\begin{center} \fontsize{15}{18}\selectfont \textbf{ COMPUTATIONAL METHODS LAB\\ PRACTICAL RECORD } \end{center} \begin{table}[h] \begin{tabular}{lcl} Paper Code & : & ES-251\\ Name of the student & : & Amneesh Singh\\ University Enrollment number & : & 14114803121\\ Branch & : & Information Technology\\ Group & : & I6 \end{tabular} \end{table} \textbf{PRACTICAL DETAILS} Experiments according to the lab syllabus prescribed by GGSIPU \begin{table}[h] \fontsize{11}{12}\selectfont{ \renewcommand{\arraystretch}{2.5} \begin{tabular}{|p{0.6cm}|p{8cm}|p{2cm}|p{2cm}|p{2cm}|p{1cm}|} \hline \textbf{Exp. No.} & \textbf{Experiment Name} & \textbf{Performance Date} & \textbf{Date Checked} & \textbf{Remarks} & \textbf{Marks} \\ \hline \hline 1 & Program for finding roots of f(x) = 0 using Newton Raphson Method & & & & \\ \hline 2 & Program for finding roots of f(x) = 0 using Bisection Method & & & & \\ \hline 3 & Program for finding roots of f(x) = 0 using Secant Method & & & & \\ \hline 4 & Program to implement Langrange Interpolation & & & & \\ \hline 5 & Program to implement Newton's Divided Difference formula & & & & \\ \hline 6 & Program for solving numerical integration by trapezoidal method & & & & \\ \hline 7 & Program for solving numerical integration by Simpson's 1/3 rule & & & & \\ \hline 8 & Program for solving numerical integration by Simpson's 3/8 rule & & & & \\ \hline 9 & Program for finding inverse of linear equations using Gauss Jordan method & & & & \\ \hline 10 & Program for finding eigen values using power method & & & & \\ \hline 11 & Program for solving ordinary differential equation using Renge Kutta method & & & & \\ \hline \end{tabular} } \end{table}