpp_args = lib_cpp_args
subdir('cpu') subdir('cpu')
subdir('util') subdir('util')
tests_cpp_args = []
if get_option('disassembler')
tests_cpp_args += '-DDISASSEMBLER'
endif
catch2 = dependency('catch2', version: '>=3.4.0', static: true) catch2 = dependency('catch2', version: '>=3.4.0', static: true)
catch2_tests = executable( catch2_tests = executable(
'matar_tests', 'matar_tests',